// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/ic/ic.h" #include "src/accessors.h" #include "src/api-arguments-inl.h" #include "src/api.h" #include "src/arguments.h" #include "src/base/bits.h" #include "src/codegen.h" #include "src/conversions.h" #include "src/execution.h" #include "src/field-type.h" #include "src/frames-inl.h" #include "src/ic/call-optimization.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic-compiler.h" #include "src/ic/ic-inl.h" #include "src/ic/stub-cache.h" #include "src/isolate-inl.h" #include "src/macro-assembler.h" #include "src/prototype.h" #include "src/runtime/runtime-utils.h" #include "src/runtime/runtime.h" #include "src/tracing/trace-event.h" namespace v8 { namespace internal { char IC::TransitionMarkFromState(IC::State state) { switch (state) { case UNINITIALIZED: return '0'; case PREMONOMORPHIC: return '.'; case MONOMORPHIC: return '1'; case RECOMPUTE_HANDLER: return '^'; case POLYMORPHIC: return 'P'; case MEGAMORPHIC: return 'N'; case GENERIC: return 'G'; } UNREACHABLE(); return 0; } const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) { if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW"; if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) { return ".IGNORE_OOB"; } if (IsGrowStoreMode(mode)) return ".GROW"; return ""; } #ifdef DEBUG #define TRACE_GENERIC_IC(isolate, type, reason) \ do { \ if (FLAG_trace_ic) { \ PrintF("[%s patching generic stub in ", type); \ JavaScriptFrame::PrintTop(isolate, stdout, false, true); \ PrintF(" (%s)]\n", reason); \ } \ } while (false) #else #define TRACE_GENERIC_IC(isolate, type, reason) \ do { \ if (FLAG_trace_ic) { \ PrintF("[%s patching generic stub in ", type); \ PrintF("(see below) (%s)]\n", reason); \ } \ } while (false) #endif // DEBUG void IC::TraceIC(const char* type, Handle<Object> name) { if (FLAG_trace_ic) { if (AddressIsDeoptimizedCode()) return; DCHECK(UseVector()); State new_state = nexus()->StateFromFeedback(); TraceIC(type, name, state(), new_state); } } void IC::TraceIC(const char* type, Handle<Object> name, State old_state, State new_state) { if (FLAG_trace_ic) { PrintF("[%s%s in ", is_keyed() ? "Keyed" : "", type); // TODO(jkummerow): Add support for "apply". The logic is roughly: // marker = [fp_ + kMarkerOffset]; // if marker is smi and marker.value == INTERNAL and // the frame's code == builtin(Builtins::kFunctionApply): // then print "apply from" and advance one frame Object* maybe_function = Memory::Object_at(fp_ + JavaScriptFrameConstants::kFunctionOffset); if (maybe_function->IsJSFunction()) { JSFunction* function = JSFunction::cast(maybe_function); JavaScriptFrame::PrintFunctionAndOffset(function, function->code(), pc(), stdout, true); } const char* modifier = ""; if (kind() == Code::KEYED_STORE_IC) { KeyedAccessStoreMode mode = casted_nexus<KeyedStoreICNexus>()->GetKeyedAccessStoreMode(); modifier = GetTransitionMarkModifier(mode); } void* map = nullptr; if (!receiver_map().is_null()) { map = reinterpret_cast<void*>(*receiver_map()); } PrintF(" (%c->%c%s) map=%p ", TransitionMarkFromState(old_state), TransitionMarkFromState(new_state), modifier, map); name->ShortPrint(stdout); PrintF("]\n"); } } #define TRACE_IC(type, name) TraceIC(type, name) IC::IC(FrameDepth depth, Isolate* isolate, FeedbackNexus* nexus) : isolate_(isolate), vector_set_(false), target_maps_set_(false), nexus_(nexus) { // To improve the performance of the (much used) IC code, we unfold a few // levels of the stack frame iteration code. This yields a ~35% speedup when // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag. const Address entry = Isolate::c_entry_fp(isolate->thread_local_top()); Address* constant_pool = NULL; if (FLAG_enable_embedded_constant_pool) { constant_pool = reinterpret_cast<Address*>( entry + ExitFrameConstants::kConstantPoolOffset); } Address* pc_address = reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset); Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset); // If there's another JavaScript frame on the stack or a // StubFailureTrampoline, we need to look one frame further down the stack to // find the frame pointer and the return address stack slot. if (depth == EXTRA_CALL_FRAME) { if (FLAG_enable_embedded_constant_pool) { constant_pool = reinterpret_cast<Address*>( fp + StandardFrameConstants::kConstantPoolOffset); } const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset; pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset); fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); } #ifdef DEBUG StackFrameIterator it(isolate); for (int i = 0; i < depth + 1; i++) it.Advance(); StackFrame* frame = it.frame(); DCHECK(fp == frame->fp() && pc_address == frame->pc_address()); #endif fp_ = fp; if (FLAG_enable_embedded_constant_pool) { constant_pool_address_ = constant_pool; } pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address); Code* target = this->target(); kind_ = target->kind(); state_ = UseVector() ? nexus->StateFromFeedback() : StateFromCode(target); old_state_ = state_; extra_ic_state_ = target->extra_ic_state(); } InlineCacheState IC::StateFromCode(Code* code) { Isolate* isolate = code->GetIsolate(); switch (code->kind()) { case Code::BINARY_OP_IC: { BinaryOpICState state(isolate, code->extra_ic_state()); return state.GetICState(); } case Code::COMPARE_IC: { CompareICStub stub(isolate, code->extra_ic_state()); return stub.GetICState(); } case Code::TO_BOOLEAN_IC: { ToBooleanICStub stub(isolate, code->extra_ic_state()); return stub.GetICState(); } default: if (code->is_debug_stub()) return UNINITIALIZED; UNREACHABLE(); return UNINITIALIZED; } } SharedFunctionInfo* IC::GetSharedFunctionInfo() const { // Compute the JavaScript frame for the frame pointer of this IC // structure. We need this to be able to find the function // corresponding to the frame. StackFrameIterator it(isolate()); while (it.frame()->fp() != this->fp()) it.Advance(); if (FLAG_ignition && it.frame()->type() == StackFrame::STUB) { // Advance over bytecode handler frame. // TODO(rmcilroy): Remove this once bytecode handlers don't need a frame. it.Advance(); } JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame()); // Find the function on the stack and both the active code for the // function and the original code. JSFunction* function = frame->function(); return function->shared(); } Code* IC::GetCode() const { HandleScope scope(isolate()); Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate()); Code* code = shared->code(); return code; } bool IC::AddressIsOptimizedCode() const { Code* host = isolate()->inner_pointer_to_code_cache()->GetCacheEntry(address())->code; return host->kind() == Code::OPTIMIZED_FUNCTION; } static void LookupForRead(LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return; case LookupIterator::INTERCEPTOR: { // If there is a getter, return; otherwise loop to perform the lookup. Handle<JSObject> holder = it->GetHolder<JSObject>(); if (!holder->GetNamedInterceptor()->getter()->IsUndefined( it->isolate())) { return; } break; } case LookupIterator::ACCESS_CHECK: // PropertyHandlerCompiler::CheckPrototypes() knows how to emit // access checks for global proxies. if (it->GetHolder<JSObject>()->IsJSGlobalProxy() && it->HasAccess()) { break; } return; case LookupIterator::ACCESSOR: case LookupIterator::INTEGER_INDEXED_EXOTIC: case LookupIterator::DATA: return; } } } bool IC::ShouldRecomputeHandler(Handle<Object> receiver, Handle<String> name) { if (!RecomputeHandlerForName(name)) return false; DCHECK(UseVector()); maybe_handler_ = nexus()->FindHandlerForMap(receiver_map()); // This is a contextual access, always just update the handler and stay // monomorphic. if (kind() == Code::LOAD_GLOBAL_IC) return true; // The current map wasn't handled yet. There's no reason to stay monomorphic, // *unless* we're moving from a deprecated map to its replacement, or // to a more general elements kind. // TODO(verwaest): Check if the current map is actually what the old map // would transition to. if (maybe_handler_.is_null()) { if (!receiver_map()->IsJSObjectMap()) return false; Map* first_map = FirstTargetMap(); if (first_map == NULL) return false; Handle<Map> old_map(first_map); if (old_map->is_deprecated()) return true; return IsMoreGeneralElementsKindTransition(old_map->elements_kind(), receiver_map()->elements_kind()); } return true; } bool IC::RecomputeHandlerForName(Handle<Object> name) { if (is_keyed()) { // Determine whether the failure is due to a name failure. if (!name->IsName()) return false; DCHECK(UseVector()); Name* stub_name = nexus()->FindFirstName(); if (*name != stub_name) return false; } return true; } void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) { update_receiver_map(receiver); if (!name->IsString()) return; if (state() != MONOMORPHIC && state() != POLYMORPHIC) return; if (receiver->IsUndefined(isolate()) || receiver->IsNull(isolate())) return; // Remove the target from the code cache if it became invalid // because of changes in the prototype chain to avoid hitting it // again. if (ShouldRecomputeHandler(receiver, Handle<String>::cast(name))) { MarkRecomputeHandler(name); } } MaybeHandle<Object> IC::TypeError(MessageTemplate::Template index, Handle<Object> object, Handle<Object> key) { HandleScope scope(isolate()); THROW_NEW_ERROR(isolate(), NewTypeError(index, key, object), Object); } MaybeHandle<Object> IC::ReferenceError(Handle<Name> name) { HandleScope scope(isolate()); THROW_NEW_ERROR( isolate(), NewReferenceError(MessageTemplate::kNotDefined, name), Object); } static void ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state, int* polymorphic_delta, int* generic_delta) { switch (old_state) { case UNINITIALIZED: case PREMONOMORPHIC: if (new_state == UNINITIALIZED || new_state == PREMONOMORPHIC) break; if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) { *polymorphic_delta = 1; } else if (new_state == MEGAMORPHIC || new_state == GENERIC) { *generic_delta = 1; } break; case MONOMORPHIC: case POLYMORPHIC: if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) break; *polymorphic_delta = -1; if (new_state == MEGAMORPHIC || new_state == GENERIC) { *generic_delta = 1; } break; case MEGAMORPHIC: case GENERIC: if (new_state == MEGAMORPHIC || new_state == GENERIC) break; *generic_delta = -1; if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) { *polymorphic_delta = 1; } break; case RECOMPUTE_HANDLER: UNREACHABLE(); } } // static void IC::OnTypeFeedbackChanged(Isolate* isolate, Code* host) { if (host->kind() != Code::FUNCTION) return; TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info()); info->change_own_type_change_checksum(); host->set_profiler_ticks(0); isolate->runtime_profiler()->NotifyICChanged(); // TODO(2029): When an optimized function is patched, it would // be nice to propagate the corresponding type information to its // unoptimized version for the benefit of later inlining. } void IC::PostPatching(Address address, Code* target, Code* old_target) { // Type vector based ICs update these statistics at a different time because // they don't always patch on state change. if (ICUseVector(target->kind())) return; DCHECK(old_target->is_inline_cache_stub()); DCHECK(target->is_inline_cache_stub()); State old_state = StateFromCode(old_target); State new_state = StateFromCode(target); Isolate* isolate = target->GetIsolate(); Code* host = isolate->inner_pointer_to_code_cache()->GetCacheEntry(address)->code; if (host->kind() != Code::FUNCTION) return; // Not all Code objects have TypeFeedbackInfo. if (host->type_feedback_info()->IsTypeFeedbackInfo()) { if (FLAG_type_info_threshold > 0) { int polymorphic_delta = 0; // "Polymorphic" here includes monomorphic. int generic_delta = 0; // "Generic" here includes megamorphic. ComputeTypeInfoCountDelta(old_state, new_state, &polymorphic_delta, &generic_delta); TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info()); info->change_ic_with_type_info_count(polymorphic_delta); info->change_ic_generic_count(generic_delta); } TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info()); info->change_own_type_change_checksum(); } host->set_profiler_ticks(0); isolate->runtime_profiler()->NotifyICChanged(); // TODO(2029): When an optimized function is patched, it would // be nice to propagate the corresponding type information to its // unoptimized version for the benefit of later inlining. } void IC::Clear(Isolate* isolate, Address address, Address constant_pool) { Code* target = GetTargetAtAddress(address, constant_pool); // Don't clear debug break inline cache as it will remove the break point. if (target->is_debug_stub()) return; if (target->kind() == Code::COMPARE_IC) { CompareIC::Clear(isolate, address, target, constant_pool); } } void KeyedLoadIC::Clear(Isolate* isolate, Code* host, KeyedLoadICNexus* nexus) { if (IsCleared(nexus)) return; // Make sure to also clear the map used in inline fast cases. If we // do not clear these maps, cached code can keep objects alive // through the embedded maps. nexus->ConfigurePremonomorphic(); OnTypeFeedbackChanged(isolate, host); } void CallIC::Clear(Isolate* isolate, Code* host, CallICNexus* nexus) { // Determine our state. Object* feedback = nexus->vector()->Get(nexus->slot()); State state = nexus->StateFromFeedback(); if (state != UNINITIALIZED && !feedback->IsAllocationSite()) { nexus->ConfigureUninitialized(); // The change in state must be processed. OnTypeFeedbackChanged(isolate, host); } } void LoadIC::Clear(Isolate* isolate, Code* host, LoadICNexus* nexus) { if (IsCleared(nexus)) return; nexus->ConfigurePremonomorphic(); OnTypeFeedbackChanged(isolate, host); } void LoadGlobalIC::Clear(Isolate* isolate, Code* host, LoadGlobalICNexus* nexus) { if (IsCleared(nexus)) return; nexus->ConfigureUninitialized(); OnTypeFeedbackChanged(isolate, host); } void StoreIC::Clear(Isolate* isolate, Code* host, StoreICNexus* nexus) { if (IsCleared(nexus)) return; nexus->ConfigurePremonomorphic(); OnTypeFeedbackChanged(isolate, host); } void KeyedStoreIC::Clear(Isolate* isolate, Code* host, KeyedStoreICNexus* nexus) { if (IsCleared(nexus)) return; nexus->ConfigurePremonomorphic(); OnTypeFeedbackChanged(isolate, host); } void CompareIC::Clear(Isolate* isolate, Address address, Code* target, Address constant_pool) { DCHECK(CodeStub::GetMajorKey(target) == CodeStub::CompareIC); CompareICStub stub(target->stub_key(), isolate); // Only clear CompareICs that can retain objects. if (stub.state() != CompareICState::KNOWN_RECEIVER) return; SetTargetAtAddress(address, GetRawUninitialized(isolate, stub.op()), constant_pool); PatchInlinedSmiCode(isolate, address, DISABLE_INLINED_SMI_CHECK); } // static Handle<Code> KeyedLoadIC::ChooseMegamorphicStub(Isolate* isolate, ExtraICState extra_state) { // TODO(ishell): remove extra_ic_state if (FLAG_compiled_keyed_generic_loads) { return KeyedLoadGenericStub(isolate).GetCode(); } else { return isolate->builtins()->KeyedLoadIC_Megamorphic(); } } static bool MigrateDeprecated(Handle<Object> object) { if (!object->IsJSObject()) return false; Handle<JSObject> receiver = Handle<JSObject>::cast(object); if (!receiver->map()->is_deprecated()) return false; JSObject::MigrateInstance(Handle<JSObject>::cast(object)); return true; } void IC::ConfigureVectorState(IC::State new_state, Handle<Object> key) { DCHECK(UseVector()); if (new_state == PREMONOMORPHIC) { nexus()->ConfigurePremonomorphic(); } else if (new_state == MEGAMORPHIC) { if (kind() == Code::LOAD_IC || kind() == Code::STORE_IC) { nexus()->ConfigureMegamorphic(); } else if (kind() == Code::KEYED_LOAD_IC) { KeyedLoadICNexus* nexus = casted_nexus<KeyedLoadICNexus>(); nexus->ConfigureMegamorphicKeyed(key->IsName() ? PROPERTY : ELEMENT); } else { DCHECK(kind() == Code::KEYED_STORE_IC); KeyedStoreICNexus* nexus = casted_nexus<KeyedStoreICNexus>(); nexus->ConfigureMegamorphicKeyed(key->IsName() ? PROPERTY : ELEMENT); } } else { UNREACHABLE(); } vector_set_ = true; OnTypeFeedbackChanged(isolate(), get_host()); } void IC::ConfigureVectorState(Handle<Name> name, Handle<Map> map, Handle<Code> handler) { DCHECK(UseVector()); if (kind() == Code::LOAD_IC) { LoadICNexus* nexus = casted_nexus<LoadICNexus>(); nexus->ConfigureMonomorphic(map, handler); } else if (kind() == Code::LOAD_GLOBAL_IC) { LoadGlobalICNexus* nexus = casted_nexus<LoadGlobalICNexus>(); nexus->ConfigureHandlerMode(handler); } else if (kind() == Code::KEYED_LOAD_IC) { KeyedLoadICNexus* nexus = casted_nexus<KeyedLoadICNexus>(); nexus->ConfigureMonomorphic(name, map, handler); } else if (kind() == Code::STORE_IC) { StoreICNexus* nexus = casted_nexus<StoreICNexus>(); nexus->ConfigureMonomorphic(map, handler); } else { DCHECK(kind() == Code::KEYED_STORE_IC); KeyedStoreICNexus* nexus = casted_nexus<KeyedStoreICNexus>(); nexus->ConfigureMonomorphic(name, map, handler); } vector_set_ = true; OnTypeFeedbackChanged(isolate(), get_host()); } void IC::ConfigureVectorState(Handle<Name> name, MapHandleList* maps, CodeHandleList* handlers) { DCHECK(UseVector()); if (kind() == Code::LOAD_IC) { LoadICNexus* nexus = casted_nexus<LoadICNexus>(); nexus->ConfigurePolymorphic(maps, handlers); } else if (kind() == Code::KEYED_LOAD_IC) { KeyedLoadICNexus* nexus = casted_nexus<KeyedLoadICNexus>(); nexus->ConfigurePolymorphic(name, maps, handlers); } else if (kind() == Code::STORE_IC) { StoreICNexus* nexus = casted_nexus<StoreICNexus>(); nexus->ConfigurePolymorphic(maps, handlers); } else { DCHECK(kind() == Code::KEYED_STORE_IC); KeyedStoreICNexus* nexus = casted_nexus<KeyedStoreICNexus>(); nexus->ConfigurePolymorphic(name, maps, handlers); } vector_set_ = true; OnTypeFeedbackChanged(isolate(), get_host()); } void IC::ConfigureVectorState(MapHandleList* maps, MapHandleList* transitioned_maps, CodeHandleList* handlers) { DCHECK(UseVector()); DCHECK(kind() == Code::KEYED_STORE_IC); KeyedStoreICNexus* nexus = casted_nexus<KeyedStoreICNexus>(); nexus->ConfigurePolymorphic(maps, transitioned_maps, handlers); vector_set_ = true; OnTypeFeedbackChanged(isolate(), get_host()); } MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<Name> name) { // If the object is undefined or null it's illegal to try to get any // of its properties; throw a TypeError in that case. if (object->IsUndefined(isolate()) || object->IsNull(isolate())) { return TypeError(MessageTemplate::kNonObjectPropertyLoad, object, name); } bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic; if (state() != UNINITIALIZED) { JSObject::MakePrototypesFast(object, kStartAtReceiver, isolate()); update_receiver_map(object); } // Named lookup in the object. LookupIterator it(object, name); LookupForRead(&it); if (it.IsFound() || !ShouldThrowReferenceError()) { // Update inline cache and stub cache. if (use_ic) UpdateCaches(&it); // Get the property. Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::GetProperty(&it), Object); if (it.IsFound()) { return result; } else if (!ShouldThrowReferenceError()) { LOG(isolate(), SuspectReadEvent(*name, *object)); return result; } } return ReferenceError(name); } MaybeHandle<Object> LoadGlobalIC::Load(Handle<Name> name) { Handle<JSGlobalObject> global = isolate()->global_object(); if (name->IsString()) { // Look up in script context table. Handle<String> str_name = Handle<String>::cast(name); Handle<ScriptContextTable> script_contexts( global->native_context()->script_context_table()); ScriptContextTable::LookupResult lookup_result; if (ScriptContextTable::Lookup(script_contexts, str_name, &lookup_result)) { Handle<Object> result = FixedArray::get(*ScriptContextTable::GetContext( script_contexts, lookup_result.context_index), lookup_result.slot_index, isolate()); if (result->IsTheHole(isolate())) { // Do not install stubs and stay pre-monomorphic for // uninitialized accesses. return ReferenceError(name); } if (FLAG_use_ic && LoadScriptContextFieldStub::Accepted(&lookup_result)) { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadScriptContextFieldStub); LoadScriptContextFieldStub stub(isolate(), &lookup_result); PatchCache(name, stub.GetCode()); TRACE_IC("LoadGlobalIC", name); } return result; } } return LoadIC::Load(global, name); } static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps, Handle<Map> new_receiver_map) { DCHECK(!new_receiver_map.is_null()); for (int current = 0; current < receiver_maps->length(); ++current) { if (!receiver_maps->at(current).is_null() && receiver_maps->at(current).is_identical_to(new_receiver_map)) { return false; } } receiver_maps->Add(new_receiver_map); return true; } bool IC::UpdatePolymorphicIC(Handle<Name> name, Handle<Code> code) { if (!code->is_handler()) return false; if (is_keyed() && state() != RECOMPUTE_HANDLER) return false; Handle<Map> map = receiver_map(); MapHandleList maps; CodeHandleList handlers; TargetMaps(&maps); int number_of_maps = maps.length(); int deprecated_maps = 0; int handler_to_overwrite = -1; for (int i = 0; i < number_of_maps; i++) { Handle<Map> current_map = maps.at(i); if (current_map->is_deprecated()) { // Filter out deprecated maps to ensure their instances get migrated. ++deprecated_maps; } else if (map.is_identical_to(current_map)) { // If the receiver type is already in the polymorphic IC, this indicates // there was a prototoype chain failure. In that case, just overwrite the // handler. handler_to_overwrite = i; } else if (handler_to_overwrite == -1 && IsTransitionOfMonomorphicTarget(*current_map, *map)) { handler_to_overwrite = i; } } int number_of_valid_maps = number_of_maps - deprecated_maps - (handler_to_overwrite != -1); if (number_of_valid_maps >= 4) return false; if (number_of_maps == 0 && state() != MONOMORPHIC && state() != POLYMORPHIC) { return false; } DCHECK(UseVector()); if (!nexus()->FindHandlers(&handlers, maps.length())) return false; number_of_valid_maps++; if (number_of_valid_maps > 1 && is_keyed()) return false; Handle<Code> ic; if (number_of_valid_maps == 1) { ConfigureVectorState(name, receiver_map(), code); } else { if (handler_to_overwrite >= 0) { handlers.Set(handler_to_overwrite, code); if (!map.is_identical_to(maps.at(handler_to_overwrite))) { maps.Set(handler_to_overwrite, map); } } else { maps.Add(map); handlers.Add(code); } ConfigureVectorState(name, &maps, &handlers); } return true; } void IC::UpdateMonomorphicIC(Handle<Code> handler, Handle<Name> name) { DCHECK(handler->is_handler()); ConfigureVectorState(name, receiver_map(), handler); } void IC::CopyICToMegamorphicCache(Handle<Name> name) { MapHandleList maps; CodeHandleList handlers; TargetMaps(&maps); if (!nexus()->FindHandlers(&handlers, maps.length())) return; for (int i = 0; i < maps.length(); i++) { UpdateMegamorphicCache(*maps.at(i), *name, *handlers.at(i)); } } bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) { if (source_map == NULL) return true; if (target_map == NULL) return false; ElementsKind target_elements_kind = target_map->elements_kind(); bool more_general_transition = IsMoreGeneralElementsKindTransition( source_map->elements_kind(), target_elements_kind); Map* transitioned_map = nullptr; if (more_general_transition) { MapHandleList map_list; map_list.Add(handle(target_map)); transitioned_map = source_map->FindElementsKindTransitionedMap(&map_list); } return transitioned_map == target_map; } void IC::PatchCache(Handle<Name> name, Handle<Code> code) { switch (state()) { case UNINITIALIZED: case PREMONOMORPHIC: UpdateMonomorphicIC(code, name); break; case RECOMPUTE_HANDLER: case MONOMORPHIC: if (kind() == Code::LOAD_GLOBAL_IC) { UpdateMonomorphicIC(code, name); break; } // Fall through. case POLYMORPHIC: if (!is_keyed() || state() == RECOMPUTE_HANDLER) { if (UpdatePolymorphicIC(name, code)) break; // For keyed stubs, we can't know whether old handlers were for the // same key. CopyICToMegamorphicCache(name); } DCHECK(UseVector()); ConfigureVectorState(MEGAMORPHIC, name); // Fall through. case MEGAMORPHIC: UpdateMegamorphicCache(*receiver_map(), *name, *code); // Indicate that we've handled this case. DCHECK(UseVector()); vector_set_ = true; break; case GENERIC: UNREACHABLE(); break; } } Handle<Code> LoadIC::initialize_stub_in_optimized_code(Isolate* isolate) { if (FLAG_tf_load_ic_stub) { return LoadICTFStub(isolate).GetCode(); } return LoadICStub(isolate).GetCode(); } Handle<Code> LoadGlobalIC::initialize_stub_in_optimized_code( Isolate* isolate, ExtraICState extra_state) { return LoadGlobalICStub(isolate, LoadGlobalICState(extra_state)).GetCode(); } Handle<Code> KeyedLoadIC::initialize_stub_in_optimized_code( Isolate* isolate, ExtraICState extra_state) { // TODO(ishell): remove extra_ic_state return KeyedLoadICStub(isolate).GetCode(); } Handle<Code> KeyedStoreIC::initialize_stub_in_optimized_code( Isolate* isolate, LanguageMode language_mode) { StoreICState state = StoreICState(language_mode); return VectorKeyedStoreICStub(isolate, state).GetCode(); } Handle<Code> KeyedStoreIC::ChooseMegamorphicStub(Isolate* isolate, ExtraICState extra_state) { LanguageMode mode = StoreICState::GetLanguageMode(extra_state); return is_strict(mode) ? isolate->builtins()->KeyedStoreIC_Megamorphic_Strict() : isolate->builtins()->KeyedStoreIC_Megamorphic(); } Handle<Code> LoadIC::SimpleFieldLoad(FieldIndex index) { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadFieldStub); LoadFieldStub stub(isolate(), index); return stub.GetCode(); } bool IsCompatibleReceiver(LookupIterator* lookup, Handle<Map> receiver_map) { DCHECK(lookup->state() == LookupIterator::ACCESSOR); Isolate* isolate = lookup->isolate(); Handle<Object> accessors = lookup->GetAccessors(); if (accessors->IsAccessorInfo()) { Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors); if (info->getter() != NULL && !AccessorInfo::IsCompatibleReceiverMap(isolate, info, receiver_map)) { return false; } } else if (accessors->IsAccessorPair()) { Handle<Object> getter(Handle<AccessorPair>::cast(accessors)->getter(), isolate); if (!getter->IsJSFunction() && !getter->IsFunctionTemplateInfo()) { return false; } Handle<JSObject> holder = lookup->GetHolder<JSObject>(); Handle<Object> receiver = lookup->GetReceiver(); if (holder->HasFastProperties()) { if (getter->IsJSFunction()) { Handle<JSFunction> function = Handle<JSFunction>::cast(getter); if (!receiver->IsJSObject() && !function->shared()->IsBuiltin() && is_sloppy(function->shared()->language_mode())) { // Calling sloppy non-builtins with a value as the receiver // requires boxing. return false; } } CallOptimization call_optimization(getter); if (call_optimization.is_simple_api_call() && !call_optimization.IsCompatibleReceiverMap(receiver_map, holder)) { return false; } } } return true; } void LoadIC::UpdateCaches(LookupIterator* lookup) { if (state() == UNINITIALIZED && kind() != Code::LOAD_GLOBAL_IC) { // This is the first time we execute this inline cache. Set the target to // the pre monomorphic stub to delay setting the monomorphic state. ConfigureVectorState(PREMONOMORPHIC, Handle<Object>()); TRACE_IC("LoadIC", lookup->name()); return; } Handle<Code> code; if (lookup->state() == LookupIterator::JSPROXY || lookup->state() == LookupIterator::ACCESS_CHECK) { code = slow_stub(); } else if (!lookup->IsFound()) { if (kind() == Code::LOAD_IC || kind() == Code::LOAD_GLOBAL_IC) { code = NamedLoadHandlerCompiler::ComputeLoadNonexistent(lookup->name(), receiver_map()); // TODO(jkummerow/verwaest): Introduce a builtin that handles this case. if (code.is_null()) code = slow_stub(); } else { code = slow_stub(); } } else { if (kind() == Code::LOAD_GLOBAL_IC && lookup->state() == LookupIterator::DATA && lookup->GetHolder<Object>()->IsJSGlobalObject()) { #if DEBUG Handle<Object> holder = lookup->GetHolder<Object>(); Handle<Object> receiver = lookup->GetReceiver(); DCHECK_EQ(*receiver, *holder); #endif // Now update the cell in the feedback vector. LoadGlobalICNexus* nexus = casted_nexus<LoadGlobalICNexus>(); nexus->ConfigurePropertyCellMode(lookup->GetPropertyCell()); TRACE_IC("LoadGlobalIC", lookup->name()); return; } else if (lookup->state() == LookupIterator::ACCESSOR) { if (!IsCompatibleReceiver(lookup, receiver_map())) { TRACE_GENERIC_IC(isolate(), "LoadIC", "incompatible receiver type"); code = slow_stub(); } } else if (lookup->state() == LookupIterator::INTERCEPTOR) { if (kind() == Code::LOAD_GLOBAL_IC) { // The interceptor handler requires name but it is not passed explicitly // to LoadGlobalIC and the LoadGlobalIC dispatcher also does not load // it so we will just use slow stub. code = slow_stub(); } else { // Perform a lookup behind the interceptor. Copy the LookupIterator // since the original iterator will be used to fetch the value. LookupIterator it = *lookup; it.Next(); LookupForRead(&it); if (it.state() == LookupIterator::ACCESSOR && !IsCompatibleReceiver(&it, receiver_map())) { TRACE_GENERIC_IC(isolate(), "LoadIC", "incompatible receiver type"); code = slow_stub(); } } } if (code.is_null()) code = ComputeHandler(lookup); } PatchCache(lookup->name(), code); TRACE_IC("LoadIC", lookup->name()); } void IC::UpdateMegamorphicCache(Map* map, Name* name, Code* code) { isolate()->stub_cache()->Set(name, map, code); } Handle<Code> IC::ComputeHandler(LookupIterator* lookup, Handle<Object> value) { // Try to find a globally shared handler stub. Handle<Code> code = GetMapIndependentHandler(lookup); if (!code.is_null()) return code; // Otherwise check the map's handler cache for a map-specific handler, and // compile one if the cache comes up empty. bool receiver_is_holder = lookup->GetReceiver().is_identical_to(lookup->GetHolder<JSObject>()); CacheHolderFlag flag; Handle<Map> stub_holder_map; if (kind() == Code::LOAD_IC || kind() == Code::LOAD_GLOBAL_IC || kind() == Code::KEYED_LOAD_IC) { stub_holder_map = IC::GetHandlerCacheHolder( receiver_map(), receiver_is_holder, isolate(), &flag); } else { DCHECK(kind() == Code::STORE_IC || kind() == Code::KEYED_STORE_IC); // Store handlers cannot be cached on prototypes. flag = kCacheOnReceiver; stub_holder_map = receiver_map(); } code = PropertyHandlerCompiler::Find(lookup->name(), stub_holder_map, kind(), flag); // Use the cached value if it exists, and if it is different from the // handler that just missed. if (!code.is_null()) { Handle<Code> handler; if (maybe_handler_.ToHandle(&handler)) { if (!handler.is_identical_to(code)) { TRACE_HANDLER_STATS(isolate(), IC_HandlerCacheHit); return code; } } else { // maybe_handler_ is only populated for MONOMORPHIC and POLYMORPHIC ICs. // In MEGAMORPHIC case, check if the handler in the megamorphic stub // cache (which just missed) is different from the cached handler. if (state() == MEGAMORPHIC && lookup->GetReceiver()->IsHeapObject()) { Map* map = Handle<HeapObject>::cast(lookup->GetReceiver())->map(); Code* megamorphic_cached_code = isolate()->stub_cache()->Get(*lookup->name(), map, code->flags()); if (megamorphic_cached_code != *code) { TRACE_HANDLER_STATS(isolate(), IC_HandlerCacheHit); return code; } } else { TRACE_HANDLER_STATS(isolate(), IC_HandlerCacheHit); return code; } } } code = CompileHandler(lookup, value, flag); DCHECK(code->is_handler()); DCHECK(Code::ExtractCacheHolderFromFlags(code->flags()) == flag); Map::UpdateCodeCache(stub_holder_map, lookup->name(), code); return code; } Handle<Code> LoadIC::GetMapIndependentHandler(LookupIterator* lookup) { Handle<Object> receiver = lookup->GetReceiver(); if (receiver->IsString() && Name::Equals(isolate()->factory()->length_string(), lookup->name())) { FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset); return SimpleFieldLoad(index); } if (receiver->IsStringWrapper() && Name::Equals(isolate()->factory()->length_string(), lookup->name())) { TRACE_HANDLER_STATS(isolate(), LoadIC_StringLengthStub); StringLengthStub string_length_stub(isolate()); return string_length_stub.GetCode(); } // Use specialized code for getting prototype of functions. if (receiver->IsJSFunction() && Name::Equals(isolate()->factory()->prototype_string(), lookup->name()) && receiver->IsConstructor() && !Handle<JSFunction>::cast(receiver) ->map() ->has_non_instance_prototype()) { Handle<Code> stub; TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub); FunctionPrototypeStub function_prototype_stub(isolate()); return function_prototype_stub.GetCode(); } Handle<Map> map = receiver_map(); Handle<JSObject> holder = lookup->GetHolder<JSObject>(); bool receiver_is_holder = receiver.is_identical_to(holder); switch (lookup->state()) { case LookupIterator::INTERCEPTOR: break; // Custom-compiled handler. case LookupIterator::ACCESSOR: { // Use simple field loads for some well-known callback properties. // The method will only return true for absolute truths based on the // receiver maps. int object_offset; if (Accessors::IsJSObjectFieldAccessor(map, lookup->name(), &object_offset)) { FieldIndex index = FieldIndex::ForInObjectOffset(object_offset, *map); return SimpleFieldLoad(index); } if (IsCompatibleReceiver(lookup, map)) { Handle<Object> accessors = lookup->GetAccessors(); if (accessors->IsAccessorPair()) { if (!holder->HasFastProperties()) { TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } // When debugging we need to go the slow path to flood the accessor. if (GetSharedFunctionInfo()->HasDebugInfo()) { TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } break; // Custom-compiled handler. } else if (accessors->IsAccessorInfo()) { Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors); if (v8::ToCData<Address>(info->getter()) == nullptr) { TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } // Ruled out by IsCompatibleReceiver() above. DCHECK(AccessorInfo::IsCompatibleReceiverMap(isolate(), info, map)); if (!holder->HasFastProperties()) return slow_stub(); if (receiver_is_holder) { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadApiGetterStub); int index = lookup->GetAccessorIndex(); LoadApiGetterStub stub(isolate(), true, index); return stub.GetCode(); } if (info->is_sloppy() && !receiver->IsJSReceiver()) { TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } break; // Custom-compiled handler. } } TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } case LookupIterator::DATA: { if (lookup->is_dictionary_holder()) { if (kind() != Code::LOAD_IC && kind() != Code::LOAD_GLOBAL_IC) { TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } if (holder->IsJSGlobalObject()) { break; // Custom-compiled handler. } // There is only one shared stub for loading normalized // properties. It does not traverse the prototype chain, so the // property must be found in the object for the stub to be // applicable. if (!receiver_is_holder) { TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNormal); return isolate()->builtins()->LoadIC_Normal(); } // -------------- Fields -------------- if (lookup->property_details().type() == DATA) { FieldIndex field = lookup->GetFieldIndex(); if (receiver_is_holder) { return SimpleFieldLoad(field); } break; // Custom-compiled handler. } // -------------- Constant properties -------------- DCHECK(lookup->property_details().type() == DATA_CONSTANT); if (receiver_is_holder) { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadConstantStub); LoadConstantStub stub(isolate(), lookup->GetConstantIndex()); return stub.GetCode(); } break; // Custom-compiled handler. } case LookupIterator::INTEGER_INDEXED_EXOTIC: TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); case LookupIterator::ACCESS_CHECK: case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); } return Handle<Code>::null(); } Handle<Code> LoadIC::CompileHandler(LookupIterator* lookup, Handle<Object> unused, CacheHolderFlag cache_holder) { Handle<JSObject> holder = lookup->GetHolder<JSObject>(); #ifdef DEBUG // Only used by DCHECKs below. Handle<Object> receiver = lookup->GetReceiver(); bool receiver_is_holder = receiver.is_identical_to(holder); #endif // Non-map-specific handler stubs have already been selected. DCHECK(!receiver->IsString() || !Name::Equals(isolate()->factory()->length_string(), lookup->name())); DCHECK(!receiver->IsStringWrapper() || !Name::Equals(isolate()->factory()->length_string(), lookup->name())); DCHECK(!( receiver->IsJSFunction() && Name::Equals(isolate()->factory()->prototype_string(), lookup->name()) && receiver->IsConstructor() && !Handle<JSFunction>::cast(receiver) ->map() ->has_non_instance_prototype())); Handle<Map> map = receiver_map(); switch (lookup->state()) { case LookupIterator::INTERCEPTOR: { DCHECK(!holder->GetNamedInterceptor()->getter()->IsUndefined(isolate())); TRACE_HANDLER_STATS(isolate(), LoadIC_LoadInterceptor); NamedLoadHandlerCompiler compiler(isolate(), map, holder, cache_holder); // Perform a lookup behind the interceptor. Copy the LookupIterator since // the original iterator will be used to fetch the value. LookupIterator it = *lookup; it.Next(); LookupForRead(&it); return compiler.CompileLoadInterceptor(&it); } case LookupIterator::ACCESSOR: { #ifdef DEBUG int object_offset; DCHECK(!Accessors::IsJSObjectFieldAccessor(map, lookup->name(), &object_offset)); #endif DCHECK(IsCompatibleReceiver(lookup, map)); Handle<Object> accessors = lookup->GetAccessors(); if (accessors->IsAccessorPair()) { DCHECK(holder->HasFastProperties()); DCHECK(!GetSharedFunctionInfo()->HasDebugInfo()); Handle<Object> getter(Handle<AccessorPair>::cast(accessors)->getter(), isolate()); CallOptimization call_optimization(getter); NamedLoadHandlerCompiler compiler(isolate(), map, holder, cache_holder); if (call_optimization.is_simple_api_call()) { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadCallback); int index = lookup->GetAccessorIndex(); Handle<Code> code = compiler.CompileLoadCallback( lookup->name(), call_optimization, index); return code; } TRACE_HANDLER_STATS(isolate(), LoadIC_LoadViaGetter); int expected_arguments = Handle<JSFunction>::cast(getter) ->shared() ->internal_formal_parameter_count(); return compiler.CompileLoadViaGetter( lookup->name(), lookup->GetAccessorIndex(), expected_arguments); } else { DCHECK(accessors->IsAccessorInfo()); Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors); DCHECK(v8::ToCData<Address>(info->getter()) != nullptr); DCHECK(AccessorInfo::IsCompatibleReceiverMap(isolate(), info, map)); DCHECK(holder->HasFastProperties()); DCHECK(!receiver_is_holder); DCHECK(!info->is_sloppy() || receiver->IsJSReceiver()); TRACE_HANDLER_STATS(isolate(), LoadIC_LoadCallback); NamedLoadHandlerCompiler compiler(isolate(), map, holder, cache_holder); Handle<Code> code = compiler.CompileLoadCallback(lookup->name(), info); return code; } UNREACHABLE(); } case LookupIterator::DATA: { if (lookup->is_dictionary_holder()) { DCHECK(kind() == Code::LOAD_IC || kind() == Code::LOAD_GLOBAL_IC); DCHECK(holder->IsJSGlobalObject()); TRACE_HANDLER_STATS(isolate(), LoadIC_LoadGlobal); NamedLoadHandlerCompiler compiler(isolate(), map, holder, cache_holder); Handle<PropertyCell> cell = lookup->GetPropertyCell(); Handle<Code> code = compiler.CompileLoadGlobal( cell, lookup->name(), lookup->IsConfigurable()); return code; } // -------------- Fields -------------- if (lookup->property_details().type() == DATA) { FieldIndex field = lookup->GetFieldIndex(); DCHECK(!receiver_is_holder); TRACE_HANDLER_STATS(isolate(), LoadIC_LoadField); NamedLoadHandlerCompiler compiler(isolate(), map, holder, cache_holder); return compiler.CompileLoadField(lookup->name(), field); } // -------------- Constant properties -------------- DCHECK(lookup->property_details().type() == DATA_CONSTANT); DCHECK(!receiver_is_holder); TRACE_HANDLER_STATS(isolate(), LoadIC_LoadConstant); NamedLoadHandlerCompiler compiler(isolate(), map, holder, cache_holder); return compiler.CompileLoadConstant(lookup->name(), lookup->GetConstantIndex()); } case LookupIterator::INTEGER_INDEXED_EXOTIC: case LookupIterator::ACCESS_CHECK: case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); } UNREACHABLE(); return slow_stub(); } static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) { // This helper implements a few common fast cases for converting // non-smi keys of keyed loads/stores to a smi or a string. if (key->IsHeapNumber()) { double value = Handle<HeapNumber>::cast(key)->value(); if (std::isnan(value)) { key = isolate->factory()->nan_string(); } else { int int_value = FastD2I(value); if (value == int_value && Smi::IsValid(int_value)) { key = handle(Smi::FromInt(int_value), isolate); } } } else if (key->IsUndefined(isolate)) { key = isolate->factory()->undefined_string(); } return key; } void KeyedLoadIC::UpdateLoadElement(Handle<HeapObject> receiver) { Handle<Map> receiver_map(receiver->map(), isolate()); DCHECK(receiver_map->instance_type() != JS_VALUE_TYPE && receiver_map->instance_type() != JS_PROXY_TYPE); // Checked by caller. MapHandleList target_receiver_maps; TargetMaps(&target_receiver_maps); if (target_receiver_maps.length() == 0) { Handle<Code> handler = PropertyICCompiler::ComputeKeyedLoadMonomorphicHandler( receiver_map, extra_ic_state()); return ConfigureVectorState(Handle<Name>(), receiver_map, handler); } for (int i = 0; i < target_receiver_maps.length(); i++) { Handle<Map> map = target_receiver_maps.at(i); if (map.is_null()) continue; if (map->instance_type() == JS_VALUE_TYPE) { TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "JSValue"); return; } if (map->instance_type() == JS_PROXY_TYPE) { TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "JSProxy"); return; } } // The first time a receiver is seen that is a transitioned version of the // previous monomorphic receiver type, assume the new ElementsKind is the // monomorphic type. This benefits global arrays that only transition // once, and all call sites accessing them are faster if they remain // monomorphic. If this optimistic assumption is not true, the IC will // miss again and it will become polymorphic and support both the // untransitioned and transitioned maps. if (state() == MONOMORPHIC && !receiver->IsString() && IsMoreGeneralElementsKindTransition( target_receiver_maps.at(0)->elements_kind(), Handle<JSObject>::cast(receiver)->GetElementsKind())) { Handle<Code> handler = PropertyICCompiler::ComputeKeyedLoadMonomorphicHandler( receiver_map, extra_ic_state()); return ConfigureVectorState(Handle<Name>(), receiver_map, handler); } DCHECK(state() != GENERIC); // Determine the list of receiver maps that this call site has seen, // adding the map that was just encountered. if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) { // If the miss wasn't due to an unseen map, a polymorphic stub // won't help, use the generic stub. TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "same map added twice"); return; } // If the maximum number of receiver maps has been exceeded, use the generic // version of the IC. if (target_receiver_maps.length() > kMaxKeyedPolymorphism) { TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "max polymorph exceeded"); return; } CodeHandleList handlers(target_receiver_maps.length()); TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_PolymorphicElement); ElementHandlerCompiler compiler(isolate()); compiler.CompileElementHandlers(&target_receiver_maps, &handlers); ConfigureVectorState(Handle<Name>(), &target_receiver_maps, &handlers); } MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object, Handle<Object> key) { if (MigrateDeprecated(object)) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Runtime::GetObjectProperty(isolate(), object, key), Object); return result; } Handle<Object> load_handle; // Check for non-string values that can be converted into an // internalized string directly or is representable as a smi. key = TryConvertKey(key, isolate()); uint32_t index; if ((key->IsInternalizedString() && !String::cast(*key)->AsArrayIndex(&index)) || key->IsSymbol()) { ASSIGN_RETURN_ON_EXCEPTION(isolate(), load_handle, LoadIC::Load(object, Handle<Name>::cast(key)), Object); } else if (FLAG_use_ic && !object->IsAccessCheckNeeded() && !object->IsJSValue()) { if (object->IsJSObject() || (object->IsString() && key->IsNumber())) { Handle<HeapObject> receiver = Handle<HeapObject>::cast(object); if (object->IsString() || key->IsSmi()) UpdateLoadElement(receiver); } } if (!is_vector_set()) { ConfigureVectorState(MEGAMORPHIC, key); TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic"); } TRACE_IC("LoadIC", key); if (!load_handle.is_null()) return load_handle; Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Runtime::GetObjectProperty(isolate(), object, key), Object); return result; } bool StoreIC::LookupForWrite(LookupIterator* it, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode) { // Disable ICs for non-JSObjects for now. Handle<Object> object = it->GetReceiver(); if (!object->IsJSObject()) return false; Handle<JSObject> receiver = Handle<JSObject>::cast(object); DCHECK(!receiver->map()->is_deprecated()); for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return false; case LookupIterator::INTERCEPTOR: { Handle<JSObject> holder = it->GetHolder<JSObject>(); InterceptorInfo* info = holder->GetNamedInterceptor(); if (it->HolderIsReceiverOrHiddenPrototype()) { return !info->non_masking() && receiver.is_identical_to(holder) && !info->setter()->IsUndefined(it->isolate()); } else if (!info->getter()->IsUndefined(it->isolate()) || !info->query()->IsUndefined(it->isolate())) { return false; } break; } case LookupIterator::ACCESS_CHECK: if (it->GetHolder<JSObject>()->IsAccessCheckNeeded()) return false; break; case LookupIterator::ACCESSOR: return !it->IsReadOnly(); case LookupIterator::INTEGER_INDEXED_EXOTIC: return false; case LookupIterator::DATA: { if (it->IsReadOnly()) return false; Handle<JSObject> holder = it->GetHolder<JSObject>(); if (receiver.is_identical_to(holder)) { it->PrepareForDataProperty(value); // The previous receiver map might just have been deprecated, // so reload it. update_receiver_map(receiver); return true; } // Receiver != holder. if (receiver->IsJSGlobalProxy()) { PrototypeIterator iter(it->isolate(), receiver); return it->GetHolder<Object>().is_identical_to( PrototypeIterator::GetCurrent(iter)); } if (it->HolderIsReceiverOrHiddenPrototype()) return false; if (it->ExtendingNonExtensible(receiver)) return false; it->PrepareTransitionToDataProperty(receiver, value, NONE, store_mode); return it->IsCacheableTransition(); } } } receiver = it->GetStoreTarget(); if (it->ExtendingNonExtensible(receiver)) return false; it->PrepareTransitionToDataProperty(receiver, value, NONE, store_mode); return it->IsCacheableTransition(); } MaybeHandle<Object> StoreIC::Store(Handle<Object> object, Handle<Name> name, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode) { if (object->IsJSGlobalObject() && name->IsString()) { // Look up in script context table. Handle<String> str_name = Handle<String>::cast(name); Handle<JSGlobalObject> global = Handle<JSGlobalObject>::cast(object); Handle<ScriptContextTable> script_contexts( global->native_context()->script_context_table()); ScriptContextTable::LookupResult lookup_result; if (ScriptContextTable::Lookup(script_contexts, str_name, &lookup_result)) { Handle<Context> script_context = ScriptContextTable::GetContext( script_contexts, lookup_result.context_index); if (lookup_result.mode == CONST) { return TypeError(MessageTemplate::kConstAssign, object, name); } Handle<Object> previous_value = FixedArray::get(*script_context, lookup_result.slot_index, isolate()); if (previous_value->IsTheHole(isolate())) { // Do not install stubs and stay pre-monomorphic for // uninitialized accesses. return ReferenceError(name); } if (FLAG_use_ic && StoreScriptContextFieldStub::Accepted(&lookup_result)) { TRACE_HANDLER_STATS(isolate(), StoreIC_StoreScriptContextFieldStub); StoreScriptContextFieldStub stub(isolate(), &lookup_result); PatchCache(name, stub.GetCode()); } script_context->set(lookup_result.slot_index, *value); return value; } } // TODO(verwaest): Let SetProperty do the migration, since storing a property // might deprecate the current map again, if value does not fit. if (MigrateDeprecated(object) || object->IsJSProxy()) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::SetProperty(object, name, value, language_mode()), Object); return result; } // If the object is undefined or null it's illegal to try to set any // properties on it; throw a TypeError in that case. if (object->IsUndefined(isolate()) || object->IsNull(isolate())) { return TypeError(MessageTemplate::kNonObjectPropertyStore, object, name); } if (state() != UNINITIALIZED) { JSObject::MakePrototypesFast(object, kStartAtPrototype, isolate()); } LookupIterator it(object, name); if (FLAG_use_ic) UpdateCaches(&it, value, store_mode); MAYBE_RETURN_NULL( Object::SetProperty(&it, value, language_mode(), store_mode)); return value; } Handle<Code> CallIC::initialize_stub_in_optimized_code( Isolate* isolate, int argc, ConvertReceiverMode mode, TailCallMode tail_call_mode) { CallICStub stub(isolate, CallICState(argc, mode, tail_call_mode)); Handle<Code> code = stub.GetCode(); return code; } Handle<Code> StoreIC::initialize_stub_in_optimized_code( Isolate* isolate, LanguageMode language_mode) { VectorStoreICStub stub(isolate, StoreICState(language_mode)); return stub.GetCode(); } void StoreIC::UpdateCaches(LookupIterator* lookup, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode) { if (state() == UNINITIALIZED) { // This is the first time we execute this inline cache. Set the target to // the pre monomorphic stub to delay setting the monomorphic state. ConfigureVectorState(PREMONOMORPHIC, Handle<Object>()); TRACE_IC("StoreIC", lookup->name()); return; } bool use_ic = LookupForWrite(lookup, value, store_mode); if (!use_ic) { TRACE_GENERIC_IC(isolate(), "StoreIC", "LookupForWrite said 'false'"); } Handle<Code> code = use_ic ? ComputeHandler(lookup, value) : slow_stub(); PatchCache(lookup->name(), code); TRACE_IC("StoreIC", lookup->name()); } static Handle<Code> PropertyCellStoreHandler( Isolate* isolate, Handle<JSObject> receiver, Handle<JSGlobalObject> holder, Handle<Name> name, Handle<PropertyCell> cell, PropertyCellType type) { auto constant_type = Nothing<PropertyCellConstantType>(); if (type == PropertyCellType::kConstantType) { constant_type = Just(cell->GetConstantType()); } StoreGlobalStub stub(isolate, type, constant_type, receiver->IsJSGlobalProxy()); auto code = stub.GetCodeCopyFromTemplate(holder, cell); // TODO(verwaest): Move caching of these NORMAL stubs outside as well. HeapObject::UpdateMapCodeCache(receiver, name, code); return code; } Handle<Code> StoreIC::GetMapIndependentHandler(LookupIterator* lookup) { DCHECK_NE(LookupIterator::JSPROXY, lookup->state()); // This is currently guaranteed by checks in StoreIC::Store. Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver()); Handle<JSObject> holder = lookup->GetHolder<JSObject>(); DCHECK(!receiver->IsAccessCheckNeeded() || lookup->name()->IsPrivate()); switch (lookup->state()) { case LookupIterator::TRANSITION: { auto store_target = lookup->GetStoreTarget(); if (store_target->IsJSGlobalObject()) { break; // Custom-compiled handler. } // Currently not handled by CompileStoreTransition. if (!holder->HasFastProperties()) { TRACE_GENERIC_IC(isolate(), "StoreIC", "transition from slow"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } DCHECK(lookup->IsCacheableTransition()); break; // Custom-compiled handler. } case LookupIterator::INTERCEPTOR: { DCHECK(!holder->GetNamedInterceptor()->setter()->IsUndefined(isolate())); TRACE_HANDLER_STATS(isolate(), StoreIC_StoreInterceptorStub); StoreInterceptorStub stub(isolate()); return stub.GetCode(); } case LookupIterator::ACCESSOR: { if (!holder->HasFastProperties()) { TRACE_GENERIC_IC(isolate(), "StoreIC", "accessor on slow map"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } Handle<Object> accessors = lookup->GetAccessors(); if (accessors->IsAccessorInfo()) { Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors); if (v8::ToCData<Address>(info->setter()) == nullptr) { TRACE_GENERIC_IC(isolate(), "StoreIC", "setter == nullptr"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } if (AccessorInfo::cast(*accessors)->is_special_data_property() && !lookup->HolderIsReceiverOrHiddenPrototype()) { TRACE_GENERIC_IC(isolate(), "StoreIC", "special data property in prototype chain"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } if (!AccessorInfo::IsCompatibleReceiverMap(isolate(), info, receiver_map())) { TRACE_GENERIC_IC(isolate(), "StoreIC", "incompatible receiver type"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } if (info->is_sloppy() && !receiver->IsJSReceiver()) { TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } break; // Custom-compiled handler. } else if (accessors->IsAccessorPair()) { Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(), isolate()); if (!setter->IsJSFunction() && !setter->IsFunctionTemplateInfo()) { TRACE_GENERIC_IC(isolate(), "StoreIC", "setter not a function"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } CallOptimization call_optimization(setter); if (call_optimization.is_simple_api_call()) { if (call_optimization.IsCompatibleReceiver(receiver, holder)) { break; // Custom-compiled handler. } TRACE_GENERIC_IC(isolate(), "StoreIC", "incompatible receiver"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } break; // Custom-compiled handler. } TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } case LookupIterator::DATA: { if (lookup->is_dictionary_holder()) { if (holder->IsJSGlobalObject()) { break; // Custom-compiled handler. } TRACE_HANDLER_STATS(isolate(), StoreIC_StoreNormal); DCHECK(holder.is_identical_to(receiver)); return isolate()->builtins()->StoreIC_Normal(); } // -------------- Fields -------------- if (lookup->property_details().type() == DATA) { bool use_stub = true; if (lookup->representation().IsHeapObject()) { // Only use a generic stub if no types need to be tracked. Handle<FieldType> field_type = lookup->GetFieldType(); use_stub = !field_type->IsClass(); } if (use_stub) { TRACE_HANDLER_STATS(isolate(), StoreIC_StoreFieldStub); StoreFieldStub stub(isolate(), lookup->GetFieldIndex(), lookup->representation()); return stub.GetCode(); } break; // Custom-compiled handler. } // -------------- Constant properties -------------- DCHECK(lookup->property_details().type() == DATA_CONSTANT); TRACE_GENERIC_IC(isolate(), "StoreIC", "constant property"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } case LookupIterator::INTEGER_INDEXED_EXOTIC: case LookupIterator::ACCESS_CHECK: case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: UNREACHABLE(); } return Handle<Code>::null(); } Handle<Code> StoreIC::CompileHandler(LookupIterator* lookup, Handle<Object> value, CacheHolderFlag cache_holder) { DCHECK_NE(LookupIterator::JSPROXY, lookup->state()); // This is currently guaranteed by checks in StoreIC::Store. Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver()); Handle<JSObject> holder = lookup->GetHolder<JSObject>(); DCHECK(!receiver->IsAccessCheckNeeded() || lookup->name()->IsPrivate()); switch (lookup->state()) { case LookupIterator::TRANSITION: { auto store_target = lookup->GetStoreTarget(); if (store_target->IsJSGlobalObject()) { // TODO(dcarney): this currently just deopts. Use the transition cell. TRACE_HANDLER_STATS(isolate(), StoreIC_StoreGlobalTransition); auto cell = isolate()->factory()->NewPropertyCell(); cell->set_value(*value); auto code = PropertyCellStoreHandler( isolate(), store_target, Handle<JSGlobalObject>::cast(store_target), lookup->name(), cell, PropertyCellType::kConstant); cell->set_value(isolate()->heap()->the_hole_value()); return code; } Handle<Map> transition = lookup->transition_map(); // Currently not handled by CompileStoreTransition. DCHECK(holder->HasFastProperties()); DCHECK(lookup->IsCacheableTransition()); TRACE_HANDLER_STATS(isolate(), StoreIC_StoreTransition); NamedStoreHandlerCompiler compiler(isolate(), receiver_map(), holder); return compiler.CompileStoreTransition(transition, lookup->name()); } case LookupIterator::INTERCEPTOR: UNREACHABLE(); case LookupIterator::ACCESSOR: { DCHECK(holder->HasFastProperties()); Handle<Object> accessors = lookup->GetAccessors(); if (accessors->IsAccessorInfo()) { Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors); DCHECK(v8::ToCData<Address>(info->setter()) != 0); DCHECK(!AccessorInfo::cast(*accessors)->is_special_data_property() || lookup->HolderIsReceiverOrHiddenPrototype()); DCHECK(AccessorInfo::IsCompatibleReceiverMap(isolate(), info, receiver_map())); DCHECK(!info->is_sloppy() || receiver->IsJSReceiver()); TRACE_HANDLER_STATS(isolate(), StoreIC_StoreCallback); NamedStoreHandlerCompiler compiler(isolate(), receiver_map(), holder); Handle<Code> code = compiler.CompileStoreCallback( receiver, lookup->name(), info, language_mode()); return code; } else { DCHECK(accessors->IsAccessorPair()); Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(), isolate()); DCHECK(setter->IsJSFunction() || setter->IsFunctionTemplateInfo()); CallOptimization call_optimization(setter); NamedStoreHandlerCompiler compiler(isolate(), receiver_map(), holder); if (call_optimization.is_simple_api_call()) { DCHECK(call_optimization.IsCompatibleReceiver(receiver, holder)); TRACE_HANDLER_STATS(isolate(), StoreIC_StoreCallback); Handle<Code> code = compiler.CompileStoreCallback( receiver, lookup->name(), call_optimization, lookup->GetAccessorIndex()); return code; } TRACE_HANDLER_STATS(isolate(), StoreIC_StoreViaSetter); int expected_arguments = JSFunction::cast(*setter) ->shared() ->internal_formal_parameter_count(); return compiler.CompileStoreViaSetter(receiver, lookup->name(), lookup->GetAccessorIndex(), expected_arguments); } } case LookupIterator::DATA: { if (lookup->is_dictionary_holder()) { DCHECK(holder->IsJSGlobalObject()); TRACE_HANDLER_STATS(isolate(), StoreIC_StoreGlobal); DCHECK(holder.is_identical_to(receiver) || receiver->map()->prototype() == *holder); auto cell = lookup->GetPropertyCell(); auto updated_type = PropertyCell::UpdatedType(cell, value, lookup->property_details()); auto code = PropertyCellStoreHandler( isolate(), receiver, Handle<JSGlobalObject>::cast(holder), lookup->name(), cell, updated_type); return code; } // -------------- Fields -------------- if (lookup->property_details().type() == DATA) { #ifdef DEBUG bool use_stub = true; if (lookup->representation().IsHeapObject()) { // Only use a generic stub if no types need to be tracked. Handle<FieldType> field_type = lookup->GetFieldType(); use_stub = !field_type->IsClass(); } DCHECK(!use_stub); #endif TRACE_HANDLER_STATS(isolate(), StoreIC_StoreField); NamedStoreHandlerCompiler compiler(isolate(), receiver_map(), holder); return compiler.CompileStoreField(lookup); } // -------------- Constant properties -------------- DCHECK(lookup->property_details().type() == DATA_CONSTANT); UNREACHABLE(); } case LookupIterator::INTEGER_INDEXED_EXOTIC: case LookupIterator::ACCESS_CHECK: case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: UNREACHABLE(); } UNREACHABLE(); return slow_stub(); } void KeyedStoreIC::UpdateStoreElement(Handle<Map> receiver_map, KeyedAccessStoreMode store_mode) { MapHandleList target_receiver_maps; TargetMaps(&target_receiver_maps); if (target_receiver_maps.length() == 0) { Handle<Map> monomorphic_map = ComputeTransitionedMap(receiver_map, store_mode); store_mode = GetNonTransitioningStoreMode(store_mode); Handle<Code> handler = PropertyICCompiler::ComputeKeyedStoreMonomorphicHandler(monomorphic_map, store_mode); return ConfigureVectorState(Handle<Name>(), monomorphic_map, handler); } for (int i = 0; i < target_receiver_maps.length(); i++) { if (!target_receiver_maps.at(i).is_null() && target_receiver_maps.at(i)->instance_type() == JS_VALUE_TYPE) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "JSValue"); return; } } // There are several special cases where an IC that is MONOMORPHIC can still // transition to a different GetNonTransitioningStoreMode IC that handles a // superset of the original IC. Handle those here if the receiver map hasn't // changed or it has transitioned to a more general kind. KeyedAccessStoreMode old_store_mode = GetKeyedAccessStoreMode(); Handle<Map> previous_receiver_map = target_receiver_maps.at(0); if (state() == MONOMORPHIC) { Handle<Map> transitioned_receiver_map = receiver_map; if (IsTransitionStoreMode(store_mode)) { transitioned_receiver_map = ComputeTransitionedMap(receiver_map, store_mode); } if ((receiver_map.is_identical_to(previous_receiver_map) && IsTransitionStoreMode(store_mode)) || IsTransitionOfMonomorphicTarget(*previous_receiver_map, *transitioned_receiver_map)) { // If the "old" and "new" maps are in the same elements map family, or // if they at least come from the same origin for a transitioning store, // stay MONOMORPHIC and use the map for the most generic ElementsKind. store_mode = GetNonTransitioningStoreMode(store_mode); Handle<Code> handler = PropertyICCompiler::ComputeKeyedStoreMonomorphicHandler( transitioned_receiver_map, store_mode); ConfigureVectorState(Handle<Name>(), transitioned_receiver_map, handler); return; } if (receiver_map.is_identical_to(previous_receiver_map) && old_store_mode == STANDARD_STORE && (store_mode == STORE_AND_GROW_NO_TRANSITION || store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS || store_mode == STORE_NO_TRANSITION_HANDLE_COW)) { // A "normal" IC that handles stores can switch to a version that can // grow at the end of the array, handle OOB accesses or copy COW arrays // and still stay MONOMORPHIC. Handle<Code> handler = PropertyICCompiler::ComputeKeyedStoreMonomorphicHandler(receiver_map, store_mode); return ConfigureVectorState(Handle<Name>(), receiver_map, handler); } } DCHECK(state() != GENERIC); bool map_added = AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map); if (IsTransitionStoreMode(store_mode)) { Handle<Map> transitioned_receiver_map = ComputeTransitionedMap(receiver_map, store_mode); map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps, transitioned_receiver_map); } if (!map_added) { // If the miss wasn't due to an unseen map, a polymorphic stub // won't help, use the megamorphic stub which can handle everything. TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "same map added twice"); return; } // If the maximum number of receiver maps has been exceeded, use the // megamorphic version of the IC. if (target_receiver_maps.length() > kMaxKeyedPolymorphism) return; // Make sure all polymorphic handlers have the same store mode, otherwise the // megamorphic stub must be used. store_mode = GetNonTransitioningStoreMode(store_mode); if (old_store_mode != STANDARD_STORE) { if (store_mode == STANDARD_STORE) { store_mode = old_store_mode; } else if (store_mode != old_store_mode) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "store mode mismatch"); return; } } // If the store mode isn't the standard mode, make sure that all polymorphic // receivers are either external arrays, or all "normal" arrays. Otherwise, // use the megamorphic stub. if (store_mode != STANDARD_STORE) { int external_arrays = 0; for (int i = 0; i < target_receiver_maps.length(); ++i) { if (target_receiver_maps[i]->has_fixed_typed_array_elements()) { external_arrays++; } } if (external_arrays != 0 && external_arrays != target_receiver_maps.length()) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "unsupported combination of external and normal arrays"); return; } } TRACE_HANDLER_STATS(isolate(), KeyedStoreIC_Polymorphic); MapHandleList transitioned_maps(target_receiver_maps.length()); CodeHandleList handlers(target_receiver_maps.length()); PropertyICCompiler::ComputeKeyedStorePolymorphicHandlers( &target_receiver_maps, &transitioned_maps, &handlers, store_mode); ConfigureVectorState(&target_receiver_maps, &transitioned_maps, &handlers); } Handle<Map> KeyedStoreIC::ComputeTransitionedMap( Handle<Map> map, KeyedAccessStoreMode store_mode) { switch (store_mode) { case STORE_TRANSITION_TO_OBJECT: case STORE_AND_GROW_TRANSITION_TO_OBJECT: { ElementsKind kind = IsFastHoleyElementsKind(map->elements_kind()) ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; return Map::TransitionElementsTo(map, kind); } case STORE_TRANSITION_TO_DOUBLE: case STORE_AND_GROW_TRANSITION_TO_DOUBLE: { ElementsKind kind = IsFastHoleyElementsKind(map->elements_kind()) ? FAST_HOLEY_DOUBLE_ELEMENTS : FAST_DOUBLE_ELEMENTS; return Map::TransitionElementsTo(map, kind); } case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS: DCHECK(map->has_fixed_typed_array_elements()); // Fall through case STORE_NO_TRANSITION_HANDLE_COW: case STANDARD_STORE: case STORE_AND_GROW_NO_TRANSITION: return map; } UNREACHABLE(); return MaybeHandle<Map>().ToHandleChecked(); } bool IsOutOfBoundsAccess(Handle<JSObject> receiver, uint32_t index) { uint32_t length = 0; if (receiver->IsJSArray()) { JSArray::cast(*receiver)->length()->ToArrayLength(&length); } else { length = static_cast<uint32_t>(receiver->elements()->length()); } return index >= length; } static KeyedAccessStoreMode GetStoreMode(Handle<JSObject> receiver, uint32_t index, Handle<Object> value) { bool oob_access = IsOutOfBoundsAccess(receiver, index); // Don't consider this a growing store if the store would send the receiver to // dictionary mode. bool allow_growth = receiver->IsJSArray() && oob_access && !receiver->WouldConvertToSlowElements(index); if (allow_growth) { // Handle growing array in stub if necessary. if (receiver->HasFastSmiElements()) { if (value->IsHeapNumber()) { return STORE_AND_GROW_TRANSITION_TO_DOUBLE; } if (value->IsHeapObject()) { return STORE_AND_GROW_TRANSITION_TO_OBJECT; } } else if (receiver->HasFastDoubleElements()) { if (!value->IsSmi() && !value->IsHeapNumber()) { return STORE_AND_GROW_TRANSITION_TO_OBJECT; } } return STORE_AND_GROW_NO_TRANSITION; } else { // Handle only in-bounds elements accesses. if (receiver->HasFastSmiElements()) { if (value->IsHeapNumber()) { return STORE_TRANSITION_TO_DOUBLE; } else if (value->IsHeapObject()) { return STORE_TRANSITION_TO_OBJECT; } } else if (receiver->HasFastDoubleElements()) { if (!value->IsSmi() && !value->IsHeapNumber()) { return STORE_TRANSITION_TO_OBJECT; } } if (!FLAG_trace_external_array_abuse && receiver->map()->has_fixed_typed_array_elements() && oob_access) { return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS; } Heap* heap = receiver->GetHeap(); if (receiver->elements()->map() == heap->fixed_cow_array_map()) { return STORE_NO_TRANSITION_HANDLE_COW; } else { return STANDARD_STORE; } } } MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object, Handle<Object> key, Handle<Object> value) { // TODO(verwaest): Let SetProperty do the migration, since storing a property // might deprecate the current map again, if value does not fit. if (MigrateDeprecated(object)) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Runtime::SetObjectProperty(isolate(), object, key, value, language_mode()), Object); return result; } // Check for non-string values that can be converted into an // internalized string directly or is representable as a smi. key = TryConvertKey(key, isolate()); Handle<Object> store_handle; uint32_t index; if ((key->IsInternalizedString() && !String::cast(*key)->AsArrayIndex(&index)) || key->IsSymbol()) { ASSIGN_RETURN_ON_EXCEPTION( isolate(), store_handle, StoreIC::Store(object, Handle<Name>::cast(key), value, JSReceiver::MAY_BE_STORE_FROM_KEYED), Object); if (!is_vector_set()) { ConfigureVectorState(MEGAMORPHIC, key); TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "unhandled internalized string key"); TRACE_IC("StoreIC", key); } return store_handle; } bool use_ic = FLAG_use_ic && !object->IsStringWrapper() && !object->IsAccessCheckNeeded() && !object->IsJSGlobalProxy(); if (use_ic && !object->IsSmi()) { // Don't use ICs for maps of the objects in Array's prototype chain. We // expect to be able to trap element sets to objects with those maps in // the runtime to enable optimization of element hole access. Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object); if (heap_object->map()->IsMapInArrayPrototypeChain()) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "map in array prototype"); use_ic = false; } } Handle<Map> old_receiver_map; bool sloppy_arguments_elements = false; bool key_is_valid_index = false; KeyedAccessStoreMode store_mode = STANDARD_STORE; if (use_ic && object->IsJSObject()) { Handle<JSObject> receiver = Handle<JSObject>::cast(object); old_receiver_map = handle(receiver->map(), isolate()); sloppy_arguments_elements = !is_sloppy(language_mode()) && receiver->elements()->map() == isolate()->heap()->sloppy_arguments_elements_map(); if (!sloppy_arguments_elements) { key_is_valid_index = key->IsSmi() && Smi::cast(*key)->value() >= 0; if (key_is_valid_index) { uint32_t index = static_cast<uint32_t>(Smi::cast(*key)->value()); store_mode = GetStoreMode(receiver, index, value); } } } DCHECK(store_handle.is_null()); ASSIGN_RETURN_ON_EXCEPTION(isolate(), store_handle, Runtime::SetObjectProperty(isolate(), object, key, value, language_mode()), Object); if (use_ic) { if (!old_receiver_map.is_null()) { if (sloppy_arguments_elements) { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "arguments receiver"); } else if (key_is_valid_index) { // We should go generic if receiver isn't a dictionary, but our // prototype chain does have dictionary elements. This ensures that // other non-dictionary receivers in the polymorphic case benefit // from fast path keyed stores. if (!old_receiver_map->DictionaryElementsInPrototypeChainOnly()) { UpdateStoreElement(old_receiver_map, store_mode); } else { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "dictionary or proxy prototype"); } } else { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "non-smi-like key"); } } else { TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "non-JSObject receiver"); } } if (!is_vector_set()) { ConfigureVectorState(MEGAMORPHIC, key); TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic"); } TRACE_IC("StoreIC", key); return store_handle; } void CallIC::HandleMiss(Handle<Object> function) { Handle<Object> name = isolate()->factory()->empty_string(); CallICNexus* nexus = casted_nexus<CallICNexus>(); Object* feedback = nexus->GetFeedback(); // Hand-coded MISS handling is easier if CallIC slots don't contain smis. DCHECK(!feedback->IsSmi()); if (feedback->IsWeakCell() || !function->IsJSFunction() || feedback->IsAllocationSite()) { // We are going generic. nexus->ConfigureMegamorphic(); } else { DCHECK(feedback == *TypeFeedbackVector::UninitializedSentinel(isolate())); Handle<JSFunction> js_function = Handle<JSFunction>::cast(function); Handle<JSFunction> array_function = Handle<JSFunction>(isolate()->native_context()->array_function()); if (array_function.is_identical_to(js_function)) { // Alter the slot. nexus->ConfigureMonomorphicArray(); } else if (js_function->context()->native_context() != *isolate()->native_context()) { // Don't collect cross-native context feedback for the CallIC. // TODO(bmeurer): We should collect the SharedFunctionInfo as // feedback in this case instead. nexus->ConfigureMegamorphic(); } else { nexus->ConfigureMonomorphic(js_function); } } if (function->IsJSFunction()) { Handle<JSFunction> js_function = Handle<JSFunction>::cast(function); name = handle(js_function->shared()->name(), isolate()); } OnTypeFeedbackChanged(isolate(), get_host()); TRACE_IC("CallIC", name); } #undef TRACE_IC // ---------------------------------------------------------------------------- // Static IC stub generators. // // Used from ic-<arch>.cc. RUNTIME_FUNCTION(Runtime_CallIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); DCHECK(args.length() == 3); Handle<Object> function = args.at<Object>(0); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(1); Handle<Smi> slot = args.at<Smi>(2); FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value()); CallICNexus nexus(vector, vector_slot); CallIC ic(isolate, &nexus); ic.HandleMiss(function); return *function; } // Used from ic-<arch>.cc. RUNTIME_FUNCTION(Runtime_LoadIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); DCHECK_EQ(4, args.length()); Handle<Smi> slot = args.at<Smi>(2); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(3); FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value()); // A monomorphic or polymorphic KeyedLoadIC with a string key can call the // LoadIC miss handler if the handler misses. Since the vector Nexus is // set up outside the IC, handle that here. FeedbackVectorSlotKind kind = vector->GetKind(vector_slot); if (kind == FeedbackVectorSlotKind::LOAD_IC) { Handle<Name> key = args.at<Name>(1); LoadICNexus nexus(vector, vector_slot); LoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key)); } else if (kind == FeedbackVectorSlotKind::LOAD_GLOBAL_IC) { Handle<Name> key(vector->GetName(vector_slot), isolate); DCHECK_NE(*key, *isolate->factory()->empty_string()); DCHECK_EQ(*isolate->global_object(), *receiver); LoadGlobalICNexus nexus(vector, vector_slot); LoadGlobalIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Load(key)); } else { Handle<Name> key = args.at<Name>(1); DCHECK_EQ(FeedbackVectorSlotKind::KEYED_LOAD_IC, kind); KeyedLoadICNexus nexus(vector, vector_slot); KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key)); } } // Used from ic-<arch>.cc. RUNTIME_FUNCTION(Runtime_LoadGlobalIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); HandleScope scope(isolate); DCHECK_EQ(2, args.length()); Handle<JSGlobalObject> global = isolate->global_object(); Handle<Smi> slot = args.at<Smi>(0); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(1); FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value()); DCHECK_EQ(FeedbackVectorSlotKind::LOAD_GLOBAL_IC, vector->GetKind(vector_slot)); Handle<String> name(vector->GetName(vector_slot), isolate); DCHECK_NE(*name, *isolate->factory()->empty_string()); LoadGlobalICNexus nexus(vector, vector_slot); LoadGlobalIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); ic.UpdateState(global, name); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(name)); return *result; } RUNTIME_FUNCTION(Runtime_LoadGlobalIC_Slow) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_SMI_ARG_CHECKED(slot, 0); CONVERT_ARG_HANDLE_CHECKED(TypeFeedbackVector, vector, 1); FeedbackVectorSlot vector_slot = vector->ToSlot(slot); DCHECK_EQ(FeedbackVectorSlotKind::LOAD_GLOBAL_IC, vector->GetKind(vector_slot)); Handle<String> name(vector->GetName(vector_slot), isolate); DCHECK_NE(*name, *isolate->factory()->empty_string()); Handle<JSGlobalObject> global = isolate->global_object(); Handle<ScriptContextTable> script_contexts( global->native_context()->script_context_table()); ScriptContextTable::LookupResult lookup_result; if (ScriptContextTable::Lookup(script_contexts, name, &lookup_result)) { Handle<Context> script_context = ScriptContextTable::GetContext( script_contexts, lookup_result.context_index); Handle<Object> result = FixedArray::get(*script_context, lookup_result.slot_index, isolate); if (*result == *isolate->factory()->the_hole_value()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError(MessageTemplate::kNotDefined, name)); } return *result; } Handle<Object> result; bool is_found = false; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Runtime::GetObjectProperty(isolate, global, name, &is_found)); if (!is_found) { LoadICNexus nexus(isolate); LoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); // It is actually a LoadGlobalICs here but the predicate handles this case // properly. if (ic.ShouldThrowReferenceError()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError(MessageTemplate::kNotDefined, name)); } } return *result; } // Used from ic-<arch>.cc RUNTIME_FUNCTION(Runtime_KeyedLoadIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); DCHECK(args.length() == 4); Handle<Smi> slot = args.at<Smi>(2); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(3); FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value()); KeyedLoadICNexus nexus(vector, vector_slot); KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key)); } RUNTIME_FUNCTION(Runtime_KeyedLoadIC_MissFromStubFailure) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); DCHECK(args.length() == 4); Handle<Smi> slot = args.at<Smi>(2); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(3); FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value()); KeyedLoadICNexus nexus(vector, vector_slot); KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key)); } // Used from ic-<arch>.cc. RUNTIME_FUNCTION(Runtime_StoreIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Name> key = args.at<Name>(1); Handle<Object> value = args.at<Object>(2); DCHECK(args.length() == 5 || args.length() == 6); Handle<Smi> slot = args.at<Smi>(3); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(4); FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value()); if (vector->GetKind(vector_slot) == FeedbackVectorSlotKind::STORE_IC) { StoreICNexus nexus(vector, vector_slot); StoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value)); } else { DCHECK_EQ(FeedbackVectorSlotKind::KEYED_STORE_IC, vector->GetKind(vector_slot)); KeyedStoreICNexus nexus(vector, vector_slot); KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value)); } } RUNTIME_FUNCTION(Runtime_StoreIC_MissFromStubFailure) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Name> key = args.at<Name>(1); Handle<Object> value = args.at<Object>(2); int length = args.length(); DCHECK(length == 5 || length == 6); // We might have slot and vector, for a normal miss (slot(3), vector(4)). // Or, map and vector for a transitioning store miss (map(3), vector(4)). // In this case, we need to recover the slot from a virtual register. // If length == 6, then a map is included (map(3), slot(4), vector(5)). Handle<Smi> slot; Handle<TypeFeedbackVector> vector; if (length == 5) { if (args.at<Object>(3)->IsMap()) { vector = args.at<TypeFeedbackVector>(4); slot = handle( *reinterpret_cast<Smi**>(isolate->virtual_slot_register_address()), isolate); } else { vector = args.at<TypeFeedbackVector>(4); slot = args.at<Smi>(3); } } else { vector = args.at<TypeFeedbackVector>(5); slot = args.at<Smi>(4); } FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value()); if (vector->GetKind(vector_slot) == FeedbackVectorSlotKind::STORE_IC) { StoreICNexus nexus(vector, vector_slot); StoreIC ic(IC::EXTRA_CALL_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value)); } else { DCHECK_EQ(FeedbackVectorSlotKind::KEYED_STORE_IC, vector->GetKind(vector_slot)); KeyedStoreICNexus nexus(vector, vector_slot); KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value)); } } // Used from ic-<arch>.cc. RUNTIME_FUNCTION(Runtime_KeyedStoreIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); Handle<Object> value = args.at<Object>(2); DCHECK(args.length() == 5); Handle<Smi> slot = args.at<Smi>(3); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(4); FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value()); KeyedStoreICNexus nexus(vector, vector_slot); KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value)); } RUNTIME_FUNCTION(Runtime_KeyedStoreIC_MissFromStubFailure) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); Handle<Object> value = args.at<Object>(2); DCHECK(args.length() == 5); Handle<Smi> slot = args.at<Smi>(3); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(4); FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value()); KeyedStoreICNexus nexus(vector, vector_slot); KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value)); } RUNTIME_FUNCTION(Runtime_StoreIC_Slow) { HandleScope scope(isolate); DCHECK(args.length() == 5); Handle<Object> object = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); Handle<Object> value = args.at<Object>(2); LanguageMode language_mode; StoreICNexus nexus(isolate); StoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); language_mode = ic.language_mode(); RETURN_RESULT_OR_FAILURE( isolate, Runtime::SetObjectProperty(isolate, object, key, value, language_mode)); } RUNTIME_FUNCTION(Runtime_KeyedStoreIC_Slow) { HandleScope scope(isolate); DCHECK(args.length() == 5); Handle<Object> object = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); Handle<Object> value = args.at<Object>(2); LanguageMode language_mode; KeyedStoreICNexus nexus(isolate); KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); language_mode = ic.language_mode(); RETURN_RESULT_OR_FAILURE( isolate, Runtime::SetObjectProperty(isolate, object, key, value, language_mode)); } RUNTIME_FUNCTION(Runtime_ElementsTransitionAndStoreIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); // Length == 5 or 6, depending on whether the vector slot // is passed in a virtual register or not. DCHECK(args.length() == 5 || args.length() == 6); Handle<Object> object = args.at<Object>(0); Handle<Object> key = args.at<Object>(1); Handle<Object> value = args.at<Object>(2); Handle<Map> map = args.at<Map>(3); LanguageMode language_mode; KeyedStoreICNexus nexus(isolate); KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate, &nexus); language_mode = ic.language_mode(); if (object->IsJSObject()) { JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), map->elements_kind()); } RETURN_RESULT_OR_FAILURE( isolate, Runtime::SetObjectProperty(isolate, object, key, value, language_mode)); } MaybeHandle<Object> BinaryOpIC::Transition( Handle<AllocationSite> allocation_site, Handle<Object> left, Handle<Object> right) { BinaryOpICState state(isolate(), extra_ic_state()); // Compute the actual result using the builtin for the binary operation. Handle<Object> result; switch (state.op()) { default: UNREACHABLE(); case Token::ADD: ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::Add(isolate(), left, right), Object); break; case Token::SUB: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::Subtract(isolate(), left, right), Object); break; case Token::MUL: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::Multiply(isolate(), left, right), Object); break; case Token::DIV: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::Divide(isolate(), left, right), Object); break; case Token::MOD: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::Modulus(isolate(), left, right), Object); break; case Token::BIT_OR: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::BitwiseOr(isolate(), left, right), Object); break; case Token::BIT_AND: ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::BitwiseAnd(isolate(), left, right), Object); break; case Token::BIT_XOR: ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::BitwiseXor(isolate(), left, right), Object); break; case Token::SAR: ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::ShiftRight(isolate(), left, right), Object); break; case Token::SHR: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::ShiftRightLogical(isolate(), left, right), Object); break; case Token::SHL: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::ShiftLeft(isolate(), left, right), Object); break; } // Do not try to update the target if the code was marked for lazy // deoptimization. (Since we do not relocate addresses in these // code objects, an attempt to access the target could fail.) if (AddressIsDeoptimizedCode()) { return result; } // Compute the new state. BinaryOpICState old_state(isolate(), target()->extra_ic_state()); state.Update(left, right, result); // Check if we have a string operation here. Handle<Code> new_target; if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) { // Setup the allocation site on-demand. if (allocation_site.is_null()) { allocation_site = isolate()->factory()->NewAllocationSite(); } // Install the stub with an allocation site. BinaryOpICWithAllocationSiteStub stub(isolate(), state); new_target = stub.GetCodeCopyFromTemplate(allocation_site); // Sanity check the trampoline stub. DCHECK_EQ(*allocation_site, new_target->FindFirstAllocationSite()); } else { // Install the generic stub. BinaryOpICStub stub(isolate(), state); new_target = stub.GetCode(); // Sanity check the generic stub. DCHECK_NULL(new_target->FindFirstAllocationSite()); } set_target(*new_target); if (FLAG_trace_ic) { OFStream os(stdout); os << "[BinaryOpIC" << old_state << " => " << state << " @ " << static_cast<void*>(*new_target) << " <- "; JavaScriptFrame::PrintTop(isolate(), stdout, false, true); if (!allocation_site.is_null()) { os << " using allocation site " << static_cast<void*>(*allocation_site); } os << "]" << std::endl; } // Patch the inlined smi code as necessary. if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) { PatchInlinedSmiCode(isolate(), address(), ENABLE_INLINED_SMI_CHECK); } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) { PatchInlinedSmiCode(isolate(), address(), DISABLE_INLINED_SMI_CHECK); } return result; } RUNTIME_FUNCTION(Runtime_BinaryOpIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); DCHECK_EQ(2, args.length()); Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft); Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight); BinaryOpIC ic(isolate); RETURN_RESULT_OR_FAILURE( isolate, ic.Transition(Handle<AllocationSite>::null(), left, right)); } RUNTIME_FUNCTION(Runtime_BinaryOpIC_MissWithAllocationSite) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); DCHECK_EQ(3, args.length()); Handle<AllocationSite> allocation_site = args.at<AllocationSite>(BinaryOpWithAllocationSiteStub::kAllocationSite); Handle<Object> left = args.at<Object>(BinaryOpWithAllocationSiteStub::kLeft); Handle<Object> right = args.at<Object>(BinaryOpWithAllocationSiteStub::kRight); BinaryOpIC ic(isolate); RETURN_RESULT_OR_FAILURE(isolate, ic.Transition(allocation_site, left, right)); } Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) { CompareICStub stub(isolate, op, CompareICState::UNINITIALIZED, CompareICState::UNINITIALIZED, CompareICState::UNINITIALIZED); Code* code = NULL; CHECK(stub.FindCodeInCache(&code)); return code; } Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) { CompareICStub stub(isolate, op, CompareICState::UNINITIALIZED, CompareICState::UNINITIALIZED, CompareICState::UNINITIALIZED); return stub.GetCode(); } Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) { HandleScope scope(isolate()); CompareICStub old_stub(target()->stub_key(), isolate()); CompareICState::State new_left = CompareICState::NewInputState(old_stub.left(), x); CompareICState::State new_right = CompareICState::NewInputState(old_stub.right(), y); CompareICState::State state = CompareICState::TargetState( isolate(), old_stub.state(), old_stub.left(), old_stub.right(), op_, HasInlinedSmiCode(address()), x, y); CompareICStub stub(isolate(), op_, new_left, new_right, state); if (state == CompareICState::KNOWN_RECEIVER) { stub.set_known_map( Handle<Map>(Handle<JSReceiver>::cast(x)->map(), isolate())); } Handle<Code> new_target = stub.GetCode(); set_target(*new_target); if (FLAG_trace_ic) { PrintF("[CompareIC in "); JavaScriptFrame::PrintTop(isolate(), stdout, false, true); PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n", CompareICState::GetStateName(old_stub.left()), CompareICState::GetStateName(old_stub.right()), CompareICState::GetStateName(old_stub.state()), CompareICState::GetStateName(new_left), CompareICState::GetStateName(new_right), CompareICState::GetStateName(state), Token::Name(op_), static_cast<void*>(*stub.GetCode())); } // Activate inlined smi code. if (old_stub.state() == CompareICState::UNINITIALIZED) { PatchInlinedSmiCode(isolate(), address(), ENABLE_INLINED_SMI_CHECK); } return *new_target; } // Used from CompareICStub::GenerateMiss in code-stubs-<arch>.cc. RUNTIME_FUNCTION(Runtime_CompareIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); DCHECK(args.length() == 3); CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2))); return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1)); } RUNTIME_FUNCTION(Runtime_Unreachable) { UNREACHABLE(); CHECK(false); return isolate->heap()->undefined_value(); } Handle<Object> ToBooleanIC::ToBoolean(Handle<Object> object) { ToBooleanICStub stub(isolate(), extra_ic_state()); bool to_boolean_value = stub.UpdateStatus(object); Handle<Code> code = stub.GetCode(); set_target(*code); return isolate()->factory()->ToBoolean(to_boolean_value); } RUNTIME_FUNCTION(Runtime_ToBooleanIC_Miss) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); DCHECK(args.length() == 1); HandleScope scope(isolate); Handle<Object> object = args.at<Object>(0); ToBooleanIC ic(isolate); return *ic.ToBoolean(object); } RUNTIME_FUNCTION(Runtime_StoreCallbackProperty) { Handle<JSObject> receiver = args.at<JSObject>(0); Handle<JSObject> holder = args.at<JSObject>(1); Handle<HeapObject> callback_or_cell = args.at<HeapObject>(2); Handle<Name> name = args.at<Name>(3); Handle<Object> value = args.at<Object>(4); CONVERT_LANGUAGE_MODE_ARG_CHECKED(language_mode, 5); HandleScope scope(isolate); if (FLAG_runtime_call_stats) { RETURN_RESULT_OR_FAILURE( isolate, Runtime::SetObjectProperty(isolate, receiver, name, value, language_mode)); } Handle<AccessorInfo> callback( callback_or_cell->IsWeakCell() ? AccessorInfo::cast(WeakCell::cast(*callback_or_cell)->value()) : AccessorInfo::cast(*callback_or_cell)); DCHECK(callback->IsCompatibleReceiver(*receiver)); Address setter_address = v8::ToCData<Address>(callback->setter()); v8::AccessorNameSetterCallback fun = FUNCTION_CAST<v8::AccessorNameSetterCallback>(setter_address); DCHECK(fun != NULL); Object::ShouldThrow should_throw = is_sloppy(language_mode) ? Object::DONT_THROW : Object::THROW_ON_ERROR; PropertyCallbackArguments custom_args(isolate, callback->data(), *receiver, *holder, should_throw); custom_args.Call(fun, name, value); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); return *value; } /** * Attempts to load a property with an interceptor (which must be present), * but doesn't search the prototype chain. * * Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't * provide any value for the given name. */ RUNTIME_FUNCTION(Runtime_LoadPropertyWithInterceptorOnly) { DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength); Handle<Name> name = args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex); Handle<Object> receiver = args.at<Object>(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex); Handle<JSObject> holder = args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex); HandleScope scope(isolate); if (!receiver->IsJSReceiver()) { ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, receiver, Object::ConvertReceiver(isolate, receiver)); } InterceptorInfo* interceptor = holder->GetNamedInterceptor(); PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver, *holder, Object::DONT_THROW); v8::GenericNamedPropertyGetterCallback getter = v8::ToCData<v8::GenericNamedPropertyGetterCallback>( interceptor->getter()); Handle<Object> result = arguments.Call(getter, name); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); if (!result.is_null()) return *result; return isolate->heap()->no_interceptor_result_sentinel(); } /** * Loads a property with an interceptor performing post interceptor * lookup if interceptor failed. */ RUNTIME_FUNCTION(Runtime_LoadPropertyWithInterceptor) { HandleScope scope(isolate); DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength); Handle<Name> name = args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex); Handle<Object> receiver = args.at<Object>(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex); Handle<JSObject> holder = args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex); if (!receiver->IsJSReceiver()) { ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, receiver, Object::ConvertReceiver(isolate, receiver)); } InterceptorInfo* interceptor = holder->GetNamedInterceptor(); PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver, *holder, Object::DONT_THROW); v8::GenericNamedPropertyGetterCallback getter = v8::ToCData<v8::GenericNamedPropertyGetterCallback>( interceptor->getter()); Handle<Object> result = arguments.Call(getter, name); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); if (!result.is_null()) return *result; LookupIterator it(receiver, name, holder); // Skip any lookup work until we hit the (possibly non-masking) interceptor. while (it.state() != LookupIterator::INTERCEPTOR || !it.GetHolder<JSObject>().is_identical_to(holder)) { DCHECK(it.state() != LookupIterator::ACCESS_CHECK || it.HasAccess()); it.Next(); } // Skip past the interceptor. it.Next(); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it)); if (it.IsFound()) return *result; #ifdef DEBUG LoadICNexus nexus(isolate); LoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); // It could actually be any kind of LoadICs here but the predicate handles // all the cases properly. DCHECK(!ic.ShouldThrowReferenceError()); #endif return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_StorePropertyWithInterceptor) { HandleScope scope(isolate); DCHECK(args.length() == 3); StoreICNexus nexus(isolate); StoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus); Handle<JSObject> receiver = args.at<JSObject>(0); Handle<Name> name = args.at<Name>(1); Handle<Object> value = args.at<Object>(2); DCHECK(receiver->HasNamedInterceptor()); InterceptorInfo* interceptor = receiver->GetNamedInterceptor(); DCHECK(!interceptor->non_masking()); PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver, *receiver, Object::DONT_THROW); v8::GenericNamedPropertySetterCallback setter = v8::ToCData<v8::GenericNamedPropertySetterCallback>( interceptor->setter()); Handle<Object> result = arguments.Call(setter, name, value); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); if (!result.is_null()) return *value; LookupIterator it(receiver, name, receiver); // Skip past any access check on the receiver. if (it.state() == LookupIterator::ACCESS_CHECK) { DCHECK(it.HasAccess()); it.Next(); } // Skip past the interceptor on the receiver. DCHECK_EQ(LookupIterator::INTERCEPTOR, it.state()); it.Next(); MAYBE_RETURN(Object::SetProperty(&it, value, ic.language_mode(), JSReceiver::CERTAINLY_NOT_STORE_FROM_KEYED), isolate->heap()->exception()); return *value; } RUNTIME_FUNCTION(Runtime_LoadElementWithInterceptor) { // TODO(verwaest): This should probably get the holder and receiver as input. HandleScope scope(isolate); Handle<JSObject> receiver = args.at<JSObject>(0); DCHECK(args.smi_at(1) >= 0); uint32_t index = args.smi_at(1); InterceptorInfo* interceptor = receiver->GetIndexedInterceptor(); PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver, *receiver, Object::DONT_THROW); v8::IndexedPropertyGetterCallback getter = v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter()); Handle<Object> result = arguments.Call(getter, index); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); if (result.is_null()) { LookupIterator it(isolate, receiver, index, receiver); DCHECK_EQ(LookupIterator::INTERCEPTOR, it.state()); it.Next(); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it)); } return *result; } RUNTIME_FUNCTION(Runtime_LoadIC_MissFromStubFailure) { TimerEventScope<TimerEventIcMiss> timer(isolate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8"), "V8.IcMiss"); HandleScope scope(isolate); Handle<Object> receiver = args.at<Object>(0); Handle<Name> key = args.at<Name>(1); DCHECK(args.length() == 4); Handle<Smi> slot = args.at<Smi>(2); Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(3); FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value()); // A monomorphic or polymorphic KeyedLoadIC with a string key can call the // LoadIC miss handler if the handler misses. Since the vector Nexus is // set up outside the IC, handle that here. if (vector->GetKind(vector_slot) == FeedbackVectorSlotKind::LOAD_IC) { LoadICNexus nexus(vector, vector_slot); LoadIC ic(IC::EXTRA_CALL_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key)); } else { DCHECK_EQ(FeedbackVectorSlotKind::KEYED_LOAD_IC, vector->GetKind(vector_slot)); KeyedLoadICNexus nexus(vector, vector_slot); KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key)); } } } // namespace internal } // namespace v8