// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/factory.h" #include "src/allocation-site-scopes.h" #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/conversions.h" #include "src/isolate-inl.h" #include "src/macro-assembler.h" namespace v8 { namespace internal { // Calls the FUNCTION_CALL function and retries it up to three times // to guarantee that any allocations performed during the call will // succeed if there's enough memory. // // Warning: Do not use the identifiers __object__, __maybe_object__, // __allocation__ or __scope__ in a call to this macro. #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \ if (__allocation__.To(&__object__)) { \ DCHECK(__object__ != (ISOLATE)->heap()->exception()); \ return Handle<TYPE>(TYPE::cast(__object__), ISOLATE); \ } #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \ do { \ AllocationResult __allocation__ = FUNCTION_CALL; \ Object* __object__ = NULL; \ RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \ /* Two GCs before panicking. In newspace will almost always succeed. */ \ for (int __i__ = 0; __i__ < 2; __i__++) { \ (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(), \ "allocation failure"); \ __allocation__ = FUNCTION_CALL; \ RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \ } \ (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \ (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc"); \ { \ AlwaysAllocateScope __scope__(ISOLATE); \ __allocation__ = FUNCTION_CALL; \ } \ RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \ /* TODO(1181417): Fix this. */ \ v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \ return Handle<TYPE>(); \ } while (false) template<typename T> Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->Allocate(*map, space), T); } template<typename T> Handle<T> Factory::New(Handle<Map> map, AllocationSpace space, Handle<AllocationSite> allocation_site) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->Allocate(*map, space, *allocation_site), T); } Handle<HeapObject> Factory::NewFillerObject(int size, bool double_align, AllocationSpace space) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateFillerObject(size, double_align, space), HeapObject); } Handle<Box> Factory::NewBox(Handle<Object> value) { Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE)); result->set_value(*value); return result; } Handle<PrototypeInfo> Factory::NewPrototypeInfo() { Handle<PrototypeInfo> result = Handle<PrototypeInfo>::cast(NewStruct(PROTOTYPE_INFO_TYPE)); result->set_prototype_users(WeakFixedArray::Empty()); result->set_registry_slot(PrototypeInfo::UNREGISTERED); result->set_validity_cell(Smi::FromInt(0)); result->set_bit_field(0); return result; } Handle<SloppyBlockWithEvalContextExtension> Factory::NewSloppyBlockWithEvalContextExtension( Handle<ScopeInfo> scope_info, Handle<JSObject> extension) { DCHECK(scope_info->is_declaration_scope()); Handle<SloppyBlockWithEvalContextExtension> result = Handle<SloppyBlockWithEvalContextExtension>::cast( NewStruct(SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE)); result->set_scope_info(*scope_info); result->set_extension(*extension); return result; } Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string, Handle<Object> to_number, bool to_boolean, const char* type_of, byte kind) { Handle<Oddball> oddball = New<Oddball>(map, OLD_SPACE); Oddball::Initialize(isolate(), oddball, to_string, to_number, to_boolean, type_of, kind); return oddball; } Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) { DCHECK(0 <= size); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateFixedArray(size, pretenure), FixedArray); } Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size, PretenureFlag pretenure) { DCHECK(0 <= size); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateFixedArrayWithFiller(size, pretenure, *the_hole_value()), FixedArray); } Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateUninitializedFixedArray(size), FixedArray); } Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size, PretenureFlag pretenure) { DCHECK(0 <= size); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure), FixedArrayBase); } Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles( int size, PretenureFlag pretenure) { DCHECK(0 <= size); Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure); if (size > 0) { Handle<FixedDoubleArray> double_array = Handle<FixedDoubleArray>::cast(array); for (int i = 0; i < size; ++i) { double_array->set_the_hole(i); } } return array; } Handle<OrderedHashSet> Factory::NewOrderedHashSet() { return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity); } Handle<OrderedHashMap> Factory::NewOrderedHashMap() { return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity); } Handle<AccessorPair> Factory::NewAccessorPair() { Handle<AccessorPair> accessors = Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE)); accessors->set_getter(*null_value(), SKIP_WRITE_BARRIER); accessors->set_setter(*null_value(), SKIP_WRITE_BARRIER); return accessors; } Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() { Handle<TypeFeedbackInfo> info = Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE)); info->initialize_storage(); return info; } // Internalized strings are created in the old generation (data space). Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) { Utf8StringKey key(string, isolate()->heap()->HashSeed()); return InternalizeStringWithKey(&key); } Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) { OneByteStringKey key(string, isolate()->heap()->HashSeed()); return InternalizeStringWithKey(&key); } Handle<String> Factory::InternalizeOneByteString( Handle<SeqOneByteString> string, int from, int length) { SeqOneByteSubStringKey key(string, from, length); return InternalizeStringWithKey(&key); } Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) { TwoByteStringKey key(string, isolate()->heap()->HashSeed()); return InternalizeStringWithKey(&key); } template<class StringTableKey> Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) { return StringTable::LookupKey(isolate(), key); } MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string, PretenureFlag pretenure) { int length = string.length(); if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); Handle<SeqOneByteString> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawOneByteString(string.length(), pretenure), String); DisallowHeapAllocation no_gc; // Copy the characters into the new object. CopyChars(SeqOneByteString::cast(*result)->GetChars(), string.start(), length); return result; } MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string, PretenureFlag pretenure) { // Check for ASCII first since this is the common case. const char* start = string.start(); int length = string.length(); int non_ascii_start = String::NonAsciiStart(start, length); if (non_ascii_start >= length) { // If the string is ASCII, we do not need to convert the characters // since UTF8 is backwards compatible with ASCII. return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure); } // Non-ASCII and we need to decode. Access<UnicodeCache::Utf8Decoder> decoder(isolate()->unicode_cache()->utf8_decoder()); decoder->Reset(string.start() + non_ascii_start, length - non_ascii_start); int utf16_length = static_cast<int>(decoder->Utf16Length()); DCHECK(utf16_length > 0); // Allocate string. Handle<SeqTwoByteString> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawTwoByteString(non_ascii_start + utf16_length, pretenure), String); // Copy ASCII portion. uint16_t* data = result->GetChars(); const char* ascii_data = string.start(); for (int i = 0; i < non_ascii_start; i++) { *data++ = *ascii_data++; } // Now write the remainder. decoder->WriteUtf16(data, utf16_length); return result; } MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string, int length, PretenureFlag pretenure) { if (String::IsOneByte(string, length)) { if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); Handle<SeqOneByteString> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawOneByteString(length, pretenure), String); CopyChars(result->GetChars(), string, length); return result; } else { Handle<SeqTwoByteString> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawTwoByteString(length, pretenure), String); CopyChars(result->GetChars(), string, length); return result; } } MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string, PretenureFlag pretenure) { return NewStringFromTwoByte(string.start(), string.length(), pretenure); } MaybeHandle<String> Factory::NewStringFromTwoByte( const ZoneVector<uc16>* string, PretenureFlag pretenure) { return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()), pretenure); } Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str, int chars, uint32_t hash_field) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateInternalizedStringFromUtf8( str, chars, hash_field), String); } MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString( Vector<const uint8_t> str, uint32_t hash_field) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field), String); } MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString( Handle<SeqOneByteString> string, int offset, int length, uint32_t hash_field) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateOneByteInternalizedString( Vector<const uint8_t>(string->GetChars() + offset, length), hash_field), String); } MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString( Vector<const uc16> str, uint32_t hash_field) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field), String); } Handle<String> Factory::NewInternalizedStringImpl( Handle<String> string, int chars, uint32_t hash_field) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateInternalizedStringImpl( *string, chars, hash_field), String); } MaybeHandle<Map> Factory::InternalizedStringMapForString( Handle<String> string) { // If the string is in new space it cannot be used as internalized. if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>(); // Find the corresponding internalized string map for strings. switch (string->map()->instance_type()) { case STRING_TYPE: return internalized_string_map(); case ONE_BYTE_STRING_TYPE: return one_byte_internalized_string_map(); case EXTERNAL_STRING_TYPE: return external_internalized_string_map(); case EXTERNAL_ONE_BYTE_STRING_TYPE: return external_one_byte_internalized_string_map(); case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: return external_internalized_string_with_one_byte_data_map(); case SHORT_EXTERNAL_STRING_TYPE: return short_external_internalized_string_map(); case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE: return short_external_one_byte_internalized_string_map(); case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: return short_external_internalized_string_with_one_byte_data_map(); default: return MaybeHandle<Map>(); // No match found. } } MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString( int length, PretenureFlag pretenure) { if (length > String::kMaxLength || length < 0) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString); } CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateRawOneByteString(length, pretenure), SeqOneByteString); } MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString( int length, PretenureFlag pretenure) { if (length > String::kMaxLength || length < 0) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString); } CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateRawTwoByteString(length, pretenure), SeqTwoByteString); } Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) { if (code <= String::kMaxOneByteCharCodeU) { { DisallowHeapAllocation no_allocation; Object* value = single_character_string_cache()->get(code); if (value != *undefined_value()) { return handle(String::cast(value), isolate()); } } uint8_t buffer[1]; buffer[0] = static_cast<uint8_t>(code); Handle<String> result = InternalizeOneByteString(Vector<const uint8_t>(buffer, 1)); single_character_string_cache()->set(code, *result); return result; } DCHECK(code <= String::kMaxUtf16CodeUnitU); Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked(); result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code)); return result; } // Returns true for a character in a range. Both limits are inclusive. static inline bool Between(uint32_t character, uint32_t from, uint32_t to) { // This makes uses of the the unsigned wraparound. return character - from <= to - from; } static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate, uint16_t c1, uint16_t c2) { // Numeric strings have a different hash algorithm not known by // LookupTwoCharsStringIfExists, so we skip this step for such strings. if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) { Handle<String> result; if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2). ToHandle(&result)) { return result; } } // Now we know the length is 2, we might as well make use of that fact // when building the new string. if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) { // We can do this. DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1)); // because of this. Handle<SeqOneByteString> str = isolate->factory()->NewRawOneByteString(2).ToHandleChecked(); uint8_t* dest = str->GetChars(); dest[0] = static_cast<uint8_t>(c1); dest[1] = static_cast<uint8_t>(c2); return str; } else { Handle<SeqTwoByteString> str = isolate->factory()->NewRawTwoByteString(2).ToHandleChecked(); uc16* dest = str->GetChars(); dest[0] = c1; dest[1] = c2; return str; } } template<typename SinkChar, typename StringType> Handle<String> ConcatStringContent(Handle<StringType> result, Handle<String> first, Handle<String> second) { DisallowHeapAllocation pointer_stays_valid; SinkChar* sink = result->GetChars(); String::WriteToFlat(*first, sink, 0, first->length()); String::WriteToFlat(*second, sink + first->length(), 0, second->length()); return result; } MaybeHandle<String> Factory::NewConsString(Handle<String> left, Handle<String> right) { int left_length = left->length(); if (left_length == 0) return right; int right_length = right->length(); if (right_length == 0) return left; int length = left_length + right_length; if (length == 2) { uint16_t c1 = left->Get(0); uint16_t c2 = right->Get(0); return MakeOrFindTwoCharacterString(isolate(), c1, c2); } // Make sure that an out of memory exception is thrown if the length // of the new cons string is too large. if (length > String::kMaxLength || length < 0) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); } bool left_is_one_byte = left->IsOneByteRepresentation(); bool right_is_one_byte = right->IsOneByteRepresentation(); bool is_one_byte = left_is_one_byte && right_is_one_byte; bool is_one_byte_data_in_two_byte_string = false; if (!is_one_byte) { // At least one of the strings uses two-byte representation so we // can't use the fast case code for short one-byte strings below, but // we can try to save memory if all chars actually fit in one-byte. is_one_byte_data_in_two_byte_string = left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars(); if (is_one_byte_data_in_two_byte_string) { isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment(); } } // If the resulting string is small make a flat string. if (length < ConsString::kMinLength) { // Note that neither of the two inputs can be a slice because: STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength); DCHECK(left->IsFlat()); DCHECK(right->IsFlat()); STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength); if (is_one_byte) { Handle<SeqOneByteString> result = NewRawOneByteString(length).ToHandleChecked(); DisallowHeapAllocation no_gc; uint8_t* dest = result->GetChars(); // Copy left part. const uint8_t* src = left->IsExternalString() ? Handle<ExternalOneByteString>::cast(left)->GetChars() : Handle<SeqOneByteString>::cast(left)->GetChars(); for (int i = 0; i < left_length; i++) *dest++ = src[i]; // Copy right part. src = right->IsExternalString() ? Handle<ExternalOneByteString>::cast(right)->GetChars() : Handle<SeqOneByteString>::cast(right)->GetChars(); for (int i = 0; i < right_length; i++) *dest++ = src[i]; return result; } return (is_one_byte_data_in_two_byte_string) ? ConcatStringContent<uint8_t>( NewRawOneByteString(length).ToHandleChecked(), left, right) : ConcatStringContent<uc16>( NewRawTwoByteString(length).ToHandleChecked(), left, right); } Handle<ConsString> result = (is_one_byte || is_one_byte_data_in_two_byte_string) ? New<ConsString>(cons_one_byte_string_map(), NEW_SPACE) : New<ConsString>(cons_string_map(), NEW_SPACE); DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); result->set_hash_field(String::kEmptyHashField); result->set_length(length); result->set_first(*left, mode); result->set_second(*right, mode); return result; } Handle<String> Factory::NewProperSubString(Handle<String> str, int begin, int end) { #if VERIFY_HEAP if (FLAG_verify_heap) str->StringVerify(); #endif DCHECK(begin > 0 || end < str->length()); str = String::Flatten(str); int length = end - begin; if (length <= 0) return empty_string(); if (length == 1) { return LookupSingleCharacterStringFromCode(str->Get(begin)); } if (length == 2) { // Optimization for 2-byte strings often used as keys in a decompression // dictionary. Check whether we already have the string in the string // table to prevent creation of many unnecessary strings. uint16_t c1 = str->Get(begin); uint16_t c2 = str->Get(begin + 1); return MakeOrFindTwoCharacterString(isolate(), c1, c2); } if (!FLAG_string_slices || length < SlicedString::kMinLength) { if (str->IsOneByteRepresentation()) { Handle<SeqOneByteString> result = NewRawOneByteString(length).ToHandleChecked(); uint8_t* dest = result->GetChars(); DisallowHeapAllocation no_gc; String::WriteToFlat(*str, dest, begin, end); return result; } else { Handle<SeqTwoByteString> result = NewRawTwoByteString(length).ToHandleChecked(); uc16* dest = result->GetChars(); DisallowHeapAllocation no_gc; String::WriteToFlat(*str, dest, begin, end); return result; } } int offset = begin; if (str->IsSlicedString()) { Handle<SlicedString> slice = Handle<SlicedString>::cast(str); str = Handle<String>(slice->parent(), isolate()); offset += slice->offset(); } DCHECK(str->IsSeqString() || str->IsExternalString()); Handle<Map> map = str->IsOneByteRepresentation() ? sliced_one_byte_string_map() : sliced_string_map(); Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE); slice->set_hash_field(String::kEmptyHashField); slice->set_length(length); slice->set_parent(*str); slice->set_offset(offset); return slice; } MaybeHandle<String> Factory::NewExternalStringFromOneByte( const ExternalOneByteString::Resource* resource) { size_t length = resource->length(); if (length > static_cast<size_t>(String::kMaxLength)) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); } Handle<Map> map; if (resource->IsCompressible()) { // TODO(hajimehoshi): Rename this to 'uncached_external_one_byte_string_map' map = short_external_one_byte_string_map(); } else { map = external_one_byte_string_map(); } Handle<ExternalOneByteString> external_string = New<ExternalOneByteString>(map, NEW_SPACE); external_string->set_length(static_cast<int>(length)); external_string->set_hash_field(String::kEmptyHashField); external_string->set_resource(resource); return external_string; } MaybeHandle<String> Factory::NewExternalStringFromTwoByte( const ExternalTwoByteString::Resource* resource) { size_t length = resource->length(); if (length > static_cast<size_t>(String::kMaxLength)) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); } // For small strings we check whether the resource contains only // one byte characters. If yes, we use a different string map. static const size_t kOneByteCheckLengthLimit = 32; bool is_one_byte = length <= kOneByteCheckLengthLimit && String::IsOneByte(resource->data(), static_cast<int>(length)); Handle<Map> map; if (resource->IsCompressible()) { // TODO(hajimehoshi): Rename these to 'uncached_external_string_...'. map = is_one_byte ? short_external_string_with_one_byte_data_map() : short_external_string_map(); } else { map = is_one_byte ? external_string_with_one_byte_data_map() : external_string_map(); } Handle<ExternalTwoByteString> external_string = New<ExternalTwoByteString>(map, NEW_SPACE); external_string->set_length(static_cast<int>(length)); external_string->set_hash_field(String::kEmptyHashField); external_string->set_resource(resource); return external_string; } Handle<ExternalOneByteString> Factory::NewNativeSourceString( const ExternalOneByteString::Resource* resource) { size_t length = resource->length(); DCHECK_LE(length, static_cast<size_t>(String::kMaxLength)); Handle<Map> map = native_source_string_map(); Handle<ExternalOneByteString> external_string = New<ExternalOneByteString>(map, OLD_SPACE); external_string->set_length(static_cast<int>(length)); external_string->set_hash_field(String::kEmptyHashField); external_string->set_resource(resource); return external_string; } Handle<Symbol> Factory::NewSymbol() { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateSymbol(), Symbol); } Handle<Symbol> Factory::NewPrivateSymbol() { Handle<Symbol> symbol = NewSymbol(); symbol->set_is_private(true); return symbol; } Handle<Context> Factory::NewNativeContext() { Handle<FixedArray> array = NewFixedArray(Context::NATIVE_CONTEXT_SLOTS, TENURED); array->set_map_no_write_barrier(*native_context_map()); Handle<Context> context = Handle<Context>::cast(array); context->set_native_context(*context); context->set_errors_thrown(Smi::FromInt(0)); Handle<WeakCell> weak_cell = NewWeakCell(context); context->set_self_weak_cell(*weak_cell); DCHECK(context->IsNativeContext()); return context; } Handle<Context> Factory::NewScriptContext(Handle<JSFunction> function, Handle<ScopeInfo> scope_info) { Handle<FixedArray> array = NewFixedArray(scope_info->ContextLength(), TENURED); array->set_map_no_write_barrier(*script_context_map()); Handle<Context> context = Handle<Context>::cast(array); context->set_closure(*function); context->set_previous(function->context()); context->set_extension(*scope_info); context->set_native_context(function->native_context()); DCHECK(context->IsScriptContext()); return context; } Handle<ScriptContextTable> Factory::NewScriptContextTable() { Handle<FixedArray> array = NewFixedArray(1); array->set_map_no_write_barrier(*script_context_table_map()); Handle<ScriptContextTable> context_table = Handle<ScriptContextTable>::cast(array); context_table->set_used(0); return context_table; } Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) { Handle<FixedArray> array = NewFixedArray(scope_info->ContextLength(), TENURED); array->set_map_no_write_barrier(*module_context_map()); // Instance link will be set later. Handle<Context> context = Handle<Context>::cast(array); context->set_extension(*the_hole_value()); return context; } Handle<Context> Factory::NewFunctionContext(int length, Handle<JSFunction> function) { DCHECK(length >= Context::MIN_CONTEXT_SLOTS); Handle<FixedArray> array = NewFixedArray(length); array->set_map_no_write_barrier(*function_context_map()); Handle<Context> context = Handle<Context>::cast(array); context->set_closure(*function); context->set_previous(function->context()); context->set_extension(*the_hole_value()); context->set_native_context(function->native_context()); return context; } Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function, Handle<Context> previous, Handle<String> name, Handle<Object> thrown_object) { STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX); Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1); array->set_map_no_write_barrier(*catch_context_map()); Handle<Context> context = Handle<Context>::cast(array); context->set_closure(*function); context->set_previous(*previous); context->set_extension(*name); context->set_native_context(previous->native_context()); context->set(Context::THROWN_OBJECT_INDEX, *thrown_object); return context; } Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous, Handle<JSReceiver> extension, Handle<Context> wrapped, Handle<StringSet> whitelist) { STATIC_ASSERT(Context::WHITE_LIST_INDEX == Context::MIN_CONTEXT_SLOTS + 1); Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 2); array->set_map_no_write_barrier(*debug_evaluate_context_map()); Handle<Context> c = Handle<Context>::cast(array); c->set_closure(wrapped.is_null() ? previous->closure() : wrapped->closure()); c->set_previous(*previous); c->set_native_context(previous->native_context()); if (!extension.is_null()) c->set(Context::EXTENSION_INDEX, *extension); if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped); if (!whitelist.is_null()) c->set(Context::WHITE_LIST_INDEX, *whitelist); return c; } Handle<Context> Factory::NewWithContext(Handle<JSFunction> function, Handle<Context> previous, Handle<JSReceiver> extension) { Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS); array->set_map_no_write_barrier(*with_context_map()); Handle<Context> context = Handle<Context>::cast(array); context->set_closure(*function); context->set_previous(*previous); context->set_extension(*extension); context->set_native_context(previous->native_context()); return context; } Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function, Handle<Context> previous, Handle<ScopeInfo> scope_info) { Handle<FixedArray> array = NewFixedArray(scope_info->ContextLength()); array->set_map_no_write_barrier(*block_context_map()); Handle<Context> context = Handle<Context>::cast(array); context->set_closure(*function); context->set_previous(*previous); context->set_extension(*scope_info); context->set_native_context(previous->native_context()); return context; } Handle<Struct> Factory::NewStruct(InstanceType type) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateStruct(type), Struct); } Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry( int aliased_context_slot) { Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast( NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE)); entry->set_aliased_context_slot(aliased_context_slot); return entry; } Handle<AccessorInfo> Factory::NewAccessorInfo() { Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(NewStruct(ACCESSOR_INFO_TYPE)); info->set_flag(0); // Must clear the flag, it was initialized as undefined. info->set_is_sloppy(true); return info; } Handle<Script> Factory::NewScript(Handle<String> source) { // Create and initialize script object. Heap* heap = isolate()->heap(); Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE)); script->set_source(*source); script->set_name(heap->undefined_value()); script->set_id(isolate()->heap()->NextScriptId()); script->set_line_offset(0); script->set_column_offset(0); script->set_context_data(heap->undefined_value()); script->set_type(Script::TYPE_NORMAL); script->set_wrapper(heap->undefined_value()); script->set_line_ends(heap->undefined_value()); script->set_eval_from_shared(heap->undefined_value()); script->set_eval_from_position(0); script->set_shared_function_infos(Smi::FromInt(0)); script->set_flags(0); heap->set_script_list(*WeakFixedArray::Add(script_list(), script)); return script; } Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateForeign(addr, pretenure), Foreign); } Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) { return NewForeign((Address) desc, TENURED); } Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) { DCHECK(0 <= length); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateByteArray(length, pretenure), ByteArray); } Handle<BytecodeArray> Factory::NewBytecodeArray( int length, const byte* raw_bytecodes, int frame_size, int parameter_count, Handle<FixedArray> constant_pool) { DCHECK(0 <= length); CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateBytecodeArray( length, raw_bytecodes, frame_size, parameter_count, *constant_pool), BytecodeArray); } Handle<FixedTypedArrayBase> Factory::NewFixedTypedArrayWithExternalPointer( int length, ExternalArrayType array_type, void* external_pointer, PretenureFlag pretenure) { DCHECK(0 <= length && length <= Smi::kMaxValue); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateFixedTypedArrayWithExternalPointer( length, array_type, external_pointer, pretenure), FixedTypedArrayBase); } Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray( int length, ExternalArrayType array_type, bool initialize, PretenureFlag pretenure) { DCHECK(0 <= length && length <= Smi::kMaxValue); CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateFixedTypedArray( length, array_type, initialize, pretenure), FixedTypedArrayBase); } Handle<Cell> Factory::NewCell(Handle<Object> value) { AllowDeferredHandleDereference convert_to_cell; CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateCell(*value), Cell); } Handle<PropertyCell> Factory::NewPropertyCell() { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocatePropertyCell(), PropertyCell); } Handle<WeakCell> Factory::NewWeakCell(Handle<HeapObject> value) { // It is safe to dereference the value because we are embedding it // in cell and not inspecting its fields. AllowDeferredHandleDereference convert_to_cell; CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateWeakCell(*value), WeakCell); } Handle<TransitionArray> Factory::NewTransitionArray(int capacity) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateTransitionArray(capacity), TransitionArray); } Handle<AllocationSite> Factory::NewAllocationSite() { Handle<Map> map = allocation_site_map(); Handle<AllocationSite> site = New<AllocationSite>(map, OLD_SPACE); site->Initialize(); // Link the site site->set_weak_next(isolate()->heap()->allocation_sites_list()); isolate()->heap()->set_allocation_sites_list(*site); return site; } Handle<Map> Factory::NewMap(InstanceType type, int instance_size, ElementsKind elements_kind) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateMap(type, instance_size, elements_kind), Map); } Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyJSObject(*object, NULL), JSObject); } Handle<JSObject> Factory::CopyJSObjectWithAllocationSite( Handle<JSObject> object, Handle<AllocationSite> site) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyJSObject( *object, site.is_null() ? NULL : *site), JSObject); } Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array, Handle<Map> map) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArrayWithMap(*array, *map), FixedArray); } Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array, int grow_by, PretenureFlag pretenure) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArrayAndGrow( *array, grow_by, pretenure), FixedArray); } Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array, int new_len, PretenureFlag pretenure) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArrayUpTo( *array, new_len, pretenure), FixedArray); } Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArray(*array), FixedArray); } Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray( Handle<FixedArray> array) { DCHECK(isolate()->heap()->InNewSpace(*array)); CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyAndTenureFixedCOWArray(*array), FixedArray); } Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray( Handle<FixedDoubleArray> array) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedDoubleArray(*array), FixedDoubleArray); } Handle<Object> Factory::NewNumber(double value, PretenureFlag pretenure) { // We need to distinguish the minus zero value and this cannot be // done after conversion to int. Doing this by comparing bit // patterns is faster than using fpclassify() et al. if (IsMinusZero(value)) return NewHeapNumber(-0.0, IMMUTABLE, pretenure); int int_value = FastD2IChecked(value); if (value == int_value && Smi::IsValid(int_value)) { return handle(Smi::FromInt(int_value), isolate()); } // Materialize the value in the heap. return NewHeapNumber(value, IMMUTABLE, pretenure); } Handle<Object> Factory::NewNumberFromInt(int32_t value, PretenureFlag pretenure) { if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate()); // Bypass NewNumber to avoid various redundant checks. return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure); } Handle<Object> Factory::NewNumberFromUint(uint32_t value, PretenureFlag pretenure) { int32_t int32v = static_cast<int32_t>(value); if (int32v >= 0 && Smi::IsValid(int32v)) { return handle(Smi::FromInt(int32v), isolate()); } return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure); } Handle<HeapNumber> Factory::NewHeapNumber(double value, MutableMode mode, PretenureFlag pretenure) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateHeapNumber(value, mode, pretenure), HeapNumber); } #define SIMD128_NEW_DEF(TYPE, Type, type, lane_count, lane_type) \ Handle<Type> Factory::New##Type(lane_type lanes[lane_count], \ PretenureFlag pretenure) { \ CALL_HEAP_FUNCTION( \ isolate(), isolate()->heap()->Allocate##Type(lanes, pretenure), Type); \ } SIMD128_TYPES(SIMD128_NEW_DEF) #undef SIMD128_NEW_DEF Handle<Object> Factory::NewError(Handle<JSFunction> constructor, MessageTemplate::Template template_index, Handle<Object> arg0, Handle<Object> arg1, Handle<Object> arg2) { HandleScope scope(isolate()); if (isolate()->bootstrapper()->IsActive()) { // During bootstrapping we cannot construct error objects. return scope.CloseAndEscape(NewStringFromAsciiChecked( MessageTemplate::TemplateString(template_index))); } Handle<JSFunction> fun = isolate()->make_error_function(); Handle<Object> message_type(Smi::FromInt(template_index), isolate()); if (arg0.is_null()) arg0 = undefined_value(); if (arg1.is_null()) arg1 = undefined_value(); if (arg2.is_null()) arg2 = undefined_value(); Handle<Object> argv[] = {constructor, message_type, arg0, arg1, arg2}; // Invoke the JavaScript factory method. If an exception is thrown while // running the factory method, use the exception as the result. Handle<Object> result; MaybeHandle<Object> exception; if (!Execution::TryCall(isolate(), fun, undefined_value(), arraysize(argv), argv, &exception) .ToHandle(&result)) { Handle<Object> exception_obj; if (exception.ToHandle(&exception_obj)) { result = exception_obj; } else { result = undefined_value(); } } return scope.CloseAndEscape(result); } Handle<Object> Factory::NewError(Handle<JSFunction> constructor, Handle<String> message) { Handle<Object> argv[] = { message }; // Invoke the JavaScript factory method. If an exception is thrown while // running the factory method, use the exception as the result. Handle<Object> result; MaybeHandle<Object> exception; if (!Execution::TryCall(isolate(), constructor, undefined_value(), arraysize(argv), argv, &exception) .ToHandle(&result)) { Handle<Object> exception_obj; if (exception.ToHandle(&exception_obj)) return exception_obj; return undefined_value(); } return result; } #define DEFINE_ERROR(NAME, name) \ Handle<Object> Factory::New##NAME(MessageTemplate::Template template_index, \ Handle<Object> arg0, Handle<Object> arg1, \ Handle<Object> arg2) { \ return NewError(isolate()->name##_function(), template_index, arg0, arg1, \ arg2); \ } DEFINE_ERROR(Error, error) DEFINE_ERROR(EvalError, eval_error) DEFINE_ERROR(RangeError, range_error) DEFINE_ERROR(ReferenceError, reference_error) DEFINE_ERROR(SyntaxError, syntax_error) DEFINE_ERROR(TypeError, type_error) #undef DEFINE_ERROR Handle<JSFunction> Factory::NewFunction(Handle<Map> map, Handle<SharedFunctionInfo> info, Handle<Context> context, PretenureFlag pretenure) { AllocationSpace space = pretenure == TENURED ? OLD_SPACE : NEW_SPACE; Handle<JSFunction> function = New<JSFunction>(map, space); function->initialize_properties(); function->initialize_elements(); function->set_shared(*info); function->set_code(info->code()); function->set_context(*context); function->set_prototype_or_initial_map(*the_hole_value()); function->set_literals(LiteralsArray::cast(*empty_literals_array())); function->set_next_function_link(*undefined_value(), SKIP_WRITE_BARRIER); isolate()->heap()->InitializeJSObjectBody(*function, *map, JSFunction::kSize); return function; } Handle<JSFunction> Factory::NewFunction(Handle<Map> map, Handle<String> name, MaybeHandle<Code> code) { Handle<Context> context(isolate()->native_context()); Handle<SharedFunctionInfo> info = NewSharedFunctionInfo(name, code, map->is_constructor()); DCHECK(is_sloppy(info->language_mode())); DCHECK(!map->IsUndefined(isolate())); DCHECK( map.is_identical_to(isolate()->sloppy_function_map()) || map.is_identical_to(isolate()->sloppy_function_without_prototype_map()) || map.is_identical_to( isolate()->sloppy_function_with_readonly_prototype_map()) || map.is_identical_to(isolate()->strict_function_map()) || map.is_identical_to(isolate()->strict_function_without_prototype_map()) || // TODO(titzer): wasm_function_map() could be undefined here. ugly. (*map == context->get(Context::WASM_FUNCTION_MAP_INDEX)) || map.is_identical_to(isolate()->proxy_function_map())); return NewFunction(map, info, context); } Handle<JSFunction> Factory::NewFunction(Handle<String> name) { return NewFunction( isolate()->sloppy_function_map(), name, MaybeHandle<Code>()); } Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name, Handle<Code> code, bool is_strict) { Handle<Map> map = is_strict ? isolate()->strict_function_without_prototype_map() : isolate()->sloppy_function_without_prototype_map(); return NewFunction(map, name, code); } Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code, Handle<Object> prototype, bool is_strict) { Handle<Map> map = is_strict ? isolate()->strict_function_map() : isolate()->sloppy_function_map(); Handle<JSFunction> result = NewFunction(map, name, code); result->set_prototype_or_initial_map(*prototype); return result; } Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code, Handle<Object> prototype, InstanceType type, int instance_size, bool is_strict) { // Allocate the function Handle<JSFunction> function = NewFunction(name, code, prototype, is_strict); ElementsKind elements_kind = type == JS_ARRAY_TYPE ? FAST_SMI_ELEMENTS : FAST_HOLEY_SMI_ELEMENTS; Handle<Map> initial_map = NewMap(type, instance_size, elements_kind); // TODO(littledan): Why do we have this is_generator test when // NewFunctionPrototype already handles finding an appropriately // shared prototype? if (!function->shared()->is_resumable()) { if (prototype->IsTheHole(isolate())) { prototype = NewFunctionPrototype(function); } } JSFunction::SetInitialMap(function, initial_map, Handle<JSReceiver>::cast(prototype)); return function; } Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code, InstanceType type, int instance_size) { return NewFunction(name, code, the_hole_value(), type, instance_size); } Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) { // Make sure to use globals from the function's context, since the function // can be from a different context. Handle<Context> native_context(function->context()->native_context()); Handle<Map> new_map; if (function->shared()->is_resumable()) { // Generator and async function prototypes can share maps since they // don't have "constructor" properties. new_map = handle(native_context->generator_object_prototype_map()); } else { CHECK(!function->shared()->is_async()); // Each function prototype gets a fresh map to avoid unwanted sharing of // maps between prototypes of different constructors. Handle<JSFunction> object_function(native_context->object_function()); DCHECK(object_function->has_initial_map()); new_map = handle(object_function->initial_map()); } DCHECK(!new_map->is_prototype_map()); Handle<JSObject> prototype = NewJSObjectFromMap(new_map); if (!function->shared()->is_resumable()) { JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM); } return prototype; } Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo( Handle<SharedFunctionInfo> info, Handle<Context> context, PretenureFlag pretenure) { int map_index = Context::FunctionMapIndex(info->language_mode(), info->kind()); Handle<Map> initial_map(Map::cast(context->native_context()->get(map_index))); return NewFunctionFromSharedFunctionInfo(initial_map, info, context, pretenure); } Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo( Handle<Map> initial_map, Handle<SharedFunctionInfo> info, Handle<Context> context, PretenureFlag pretenure) { DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type()); Handle<JSFunction> result = NewFunction(initial_map, info, context, pretenure); if (info->ic_age() != isolate()->heap()->global_ic_age()) { info->ResetForNewContext(isolate()->heap()->global_ic_age()); } // Give compiler a chance to pre-initialize. Compiler::PostInstantiation(result, pretenure); return result; } Handle<ScopeInfo> Factory::NewScopeInfo(int length) { Handle<FixedArray> array = NewFixedArray(length, TENURED); array->set_map_no_write_barrier(*scope_info_map()); Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array); return scope_info; } Handle<JSObject> Factory::NewExternal(void* value) { Handle<Foreign> foreign = NewForeign(static_cast<Address>(value)); Handle<JSObject> external = NewJSObjectFromMap(external_map()); external->SetInternalField(0, *foreign); return external; } Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateCode(object_size, immovable), Code); } Handle<Code> Factory::NewCode(const CodeDesc& desc, Code::Flags flags, Handle<Object> self_ref, bool immovable, bool crankshafted, int prologue_offset, bool is_debug) { Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED); bool has_unwinding_info = desc.unwinding_info != nullptr; DCHECK((has_unwinding_info && desc.unwinding_info_size > 0) || (!has_unwinding_info && desc.unwinding_info_size == 0)); // Compute size. int body_size = desc.instr_size; int unwinding_info_size_field_size = kInt64Size; if (has_unwinding_info) { body_size = RoundUp(body_size, kInt64Size) + desc.unwinding_info_size + unwinding_info_size_field_size; } int obj_size = Code::SizeFor(RoundUp(body_size, kObjectAlignment)); Handle<Code> code = NewCodeRaw(obj_size, immovable); DCHECK(!isolate()->heap()->memory_allocator()->code_range()->valid() || isolate()->heap()->memory_allocator()->code_range()->contains( code->address()) || obj_size <= isolate()->heap()->code_space()->AreaSize()); // The code object has not been fully initialized yet. We rely on the // fact that no allocation will happen from this point on. DisallowHeapAllocation no_gc; code->set_gc_metadata(Smi::FromInt(0)); code->set_ic_age(isolate()->heap()->global_ic_age()); code->set_instruction_size(desc.instr_size); code->set_relocation_info(*reloc_info); code->set_flags(flags); code->set_has_unwinding_info(has_unwinding_info); code->set_raw_kind_specific_flags1(0); code->set_raw_kind_specific_flags2(0); code->set_is_crankshafted(crankshafted); code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER); code->set_raw_type_feedback_info(Smi::FromInt(0)); code->set_next_code_link(*undefined_value()); code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER); code->set_prologue_offset(prologue_offset); code->set_constant_pool_offset(desc.instr_size - desc.constant_pool_size); if (code->kind() == Code::OPTIMIZED_FUNCTION) { code->set_marked_for_deoptimization(false); } if (is_debug) { DCHECK(code->kind() == Code::FUNCTION); code->set_has_debug_break_slots(true); } // Allow self references to created code object by patching the handle to // point to the newly allocated Code object. if (!self_ref.is_null()) *(self_ref.location()) = *code; // Migrate generated code. // The generated code can contain Object** values (typically from handles) // that are dereferenced during the copy to point directly to the actual heap // objects. These pointers can include references to the code object itself, // through the self_reference parameter. code->CopyFrom(desc); #ifdef VERIFY_HEAP if (FLAG_verify_heap) code->ObjectVerify(); #endif return code; } Handle<Code> Factory::CopyCode(Handle<Code> code) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyCode(*code), Code); } Handle<BytecodeArray> Factory::CopyBytecodeArray( Handle<BytecodeArray> bytecode_array) { CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyBytecodeArray(*bytecode_array), BytecodeArray); } Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor, PretenureFlag pretenure) { JSFunction::EnsureHasInitialMap(constructor); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject); } Handle<JSObject> Factory::NewJSObjectWithMemento( Handle<JSFunction> constructor, Handle<AllocationSite> site) { JSFunction::EnsureHasInitialMap(constructor); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site), JSObject); } Handle<JSObject> Factory::NewJSObjectWithNullProto() { Handle<JSObject> result = NewJSObject(isolate()->object_function()); Handle<Map> new_map = Map::Copy(Handle<Map>(result->map()), "ObjectWithNullProto"); Map::SetPrototype(new_map, null_value()); JSObject::MigrateToMap(result, new_map); return result; } Handle<JSModule> Factory::NewJSModule(Handle<Context> context, Handle<ScopeInfo> scope_info) { // Allocate a fresh map. Modules do not have a prototype. Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize); // Allocate the object based on the map. Handle<JSModule> module = Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED)); module->set_context(*context); module->set_scope_info(*scope_info); return module; } Handle<JSGlobalObject> Factory::NewJSGlobalObject( Handle<JSFunction> constructor) { DCHECK(constructor->has_initial_map()); Handle<Map> map(constructor->initial_map()); DCHECK(map->is_dictionary_map()); // Make sure no field properties are described in the initial map. // This guarantees us that normalizing the properties does not // require us to change property values to PropertyCells. DCHECK(map->NextFreePropertyIndex() == 0); // Make sure we don't have a ton of pre-allocated slots in the // global objects. They will be unused once we normalize the object. DCHECK(map->unused_property_fields() == 0); DCHECK(map->GetInObjectProperties() == 0); // Initial size of the backing store to avoid resize of the storage during // bootstrapping. The size differs between the JS global object ad the // builtins object. int initial_size = 64; // Allocate a dictionary object for backing storage. int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size; Handle<GlobalDictionary> dictionary = GlobalDictionary::New(isolate(), at_least_space_for); // The global object might be created from an object template with accessors. // Fill these accessors into the dictionary. Handle<DescriptorArray> descs(map->instance_descriptors()); for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) { PropertyDetails details = descs->GetDetails(i); // Only accessors are expected. DCHECK_EQ(ACCESSOR_CONSTANT, details.type()); PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1, PropertyCellType::kMutable); Handle<Name> name(descs->GetKey(i)); Handle<PropertyCell> cell = NewPropertyCell(); cell->set_value(descs->GetCallbacksObject(i)); // |dictionary| already contains enough space for all properties. USE(GlobalDictionary::Add(dictionary, name, cell, d)); } // Allocate the global object and initialize it with the backing store. Handle<JSGlobalObject> global = New<JSGlobalObject>(map, OLD_SPACE); isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map); // Create a new map for the global object. Handle<Map> new_map = Map::CopyDropDescriptors(map); new_map->set_dictionary_map(true); // Set up the global object as a normalized object. global->set_map(*new_map); global->set_properties(*dictionary); // Make sure result is a global object with properties in dictionary. DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties()); return global; } Handle<JSObject> Factory::NewJSObjectFromMap( Handle<Map> map, PretenureFlag pretenure, Handle<AllocationSite> allocation_site) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateJSObjectFromMap( *map, pretenure, allocation_site.is_null() ? NULL : *allocation_site), JSObject); } Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, PretenureFlag pretenure) { Map* map = isolate()->get_initial_js_array_map(elements_kind); if (map == nullptr) { Context* native_context = isolate()->context()->native_context(); JSFunction* array_function = native_context->array_function(); map = array_function->initial_map(); } return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure)); } Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length, int capacity, ArrayStorageAllocationMode mode, PretenureFlag pretenure) { Handle<JSArray> array = NewJSArray(elements_kind, pretenure); NewJSArrayStorage(array, length, capacity, mode); return array; } Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length, PretenureFlag pretenure) { DCHECK(length <= elements->length()); Handle<JSArray> array = NewJSArray(elements_kind, pretenure); array->set_elements(*elements); array->set_length(Smi::FromInt(length)); JSObject::ValidateElements(array); return array; } void Factory::NewJSArrayStorage(Handle<JSArray> array, int length, int capacity, ArrayStorageAllocationMode mode) { DCHECK(capacity >= length); if (capacity == 0) { array->set_length(Smi::FromInt(0)); array->set_elements(*empty_fixed_array()); return; } HandleScope inner_scope(isolate()); Handle<FixedArrayBase> elms; ElementsKind elements_kind = array->GetElementsKind(); if (IsFastDoubleElementsKind(elements_kind)) { if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) { elms = NewFixedDoubleArray(capacity); } else { DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE); elms = NewFixedDoubleArrayWithHoles(capacity); } } else { DCHECK(IsFastSmiOrObjectElementsKind(elements_kind)); if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) { elms = NewUninitializedFixedArray(capacity); } else { DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE); elms = NewFixedArrayWithHoles(capacity); } } array->set_elements(*elms); array->set_length(Smi::FromInt(length)); } Handle<JSGeneratorObject> Factory::NewJSGeneratorObject( Handle<JSFunction> function) { DCHECK(function->shared()->is_resumable()); JSFunction::EnsureHasInitialMap(function); Handle<Map> map(function->initial_map()); DCHECK_EQ(JS_GENERATOR_OBJECT_TYPE, map->instance_type()); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateJSObjectFromMap(*map), JSGeneratorObject); } Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(SharedFlag shared, PretenureFlag pretenure) { Handle<JSFunction> array_buffer_fun( shared == SharedFlag::kShared ? isolate()->native_context()->shared_array_buffer_fun() : isolate()->native_context()->array_buffer_fun()); CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject( *array_buffer_fun, pretenure), JSArrayBuffer); } Handle<JSDataView> Factory::NewJSDataView() { Handle<JSFunction> data_view_fun( isolate()->native_context()->data_view_fun()); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateJSObject(*data_view_fun), JSDataView); } Handle<JSMap> Factory::NewJSMap() { Handle<Map> map(isolate()->native_context()->js_map_map()); Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map)); JSMap::Initialize(js_map, isolate()); return js_map; } Handle<JSSet> Factory::NewJSSet() { Handle<Map> map(isolate()->native_context()->js_set_map()); Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map)); JSSet::Initialize(js_set, isolate()); return js_set; } Handle<JSMapIterator> Factory::NewJSMapIterator() { Handle<Map> map(isolate()->native_context()->map_iterator_map()); CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObjectFromMap(*map), JSMapIterator); } Handle<JSSetIterator> Factory::NewJSSetIterator() { Handle<Map> map(isolate()->native_context()->set_iterator_map()); CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObjectFromMap(*map), JSSetIterator); } namespace { ElementsKind GetExternalArrayElementsKind(ExternalArrayType type) { switch (type) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ return TYPE##_ELEMENTS; TYPED_ARRAYS(TYPED_ARRAY_CASE) } UNREACHABLE(); return FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND; #undef TYPED_ARRAY_CASE } size_t GetExternalArrayElementSize(ExternalArrayType type) { switch (type) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ return size; TYPED_ARRAYS(TYPED_ARRAY_CASE) default: UNREACHABLE(); return 0; } #undef TYPED_ARRAY_CASE } size_t GetFixedTypedArraysElementSize(ElementsKind kind) { switch (kind) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ return size; TYPED_ARRAYS(TYPED_ARRAY_CASE) default: UNREACHABLE(); return 0; } #undef TYPED_ARRAY_CASE } ExternalArrayType GetArrayTypeFromElementsKind(ElementsKind kind) { switch (kind) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ return kExternal##Type##Array; TYPED_ARRAYS(TYPED_ARRAY_CASE) default: UNREACHABLE(); return kExternalInt8Array; } #undef TYPED_ARRAY_CASE } JSFunction* GetTypedArrayFun(ExternalArrayType type, Isolate* isolate) { Context* native_context = isolate->context()->native_context(); switch (type) { #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ return native_context->type##_array_fun(); TYPED_ARRAYS(TYPED_ARRAY_FUN) #undef TYPED_ARRAY_FUN default: UNREACHABLE(); return NULL; } } JSFunction* GetTypedArrayFun(ElementsKind elements_kind, Isolate* isolate) { Context* native_context = isolate->context()->native_context(); switch (elements_kind) { #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ return native_context->type##_array_fun(); TYPED_ARRAYS(TYPED_ARRAY_FUN) #undef TYPED_ARRAY_FUN default: UNREACHABLE(); return NULL; } } void SetupArrayBufferView(i::Isolate* isolate, i::Handle<i::JSArrayBufferView> obj, i::Handle<i::JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length, PretenureFlag pretenure = NOT_TENURED) { DCHECK(byte_offset + byte_length <= static_cast<size_t>(buffer->byte_length()->Number())); obj->set_buffer(*buffer); i::Handle<i::Object> byte_offset_object = isolate->factory()->NewNumberFromSize(byte_offset, pretenure); obj->set_byte_offset(*byte_offset_object); i::Handle<i::Object> byte_length_object = isolate->factory()->NewNumberFromSize(byte_length, pretenure); obj->set_byte_length(*byte_length_object); } } // namespace Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type, PretenureFlag pretenure) { Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate())); CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject( *typed_array_fun_handle, pretenure), JSTypedArray); } Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind, PretenureFlag pretenure) { Handle<JSFunction> typed_array_fun_handle( GetTypedArrayFun(elements_kind, isolate())); CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject( *typed_array_fun_handle, pretenure), JSTypedArray); } Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type, Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t length, PretenureFlag pretenure) { Handle<JSTypedArray> obj = NewJSTypedArray(type, pretenure); size_t element_size = GetExternalArrayElementSize(type); ElementsKind elements_kind = GetExternalArrayElementsKind(type); CHECK(byte_offset % element_size == 0); CHECK(length <= (std::numeric_limits<size_t>::max() / element_size)); CHECK(length <= static_cast<size_t>(Smi::kMaxValue)); size_t byte_length = length * element_size; SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length, pretenure); Handle<Object> length_object = NewNumberFromSize(length, pretenure); obj->set_length(*length_object); Handle<FixedTypedArrayBase> elements = NewFixedTypedArrayWithExternalPointer( static_cast<int>(length), type, static_cast<uint8_t*>(buffer->backing_store()) + byte_offset, pretenure); Handle<Map> map = JSObject::GetElementsTransitionMap(obj, elements_kind); JSObject::SetMapAndElements(obj, map, elements); return obj; } Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind, size_t number_of_elements, PretenureFlag pretenure) { Handle<JSTypedArray> obj = NewJSTypedArray(elements_kind, pretenure); size_t element_size = GetFixedTypedArraysElementSize(elements_kind); ExternalArrayType array_type = GetArrayTypeFromElementsKind(elements_kind); CHECK(number_of_elements <= (std::numeric_limits<size_t>::max() / element_size)); CHECK(number_of_elements <= static_cast<size_t>(Smi::kMaxValue)); size_t byte_length = number_of_elements * element_size; obj->set_byte_offset(Smi::FromInt(0)); i::Handle<i::Object> byte_length_object = NewNumberFromSize(byte_length, pretenure); obj->set_byte_length(*byte_length_object); Handle<Object> length_object = NewNumberFromSize(number_of_elements, pretenure); obj->set_length(*length_object); Handle<JSArrayBuffer> buffer = NewJSArrayBuffer(SharedFlag::kNotShared, pretenure); JSArrayBuffer::Setup(buffer, isolate(), true, NULL, byte_length, SharedFlag::kNotShared); obj->set_buffer(*buffer); Handle<FixedTypedArrayBase> elements = NewFixedTypedArray( static_cast<int>(number_of_elements), array_type, true, pretenure); obj->set_elements(*elements); return obj; } Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length) { Handle<JSDataView> obj = NewJSDataView(); SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length); return obj; } MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction( Handle<JSReceiver> target_function, Handle<Object> bound_this, Vector<Handle<Object>> bound_args) { DCHECK(target_function->IsCallable()); STATIC_ASSERT(Code::kMaxArguments <= FixedArray::kMaxLength); if (bound_args.length() >= Code::kMaxArguments) { THROW_NEW_ERROR(isolate(), NewRangeError(MessageTemplate::kTooManyArguments), JSBoundFunction); } // Determine the prototype of the {target_function}. Handle<Object> prototype; ASSIGN_RETURN_ON_EXCEPTION( isolate(), prototype, JSReceiver::GetPrototype(isolate(), target_function), JSBoundFunction); // Create the [[BoundArguments]] for the result. Handle<FixedArray> bound_arguments; if (bound_args.length() == 0) { bound_arguments = empty_fixed_array(); } else { bound_arguments = NewFixedArray(bound_args.length()); for (int i = 0; i < bound_args.length(); ++i) { bound_arguments->set(i, *bound_args[i]); } } // Setup the map for the JSBoundFunction instance. Handle<Map> map = target_function->IsConstructor() ? isolate()->bound_function_with_constructor_map() : isolate()->bound_function_without_constructor_map(); if (map->prototype() != *prototype) { map = Map::TransitionToPrototype(map, prototype, REGULAR_PROTOTYPE); } DCHECK_EQ(target_function->IsConstructor(), map->is_constructor()); // Setup the JSBoundFunction instance. Handle<JSBoundFunction> result = Handle<JSBoundFunction>::cast(NewJSObjectFromMap(map)); result->set_bound_target_function(*target_function); result->set_bound_this(*bound_this); result->set_bound_arguments(*bound_arguments); return result; } // ES6 section 9.5.15 ProxyCreate (target, handler) Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target, Handle<JSReceiver> handler) { // Allocate the proxy object. Handle<Map> map; if (target->IsCallable()) { if (target->IsConstructor()) { map = Handle<Map>(isolate()->proxy_constructor_map()); } else { map = Handle<Map>(isolate()->proxy_callable_map()); } } else { map = Handle<Map>(isolate()->proxy_map()); } DCHECK(map->prototype()->IsNull(isolate())); Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE); result->initialize_properties(); result->set_target(*target); result->set_handler(*handler); result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER); return result; } Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy() { // Create an empty shell of a JSGlobalProxy that needs to be reinitialized // via ReinitializeJSGlobalProxy later. Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, JSGlobalProxy::kSize); // Maintain invariant expected from any JSGlobalProxy. map->set_is_access_check_needed(true); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateJSObjectFromMap(*map, NOT_TENURED), JSGlobalProxy); } void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object, Handle<JSFunction> constructor) { DCHECK(constructor->has_initial_map()); Handle<Map> map(constructor->initial_map(), isolate()); Handle<Map> old_map(object->map(), isolate()); // The proxy's hash should be retained across reinitialization. Handle<Object> hash(object->hash(), isolate()); JSObject::InvalidatePrototypeChains(*old_map); if (old_map->is_prototype_map()) { map = Map::Copy(map, "CopyAsPrototypeForJSGlobalProxy"); map->set_is_prototype_map(true); } JSObject::UpdatePrototypeUserRegistration(old_map, map, isolate()); // Check that the already allocated object has the same size and type as // objects allocated using the constructor. DCHECK(map->instance_size() == old_map->instance_size()); DCHECK(map->instance_type() == old_map->instance_type()); // Allocate the backing storage for the properties. Handle<FixedArray> properties = empty_fixed_array(); // In order to keep heap in consistent state there must be no allocations // before object re-initialization is finished. DisallowHeapAllocation no_allocation; // Reset the map for the object. object->synchronized_set_map(*map); Heap* heap = isolate()->heap(); // Reinitialize the object from the constructor map. heap->InitializeJSObjectFromMap(*object, *properties, *map); // Restore the saved hash. object->set_hash(*hash); } Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo( Handle<String> name, int number_of_literals, FunctionKind kind, Handle<Code> code, Handle<ScopeInfo> scope_info) { DCHECK(IsValidFunctionKind(kind)); Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo( name, code, IsConstructable(kind, scope_info->language_mode())); shared->set_scope_info(*scope_info); shared->set_kind(kind); shared->set_num_literals(number_of_literals); if (IsGeneratorFunction(kind)) { shared->set_instance_class_name(isolate()->heap()->Generator_string()); } return shared; } Handle<JSMessageObject> Factory::NewJSMessageObject( MessageTemplate::Template message, Handle<Object> argument, int start_position, int end_position, Handle<Object> script, Handle<Object> stack_frames) { Handle<Map> map = message_object_map(); Handle<JSMessageObject> message_obj = New<JSMessageObject>(map, NEW_SPACE); message_obj->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER); message_obj->initialize_elements(); message_obj->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER); message_obj->set_type(message); message_obj->set_argument(*argument); message_obj->set_start_position(start_position); message_obj->set_end_position(end_position); message_obj->set_script(*script); message_obj->set_stack_frames(*stack_frames); return message_obj; } Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo( Handle<String> name, MaybeHandle<Code> maybe_code, bool is_constructor) { // Function names are assumed to be flat elsewhere. Must flatten before // allocating SharedFunctionInfo to avoid GC seeing the uninitialized SFI. name = String::Flatten(name, TENURED); Handle<Map> map = shared_function_info_map(); Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map, OLD_SPACE); // Set pointer fields. share->set_name(*name); Handle<Code> code; if (!maybe_code.ToHandle(&code)) { code = isolate()->builtins()->Illegal(); } share->set_code(*code); share->set_optimized_code_map(*cleared_optimized_code_map()); share->set_scope_info(ScopeInfo::Empty(isolate())); Handle<Code> construct_stub = is_constructor ? isolate()->builtins()->JSConstructStubGeneric() : isolate()->builtins()->ConstructedNonConstructable(); share->set_construct_stub(*construct_stub); share->set_instance_class_name(*Object_string()); share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER); share->set_script(*undefined_value(), SKIP_WRITE_BARRIER); share->set_debug_info(DebugInfo::uninitialized(), SKIP_WRITE_BARRIER); share->set_function_identifier(*undefined_value(), SKIP_WRITE_BARRIER); StaticFeedbackVectorSpec empty_spec; Handle<TypeFeedbackMetadata> feedback_metadata = TypeFeedbackMetadata::New(isolate(), &empty_spec); share->set_feedback_metadata(*feedback_metadata, SKIP_WRITE_BARRIER); #if TRACE_MAPS share->set_unique_id(isolate()->GetNextUniqueSharedFunctionInfoId()); #endif share->set_profiler_ticks(0); share->set_ast_node_count(0); share->set_counters(0); // Set integer fields (smi or int, depending on the architecture). share->set_length(0); share->set_internal_formal_parameter_count(0); share->set_expected_nof_properties(0); share->set_num_literals(0); share->set_start_position_and_type(0); share->set_end_position(0); share->set_function_token_position(0); // All compiler hints default to false or 0. share->set_compiler_hints(0); share->set_opt_count_and_bailout_reason(0); // Link into the list. Handle<Object> new_noscript_list = WeakFixedArray::Add(noscript_shared_function_infos(), share); isolate()->heap()->set_noscript_shared_function_infos(*new_noscript_list); return share; } static inline int NumberCacheHash(Handle<FixedArray> cache, Handle<Object> number) { int mask = (cache->length() >> 1) - 1; if (number->IsSmi()) { return Handle<Smi>::cast(number)->value() & mask; } else { DoubleRepresentation rep(number->Number()); return (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask; } } Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) { DisallowHeapAllocation no_gc; int hash = NumberCacheHash(number_string_cache(), number); Object* key = number_string_cache()->get(hash * 2); if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() && key->Number() == number->Number())) { return Handle<String>( String::cast(number_string_cache()->get(hash * 2 + 1)), isolate()); } return undefined_value(); } void Factory::SetNumberStringCache(Handle<Object> number, Handle<String> string) { int hash = NumberCacheHash(number_string_cache(), number); if (number_string_cache()->get(hash * 2) != *undefined_value()) { int full_size = isolate()->heap()->FullSizeNumberStringCacheLength(); if (number_string_cache()->length() != full_size) { Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED); isolate()->heap()->set_number_string_cache(*new_cache); return; } } number_string_cache()->set(hash * 2, *number); number_string_cache()->set(hash * 2 + 1, *string); } Handle<String> Factory::NumberToString(Handle<Object> number, bool check_number_string_cache) { isolate()->counters()->number_to_string_runtime()->Increment(); if (check_number_string_cache) { Handle<Object> cached = GetNumberStringCache(number); if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached); } char arr[100]; Vector<char> buffer(arr, arraysize(arr)); const char* str; if (number->IsSmi()) { int num = Handle<Smi>::cast(number)->value(); str = IntToCString(num, buffer); } else { double num = Handle<HeapNumber>::cast(number)->value(); str = DoubleToCString(num, buffer); } // We tenure the allocated string since it is referenced from the // number-string cache which lives in the old space. Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED); SetNumberStringCache(number, js_string); return js_string; } Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) { // Allocate initial fixed array for active break points before allocating the // debug info object to avoid allocation while setting up the debug info // object. Handle<FixedArray> break_points( NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction)); // Create and set up the debug info object. Debug info contains function, a // copy of the original code, the executing code and initial fixed array for // active break points. Handle<DebugInfo> debug_info = Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE)); debug_info->set_shared(*shared); if (shared->HasBytecodeArray()) { // We need to create a copy, but delay since this may cause heap // verification. debug_info->set_abstract_code(AbstractCode::cast(shared->bytecode_array())); } else { debug_info->set_abstract_code(AbstractCode::cast(shared->code())); } debug_info->set_break_points(*break_points); if (shared->HasBytecodeArray()) { // Create a copy for debugging. Handle<BytecodeArray> original(shared->bytecode_array()); Handle<BytecodeArray> copy = CopyBytecodeArray(original); debug_info->set_abstract_code(AbstractCode::cast(*copy)); } // Link debug info to function. shared->set_debug_info(*debug_info); return debug_info; } Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee, int length) { bool strict_mode_callee = is_strict(callee->shared()->language_mode()) || !callee->shared()->has_simple_parameters(); Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map() : isolate()->sloppy_arguments_map(); AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(), false); DCHECK(!isolate()->has_pending_exception()); Handle<JSObject> result = NewJSObjectFromMap(map); Handle<Smi> value(Smi::FromInt(length), isolate()); Object::SetProperty(result, length_string(), value, STRICT).Assert(); if (!strict_mode_callee) { Object::SetProperty(result, callee_string(), callee, STRICT).Assert(); } return result; } Handle<JSWeakMap> Factory::NewJSWeakMap() { // TODO(adamk): Currently the map is only created three times per // isolate. If it's created more often, the map should be moved into the // strong root list. Handle<Map> map = NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize); return Handle<JSWeakMap>::cast(NewJSObjectFromMap(map)); } Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context, int number_of_properties, bool* is_result_from_cache) { const int kMapCacheSize = 128; // We do not cache maps for too many properties or when running builtin code. if (number_of_properties > kMapCacheSize || isolate()->bootstrapper()->IsActive()) { *is_result_from_cache = false; Handle<Map> map = Map::Create(isolate(), number_of_properties); return map; } *is_result_from_cache = true; if (number_of_properties == 0) { // Reuse the initial map of the Object function if the literal has no // predeclared properties. return handle(context->object_function()->initial_map(), isolate()); } int cache_index = number_of_properties - 1; Handle<Object> maybe_cache(context->map_cache(), isolate()); if (maybe_cache->IsUndefined(isolate())) { // Allocate the new map cache for the native context. maybe_cache = NewFixedArray(kMapCacheSize, TENURED); context->set_map_cache(*maybe_cache); } else { // Check to see whether there is a matching element in the cache. Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache); Object* result = cache->get(cache_index); if (result->IsWeakCell()) { WeakCell* cell = WeakCell::cast(result); if (!cell->cleared()) { return handle(Map::cast(cell->value()), isolate()); } } } // Create a new map and add it to the cache. Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache); Handle<Map> map = Map::Create(isolate(), number_of_properties); Handle<WeakCell> cell = NewWeakCell(map); cache->set(cache_index, *cell); return map; } void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp, JSRegExp::Type type, Handle<String> source, JSRegExp::Flags flags, Handle<Object> data) { Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize); store->set(JSRegExp::kTagIndex, Smi::FromInt(type)); store->set(JSRegExp::kSourceIndex, *source); store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags)); store->set(JSRegExp::kAtomPatternIndex, *data); regexp->set_data(*store); } void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp, JSRegExp::Type type, Handle<String> source, JSRegExp::Flags flags, int capture_count) { Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize); Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue); store->set(JSRegExp::kTagIndex, Smi::FromInt(type)); store->set(JSRegExp::kSourceIndex, *source); store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags)); store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized); store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized); store->set(JSRegExp::kIrregexpLatin1CodeSavedIndex, uninitialized); store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized); store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0)); store->set(JSRegExp::kIrregexpCaptureCountIndex, Smi::FromInt(capture_count)); store->set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized); regexp->set_data(*store); } Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) { if (Name::Equals(name, undefined_string())) return undefined_value(); if (Name::Equals(name, nan_string())) return nan_value(); if (Name::Equals(name, infinity_string())) return infinity_value(); return Handle<Object>::null(); } Handle<Object> Factory::ToBoolean(bool value) { return value ? true_value() : false_value(); } } // namespace internal } // namespace v8