// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Defined when linking against shared lib on Windows. #if defined(USING_V8_SHARED) && !defined(V8_SHARED) #define V8_SHARED #endif #include <errno.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #ifdef V8_SHARED #include <assert.h> #endif // V8_SHARED #ifndef V8_SHARED #include <algorithm> #include <fstream> #include <vector> #endif // !V8_SHARED #ifdef V8_SHARED #include "include/v8-testing.h" #endif // V8_SHARED #ifdef ENABLE_VTUNE_JIT_INTERFACE #include "src/third_party/vtune/v8-vtune.h" #endif #include "src/d8.h" #include "src/ostreams.h" #include "include/libplatform/libplatform.h" #ifndef V8_SHARED #include "src/api.h" #include "src/base/cpu.h" #include "src/base/logging.h" #include "src/base/platform/platform.h" #include "src/base/sys-info.h" #include "src/basic-block-profiler.h" #include "src/interpreter/interpreter.h" #include "src/snapshot/natives.h" #include "src/utils.h" #include "src/v8.h" #endif // !V8_SHARED #if !defined(_WIN32) && !defined(_WIN64) #include <unistd.h> // NOLINT #else #include <windows.h> // NOLINT #if defined(_MSC_VER) #include <crtdbg.h> // NOLINT #endif // defined(_MSC_VER) #endif // !defined(_WIN32) && !defined(_WIN64) #ifndef DCHECK #define DCHECK(condition) assert(condition) #endif #ifndef CHECK #define CHECK(condition) assert(condition) #endif namespace v8 { namespace { const int MB = 1024 * 1024; #ifndef V8_SHARED const int kMaxWorkers = 50; #endif class ShellArrayBufferAllocator : public v8::ArrayBuffer::Allocator { public: virtual void* Allocate(size_t length) { void* data = AllocateUninitialized(length); return data == NULL ? data : memset(data, 0, length); } virtual void* AllocateUninitialized(size_t length) { return malloc(length); } virtual void Free(void* data, size_t) { free(data); } }; class MockArrayBufferAllocator : public v8::ArrayBuffer::Allocator { public: void* Allocate(size_t length) override { size_t actual_length = length > 10 * MB ? 1 : length; void* data = AllocateUninitialized(actual_length); return data == NULL ? data : memset(data, 0, actual_length); } void* AllocateUninitialized(size_t length) override { return length > 10 * MB ? malloc(1) : malloc(length); } void Free(void* p, size_t) override { free(p); } }; #ifndef V8_SHARED // Predictable v8::Platform implementation. All background and foreground // tasks are run immediately, delayed tasks are not executed at all. class PredictablePlatform : public Platform { public: PredictablePlatform() {} void CallOnBackgroundThread(Task* task, ExpectedRuntime expected_runtime) override { task->Run(); delete task; } void CallOnForegroundThread(v8::Isolate* isolate, Task* task) override { task->Run(); delete task; } void CallDelayedOnForegroundThread(v8::Isolate* isolate, Task* task, double delay_in_seconds) override { delete task; } void CallIdleOnForegroundThread(v8::Isolate* isolate, IdleTask* task) override { UNREACHABLE(); } bool IdleTasksEnabled(v8::Isolate* isolate) override { return false; } double MonotonicallyIncreasingTime() override { return synthetic_time_in_sec_ += 0.00001; } uint64_t AddTraceEvent(char phase, const uint8_t* categoryEnabledFlag, const char* name, const char* scope, uint64_t id, uint64_t bind_id, int numArgs, const char** argNames, const uint8_t* argTypes, const uint64_t* argValues, unsigned int flags) override { return 0; } void UpdateTraceEventDuration(const uint8_t* categoryEnabledFlag, const char* name, uint64_t handle) override {} const uint8_t* GetCategoryGroupEnabled(const char* name) override { static uint8_t no = 0; return &no; } const char* GetCategoryGroupName( const uint8_t* categoryEnabledFlag) override { static const char* dummy = "dummy"; return dummy; } private: double synthetic_time_in_sec_ = 0.0; DISALLOW_COPY_AND_ASSIGN(PredictablePlatform); }; #endif // !V8_SHARED v8::Platform* g_platform = NULL; static Local<Value> Throw(Isolate* isolate, const char* message) { return isolate->ThrowException( String::NewFromUtf8(isolate, message, NewStringType::kNormal) .ToLocalChecked()); } #ifndef V8_SHARED bool FindInObjectList(Local<Object> object, const Shell::ObjectList& list) { for (int i = 0; i < list.length(); ++i) { if (list[i]->StrictEquals(object)) { return true; } } return false; } Worker* GetWorkerFromInternalField(Isolate* isolate, Local<Object> object) { if (object->InternalFieldCount() != 1) { Throw(isolate, "this is not a Worker"); return NULL; } Worker* worker = static_cast<Worker*>(object->GetAlignedPointerFromInternalField(0)); if (worker == NULL) { Throw(isolate, "Worker is defunct because main thread is terminating"); return NULL; } return worker; } #endif // !V8_SHARED } // namespace class PerIsolateData { public: explicit PerIsolateData(Isolate* isolate) : isolate_(isolate), realms_(NULL) { HandleScope scope(isolate); isolate->SetData(0, this); } ~PerIsolateData() { isolate_->SetData(0, NULL); // Not really needed, just to be sure... } inline static PerIsolateData* Get(Isolate* isolate) { return reinterpret_cast<PerIsolateData*>(isolate->GetData(0)); } class RealmScope { public: explicit RealmScope(PerIsolateData* data); ~RealmScope(); private: PerIsolateData* data_; }; private: friend class Shell; friend class RealmScope; Isolate* isolate_; int realm_count_; int realm_current_; int realm_switch_; Global<Context>* realms_; Global<Value> realm_shared_; int RealmIndexOrThrow(const v8::FunctionCallbackInfo<v8::Value>& args, int arg_offset); int RealmFind(Local<Context> context); }; #ifndef V8_SHARED CounterMap* Shell::counter_map_; base::OS::MemoryMappedFile* Shell::counters_file_ = NULL; CounterCollection Shell::local_counters_; CounterCollection* Shell::counters_ = &local_counters_; base::LazyMutex Shell::context_mutex_; const base::TimeTicks Shell::kInitialTicks = base::TimeTicks::HighResolutionNow(); Global<Function> Shell::stringify_function_; base::LazyMutex Shell::workers_mutex_; bool Shell::allow_new_workers_ = true; i::List<Worker*> Shell::workers_; i::List<SharedArrayBuffer::Contents> Shell::externalized_shared_contents_; #endif // !V8_SHARED Global<Context> Shell::evaluation_context_; ArrayBuffer::Allocator* Shell::array_buffer_allocator; ShellOptions Shell::options; base::OnceType Shell::quit_once_ = V8_ONCE_INIT; #ifndef V8_SHARED bool CounterMap::Match(void* key1, void* key2) { const char* name1 = reinterpret_cast<const char*>(key1); const char* name2 = reinterpret_cast<const char*>(key2); return strcmp(name1, name2) == 0; } #endif // !V8_SHARED // Converts a V8 value to a C string. const char* Shell::ToCString(const v8::String::Utf8Value& value) { return *value ? *value : "<string conversion failed>"; } ScriptCompiler::CachedData* CompileForCachedData( Local<String> source, Local<Value> name, ScriptCompiler::CompileOptions compile_options) { int source_length = source->Length(); uint16_t* source_buffer = new uint16_t[source_length]; source->Write(source_buffer, 0, source_length); int name_length = 0; uint16_t* name_buffer = NULL; if (name->IsString()) { Local<String> name_string = Local<String>::Cast(name); name_length = name_string->Length(); name_buffer = new uint16_t[name_length]; name_string->Write(name_buffer, 0, name_length); } Isolate::CreateParams create_params; create_params.array_buffer_allocator = Shell::array_buffer_allocator; Isolate* temp_isolate = Isolate::New(create_params); ScriptCompiler::CachedData* result = NULL; { Isolate::Scope isolate_scope(temp_isolate); HandleScope handle_scope(temp_isolate); Context::Scope context_scope(Context::New(temp_isolate)); Local<String> source_copy = v8::String::NewFromTwoByte(temp_isolate, source_buffer, v8::NewStringType::kNormal, source_length).ToLocalChecked(); Local<Value> name_copy; if (name_buffer) { name_copy = v8::String::NewFromTwoByte(temp_isolate, name_buffer, v8::NewStringType::kNormal, name_length).ToLocalChecked(); } else { name_copy = v8::Undefined(temp_isolate); } ScriptCompiler::Source script_source(source_copy, ScriptOrigin(name_copy)); if (!ScriptCompiler::CompileUnboundScript(temp_isolate, &script_source, compile_options).IsEmpty() && script_source.GetCachedData()) { int length = script_source.GetCachedData()->length; uint8_t* cache = new uint8_t[length]; memcpy(cache, script_source.GetCachedData()->data, length); result = new ScriptCompiler::CachedData( cache, length, ScriptCompiler::CachedData::BufferOwned); } } temp_isolate->Dispose(); delete[] source_buffer; delete[] name_buffer; return result; } // Compile a string within the current v8 context. MaybeLocal<Script> Shell::CompileString( Isolate* isolate, Local<String> source, Local<Value> name, ScriptCompiler::CompileOptions compile_options, SourceType source_type) { Local<Context> context(isolate->GetCurrentContext()); ScriptOrigin origin(name); // TODO(adamk): Make use of compile options for Modules. if (compile_options == ScriptCompiler::kNoCompileOptions || source_type == MODULE) { ScriptCompiler::Source script_source(source, origin); return source_type == SCRIPT ? ScriptCompiler::Compile(context, &script_source, compile_options) : ScriptCompiler::CompileModule(context, &script_source, compile_options); } ScriptCompiler::CachedData* data = CompileForCachedData(source, name, compile_options); ScriptCompiler::Source cached_source(source, origin, data); if (compile_options == ScriptCompiler::kProduceCodeCache) { compile_options = ScriptCompiler::kConsumeCodeCache; } else if (compile_options == ScriptCompiler::kProduceParserCache) { compile_options = ScriptCompiler::kConsumeParserCache; } else { DCHECK(false); // A new compile option? } if (data == NULL) compile_options = ScriptCompiler::kNoCompileOptions; DCHECK_EQ(SCRIPT, source_type); MaybeLocal<Script> result = ScriptCompiler::Compile(context, &cached_source, compile_options); CHECK(data == NULL || !data->rejected); return result; } // Executes a string within the current v8 context. bool Shell::ExecuteString(Isolate* isolate, Local<String> source, Local<Value> name, bool print_result, bool report_exceptions, SourceType source_type) { HandleScope handle_scope(isolate); TryCatch try_catch(isolate); try_catch.SetVerbose(true); MaybeLocal<Value> maybe_result; { PerIsolateData* data = PerIsolateData::Get(isolate); Local<Context> realm = Local<Context>::New(isolate, data->realms_[data->realm_current_]); Context::Scope context_scope(realm); Local<Script> script; if (!Shell::CompileString(isolate, source, name, options.compile_options, source_type).ToLocal(&script)) { // Print errors that happened during compilation. if (report_exceptions) ReportException(isolate, &try_catch); return false; } maybe_result = script->Run(realm); EmptyMessageQueues(isolate); data->realm_current_ = data->realm_switch_; } Local<Value> result; if (!maybe_result.ToLocal(&result)) { DCHECK(try_catch.HasCaught()); // Print errors that happened during execution. if (report_exceptions) ReportException(isolate, &try_catch); return false; } DCHECK(!try_catch.HasCaught()); if (print_result) { #if !defined(V8_SHARED) if (options.test_shell) { #endif if (!result->IsUndefined()) { // If all went well and the result wasn't undefined then print // the returned value. v8::String::Utf8Value str(result); fwrite(*str, sizeof(**str), str.length(), stdout); printf("\n"); } #if !defined(V8_SHARED) } else { v8::String::Utf8Value str(Stringify(isolate, result)); fwrite(*str, sizeof(**str), str.length(), stdout); printf("\n"); } #endif } return true; } PerIsolateData::RealmScope::RealmScope(PerIsolateData* data) : data_(data) { data_->realm_count_ = 1; data_->realm_current_ = 0; data_->realm_switch_ = 0; data_->realms_ = new Global<Context>[1]; data_->realms_[0].Reset(data_->isolate_, data_->isolate_->GetEnteredContext()); } PerIsolateData::RealmScope::~RealmScope() { // Drop realms to avoid keeping them alive. for (int i = 0; i < data_->realm_count_; ++i) data_->realms_[i].Reset(); delete[] data_->realms_; if (!data_->realm_shared_.IsEmpty()) data_->realm_shared_.Reset(); } int PerIsolateData::RealmFind(Local<Context> context) { for (int i = 0; i < realm_count_; ++i) { if (realms_[i] == context) return i; } return -1; } int PerIsolateData::RealmIndexOrThrow( const v8::FunctionCallbackInfo<v8::Value>& args, int arg_offset) { if (args.Length() < arg_offset || !args[arg_offset]->IsNumber()) { Throw(args.GetIsolate(), "Invalid argument"); return -1; } int index = args[arg_offset] ->Int32Value(args.GetIsolate()->GetCurrentContext()) .FromMaybe(-1); if (index < 0 || index >= realm_count_ || realms_[index].IsEmpty()) { Throw(args.GetIsolate(), "Invalid realm index"); return -1; } return index; } #ifndef V8_SHARED // performance.now() returns a time stamp as double, measured in milliseconds. // When FLAG_verify_predictable mode is enabled it returns result of // v8::Platform::MonotonicallyIncreasingTime(). void Shell::PerformanceNow(const v8::FunctionCallbackInfo<v8::Value>& args) { if (i::FLAG_verify_predictable) { args.GetReturnValue().Set(g_platform->MonotonicallyIncreasingTime()); } else { base::TimeDelta delta = base::TimeTicks::HighResolutionNow() - kInitialTicks; args.GetReturnValue().Set(delta.InMillisecondsF()); } } #endif // !V8_SHARED // Realm.current() returns the index of the currently active realm. void Shell::RealmCurrent(const v8::FunctionCallbackInfo<v8::Value>& args) { Isolate* isolate = args.GetIsolate(); PerIsolateData* data = PerIsolateData::Get(isolate); int index = data->RealmFind(isolate->GetEnteredContext()); if (index == -1) return; args.GetReturnValue().Set(index); } // Realm.owner(o) returns the index of the realm that created o. void Shell::RealmOwner(const v8::FunctionCallbackInfo<v8::Value>& args) { Isolate* isolate = args.GetIsolate(); PerIsolateData* data = PerIsolateData::Get(isolate); if (args.Length() < 1 || !args[0]->IsObject()) { Throw(args.GetIsolate(), "Invalid argument"); return; } int index = data->RealmFind(args[0] ->ToObject(isolate->GetCurrentContext()) .ToLocalChecked() ->CreationContext()); if (index == -1) return; args.GetReturnValue().Set(index); } // Realm.global(i) returns the global object of realm i. // (Note that properties of global objects cannot be read/written cross-realm.) void Shell::RealmGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) { PerIsolateData* data = PerIsolateData::Get(args.GetIsolate()); int index = data->RealmIndexOrThrow(args, 0); if (index == -1) return; args.GetReturnValue().Set( Local<Context>::New(args.GetIsolate(), data->realms_[index])->Global()); } MaybeLocal<Context> Shell::CreateRealm( const v8::FunctionCallbackInfo<v8::Value>& args) { Isolate* isolate = args.GetIsolate(); TryCatch try_catch(isolate); PerIsolateData* data = PerIsolateData::Get(isolate); Global<Context>* old_realms = data->realms_; int index = data->realm_count_; data->realms_ = new Global<Context>[++data->realm_count_]; for (int i = 0; i < index; ++i) { data->realms_[i].Reset(isolate, old_realms[i]); old_realms[i].Reset(); } delete[] old_realms; Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate); Local<Context> context = Context::New(isolate, NULL, global_template); if (context.IsEmpty()) { DCHECK(try_catch.HasCaught()); try_catch.ReThrow(); return MaybeLocal<Context>(); } data->realms_[index].Reset(isolate, context); args.GetReturnValue().Set(index); return context; } // Realm.create() creates a new realm with a distinct security token // and returns its index. void Shell::RealmCreate(const v8::FunctionCallbackInfo<v8::Value>& args) { CreateRealm(args); } // Realm.createAllowCrossRealmAccess() creates a new realm with the same // security token as the current realm. void Shell::RealmCreateAllowCrossRealmAccess( const v8::FunctionCallbackInfo<v8::Value>& args) { Local<Context> context; if (CreateRealm(args).ToLocal(&context)) { context->SetSecurityToken( args.GetIsolate()->GetEnteredContext()->GetSecurityToken()); } } // Realm.dispose(i) disposes the reference to the realm i. void Shell::RealmDispose(const v8::FunctionCallbackInfo<v8::Value>& args) { Isolate* isolate = args.GetIsolate(); PerIsolateData* data = PerIsolateData::Get(isolate); int index = data->RealmIndexOrThrow(args, 0); if (index == -1) return; if (index == 0 || index == data->realm_current_ || index == data->realm_switch_) { Throw(args.GetIsolate(), "Invalid realm index"); return; } data->realms_[index].Reset(); isolate->ContextDisposedNotification(); isolate->IdleNotificationDeadline(g_platform->MonotonicallyIncreasingTime()); } // Realm.switch(i) switches to the realm i for consecutive interactive inputs. void Shell::RealmSwitch(const v8::FunctionCallbackInfo<v8::Value>& args) { Isolate* isolate = args.GetIsolate(); PerIsolateData* data = PerIsolateData::Get(isolate); int index = data->RealmIndexOrThrow(args, 0); if (index == -1) return; data->realm_switch_ = index; } // Realm.eval(i, s) evaluates s in realm i and returns the result. void Shell::RealmEval(const v8::FunctionCallbackInfo<v8::Value>& args) { Isolate* isolate = args.GetIsolate(); PerIsolateData* data = PerIsolateData::Get(isolate); int index = data->RealmIndexOrThrow(args, 0); if (index == -1) return; if (args.Length() < 2 || !args[1]->IsString()) { Throw(args.GetIsolate(), "Invalid argument"); return; } ScriptCompiler::Source script_source( args[1]->ToString(isolate->GetCurrentContext()).ToLocalChecked()); Local<UnboundScript> script; if (!ScriptCompiler::CompileUnboundScript(isolate, &script_source) .ToLocal(&script)) { return; } Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]); realm->Enter(); Local<Value> result; if (!script->BindToCurrentContext()->Run(realm).ToLocal(&result)) { realm->Exit(); return; } realm->Exit(); args.GetReturnValue().Set(result); } // Realm.shared is an accessor for a single shared value across realms. void Shell::RealmSharedGet(Local<String> property, const PropertyCallbackInfo<Value>& info) { Isolate* isolate = info.GetIsolate(); PerIsolateData* data = PerIsolateData::Get(isolate); if (data->realm_shared_.IsEmpty()) return; info.GetReturnValue().Set(data->realm_shared_); } void Shell::RealmSharedSet(Local<String> property, Local<Value> value, const PropertyCallbackInfo<void>& info) { Isolate* isolate = info.GetIsolate(); PerIsolateData* data = PerIsolateData::Get(isolate); data->realm_shared_.Reset(isolate, value); } void Shell::Print(const v8::FunctionCallbackInfo<v8::Value>& args) { Write(args); printf("\n"); fflush(stdout); } void Shell::Write(const v8::FunctionCallbackInfo<v8::Value>& args) { for (int i = 0; i < args.Length(); i++) { HandleScope handle_scope(args.GetIsolate()); if (i != 0) { printf(" "); } // Explicitly catch potential exceptions in toString(). v8::TryCatch try_catch(args.GetIsolate()); Local<Value> arg = args[i]; Local<String> str_obj; if (arg->IsSymbol()) { arg = Local<Symbol>::Cast(arg)->Name(); } if (!arg->ToString(args.GetIsolate()->GetCurrentContext()) .ToLocal(&str_obj)) { try_catch.ReThrow(); return; } v8::String::Utf8Value str(str_obj); int n = static_cast<int>(fwrite(*str, sizeof(**str), str.length(), stdout)); if (n != str.length()) { printf("Error in fwrite\n"); Exit(1); } } } void Shell::Read(const v8::FunctionCallbackInfo<v8::Value>& args) { String::Utf8Value file(args[0]); if (*file == NULL) { Throw(args.GetIsolate(), "Error loading file"); return; } Local<String> source = ReadFile(args.GetIsolate(), *file); if (source.IsEmpty()) { Throw(args.GetIsolate(), "Error loading file"); return; } args.GetReturnValue().Set(source); } Local<String> Shell::ReadFromStdin(Isolate* isolate) { static const int kBufferSize = 256; char buffer[kBufferSize]; Local<String> accumulator = String::NewFromUtf8(isolate, "", NewStringType::kNormal).ToLocalChecked(); int length; while (true) { // Continue reading if the line ends with an escape '\\' or the line has // not been fully read into the buffer yet (does not end with '\n'). // If fgets gets an error, just give up. char* input = NULL; input = fgets(buffer, kBufferSize, stdin); if (input == NULL) return Local<String>(); length = static_cast<int>(strlen(buffer)); if (length == 0) { return accumulator; } else if (buffer[length-1] != '\n') { accumulator = String::Concat( accumulator, String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length) .ToLocalChecked()); } else if (length > 1 && buffer[length-2] == '\\') { buffer[length-2] = '\n'; accumulator = String::Concat( accumulator, String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length - 1).ToLocalChecked()); } else { return String::Concat( accumulator, String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length - 1).ToLocalChecked()); } } } void Shell::Load(const v8::FunctionCallbackInfo<v8::Value>& args) { for (int i = 0; i < args.Length(); i++) { HandleScope handle_scope(args.GetIsolate()); String::Utf8Value file(args[i]); if (*file == NULL) { Throw(args.GetIsolate(), "Error loading file"); return; } Local<String> source = ReadFile(args.GetIsolate(), *file); if (source.IsEmpty()) { Throw(args.GetIsolate(), "Error loading file"); return; } if (!ExecuteString( args.GetIsolate(), source, String::NewFromUtf8(args.GetIsolate(), *file, NewStringType::kNormal).ToLocalChecked(), false, true)) { Throw(args.GetIsolate(), "Error executing file"); return; } } } #ifndef V8_SHARED void Shell::WorkerNew(const v8::FunctionCallbackInfo<v8::Value>& args) { Isolate* isolate = args.GetIsolate(); HandleScope handle_scope(isolate); if (args.Length() < 1 || !args[0]->IsString()) { Throw(args.GetIsolate(), "1st argument must be string"); return; } if (!args.IsConstructCall()) { Throw(args.GetIsolate(), "Worker must be constructed with new"); return; } { base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer()); if (workers_.length() >= kMaxWorkers) { Throw(args.GetIsolate(), "Too many workers, I won't let you create more"); return; } // Initialize the internal field to NULL; if we return early without // creating a new Worker (because the main thread is terminating) we can // early-out from the instance calls. args.Holder()->SetAlignedPointerInInternalField(0, NULL); if (!allow_new_workers_) return; Worker* worker = new Worker; args.Holder()->SetAlignedPointerInInternalField(0, worker); workers_.Add(worker); String::Utf8Value script(args[0]); if (!*script) { Throw(args.GetIsolate(), "Can't get worker script"); return; } worker->StartExecuteInThread(*script); } } void Shell::WorkerPostMessage(const v8::FunctionCallbackInfo<v8::Value>& args) { Isolate* isolate = args.GetIsolate(); HandleScope handle_scope(isolate); Local<Context> context = isolate->GetCurrentContext(); if (args.Length() < 1) { Throw(isolate, "Invalid argument"); return; } Worker* worker = GetWorkerFromInternalField(isolate, args.Holder()); if (!worker) { return; } Local<Value> message = args[0]; ObjectList to_transfer; if (args.Length() >= 2) { if (!args[1]->IsArray()) { Throw(isolate, "Transfer list must be an Array"); return; } Local<Array> transfer = Local<Array>::Cast(args[1]); uint32_t length = transfer->Length(); for (uint32_t i = 0; i < length; ++i) { Local<Value> element; if (transfer->Get(context, i).ToLocal(&element)) { if (!element->IsArrayBuffer() && !element->IsSharedArrayBuffer()) { Throw(isolate, "Transfer array elements must be an ArrayBuffer or " "SharedArrayBuffer."); break; } to_transfer.Add(Local<Object>::Cast(element)); } } } ObjectList seen_objects; SerializationData* data = new SerializationData; if (SerializeValue(isolate, message, to_transfer, &seen_objects, data)) { worker->PostMessage(data); } else { delete data; } } void Shell::WorkerGetMessage(const v8::FunctionCallbackInfo<v8::Value>& args) { Isolate* isolate = args.GetIsolate(); HandleScope handle_scope(isolate); Worker* worker = GetWorkerFromInternalField(isolate, args.Holder()); if (!worker) { return; } SerializationData* data = worker->GetMessage(); if (data) { int offset = 0; Local<Value> data_value; if (Shell::DeserializeValue(isolate, *data, &offset).ToLocal(&data_value)) { args.GetReturnValue().Set(data_value); } delete data; } } void Shell::WorkerTerminate(const v8::FunctionCallbackInfo<v8::Value>& args) { Isolate* isolate = args.GetIsolate(); HandleScope handle_scope(isolate); Worker* worker = GetWorkerFromInternalField(isolate, args.Holder()); if (!worker) { return; } worker->Terminate(); } #endif // !V8_SHARED void Shell::QuitOnce(v8::FunctionCallbackInfo<v8::Value>* args) { int exit_code = (*args)[0] ->Int32Value(args->GetIsolate()->GetCurrentContext()) .FromMaybe(0); #ifndef V8_SHARED CleanupWorkers(); #endif // !V8_SHARED OnExit(args->GetIsolate()); Exit(exit_code); } void Shell::Quit(const v8::FunctionCallbackInfo<v8::Value>& args) { base::CallOnce(&quit_once_, &QuitOnce, const_cast<v8::FunctionCallbackInfo<v8::Value>*>(&args)); } void Shell::Version(const v8::FunctionCallbackInfo<v8::Value>& args) { args.GetReturnValue().Set( String::NewFromUtf8(args.GetIsolate(), V8::GetVersion(), NewStringType::kNormal).ToLocalChecked()); } void Shell::ReportException(Isolate* isolate, v8::TryCatch* try_catch) { HandleScope handle_scope(isolate); #ifndef V8_SHARED Local<Context> context; bool enter_context = !isolate->InContext(); if (enter_context) { context = Local<Context>::New(isolate, evaluation_context_); context->Enter(); } #endif // !V8_SHARED v8::String::Utf8Value exception(try_catch->Exception()); const char* exception_string = ToCString(exception); Local<Message> message = try_catch->Message(); if (message.IsEmpty()) { // V8 didn't provide any extra information about this error; just // print the exception. printf("%s\n", exception_string); } else { // Print (filename):(line number): (message). v8::String::Utf8Value filename(message->GetScriptOrigin().ResourceName()); const char* filename_string = ToCString(filename); Maybe<int> maybeline = message->GetLineNumber(isolate->GetCurrentContext()); int linenum = maybeline.IsJust() ? maybeline.FromJust() : -1; printf("%s:%i: %s\n", filename_string, linenum, exception_string); Local<String> sourceline; if (message->GetSourceLine(isolate->GetCurrentContext()) .ToLocal(&sourceline)) { // Print line of source code. v8::String::Utf8Value sourcelinevalue(sourceline); const char* sourceline_string = ToCString(sourcelinevalue); printf("%s\n", sourceline_string); // Print wavy underline (GetUnderline is deprecated). int start = message->GetStartColumn(isolate->GetCurrentContext()).FromJust(); for (int i = 0; i < start; i++) { printf(" "); } int end = message->GetEndColumn(isolate->GetCurrentContext()).FromJust(); for (int i = start; i < end; i++) { printf("^"); } printf("\n"); } Local<Value> stack_trace_string; if (try_catch->StackTrace(isolate->GetCurrentContext()) .ToLocal(&stack_trace_string) && stack_trace_string->IsString()) { v8::String::Utf8Value stack_trace( Local<String>::Cast(stack_trace_string)); printf("%s\n", ToCString(stack_trace)); } } printf("\n"); #ifndef V8_SHARED if (enter_context) context->Exit(); #endif // !V8_SHARED } #ifndef V8_SHARED int32_t* Counter::Bind(const char* name, bool is_histogram) { int i; for (i = 0; i < kMaxNameSize - 1 && name[i]; i++) name_[i] = static_cast<char>(name[i]); name_[i] = '\0'; is_histogram_ = is_histogram; return ptr(); } void Counter::AddSample(int32_t sample) { count_++; sample_total_ += sample; } CounterCollection::CounterCollection() { magic_number_ = 0xDEADFACE; max_counters_ = kMaxCounters; max_name_size_ = Counter::kMaxNameSize; counters_in_use_ = 0; } Counter* CounterCollection::GetNextCounter() { if (counters_in_use_ == kMaxCounters) return NULL; return &counters_[counters_in_use_++]; } void Shell::MapCounters(v8::Isolate* isolate, const char* name) { counters_file_ = base::OS::MemoryMappedFile::create( name, sizeof(CounterCollection), &local_counters_); void* memory = (counters_file_ == NULL) ? NULL : counters_file_->memory(); if (memory == NULL) { printf("Could not map counters file %s\n", name); Exit(1); } counters_ = static_cast<CounterCollection*>(memory); isolate->SetCounterFunction(LookupCounter); isolate->SetCreateHistogramFunction(CreateHistogram); isolate->SetAddHistogramSampleFunction(AddHistogramSample); } int CounterMap::Hash(const char* name) { int h = 0; int c; while ((c = *name++) != 0) { h += h << 5; h += c; } return h; } Counter* Shell::GetCounter(const char* name, bool is_histogram) { Counter* counter = counter_map_->Lookup(name); if (counter == NULL) { counter = counters_->GetNextCounter(); if (counter != NULL) { counter_map_->Set(name, counter); counter->Bind(name, is_histogram); } } else { DCHECK(counter->is_histogram() == is_histogram); } return counter; } int* Shell::LookupCounter(const char* name) { Counter* counter = GetCounter(name, false); if (counter != NULL) { return counter->ptr(); } else { return NULL; } } void* Shell::CreateHistogram(const char* name, int min, int max, size_t buckets) { return GetCounter(name, true); } void Shell::AddHistogramSample(void* histogram, int sample) { Counter* counter = reinterpret_cast<Counter*>(histogram); counter->AddSample(sample); } // Turn a value into a human-readable string. Local<String> Shell::Stringify(Isolate* isolate, Local<Value> value) { v8::Local<v8::Context> context = v8::Local<v8::Context>::New(isolate, evaluation_context_); if (stringify_function_.IsEmpty()) { int source_index = i::NativesCollection<i::D8>::GetIndex("d8"); i::Vector<const char> source_string = i::NativesCollection<i::D8>::GetScriptSource(source_index); i::Vector<const char> source_name = i::NativesCollection<i::D8>::GetScriptName(source_index); Local<String> source = String::NewFromUtf8(isolate, source_string.start(), NewStringType::kNormal, source_string.length()) .ToLocalChecked(); Local<String> name = String::NewFromUtf8(isolate, source_name.start(), NewStringType::kNormal, source_name.length()) .ToLocalChecked(); ScriptOrigin origin(name); Local<Script> script = Script::Compile(context, source, &origin).ToLocalChecked(); stringify_function_.Reset( isolate, script->Run(context).ToLocalChecked().As<Function>()); } Local<Function> fun = Local<Function>::New(isolate, stringify_function_); Local<Value> argv[1] = {value}; v8::TryCatch try_catch(isolate); MaybeLocal<Value> result = fun->Call(context, Undefined(isolate), 1, argv).ToLocalChecked(); if (result.IsEmpty()) return String::Empty(isolate); return result.ToLocalChecked().As<String>(); } #endif // !V8_SHARED Local<ObjectTemplate> Shell::CreateGlobalTemplate(Isolate* isolate) { Local<ObjectTemplate> global_template = ObjectTemplate::New(isolate); global_template->Set( String::NewFromUtf8(isolate, "print", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, Print)); global_template->Set( String::NewFromUtf8(isolate, "write", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, Write)); global_template->Set( String::NewFromUtf8(isolate, "read", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, Read)); global_template->Set( String::NewFromUtf8(isolate, "readbuffer", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, ReadBuffer)); global_template->Set( String::NewFromUtf8(isolate, "readline", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, ReadLine)); global_template->Set( String::NewFromUtf8(isolate, "load", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, Load)); // Some Emscripten-generated code tries to call 'quit', which in turn would // call C's exit(). This would lead to memory leaks, because there is no way // we can terminate cleanly then, so we need a way to hide 'quit'. if (!options.omit_quit) { global_template->Set( String::NewFromUtf8(isolate, "quit", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, Quit)); } global_template->Set( String::NewFromUtf8(isolate, "version", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, Version)); global_template->Set( Symbol::GetToStringTag(isolate), String::NewFromUtf8(isolate, "global", NewStringType::kNormal) .ToLocalChecked()); // Bind the Realm object. Local<ObjectTemplate> realm_template = ObjectTemplate::New(isolate); realm_template->Set( String::NewFromUtf8(isolate, "current", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, RealmCurrent)); realm_template->Set( String::NewFromUtf8(isolate, "owner", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, RealmOwner)); realm_template->Set( String::NewFromUtf8(isolate, "global", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, RealmGlobal)); realm_template->Set( String::NewFromUtf8(isolate, "create", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, RealmCreate)); realm_template->Set( String::NewFromUtf8(isolate, "createAllowCrossRealmAccess", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, RealmCreateAllowCrossRealmAccess)); realm_template->Set( String::NewFromUtf8(isolate, "dispose", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, RealmDispose)); realm_template->Set( String::NewFromUtf8(isolate, "switch", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, RealmSwitch)); realm_template->Set( String::NewFromUtf8(isolate, "eval", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, RealmEval)); realm_template->SetAccessor( String::NewFromUtf8(isolate, "shared", NewStringType::kNormal) .ToLocalChecked(), RealmSharedGet, RealmSharedSet); global_template->Set( String::NewFromUtf8(isolate, "Realm", NewStringType::kNormal) .ToLocalChecked(), realm_template); #ifndef V8_SHARED Local<ObjectTemplate> performance_template = ObjectTemplate::New(isolate); performance_template->Set( String::NewFromUtf8(isolate, "now", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, PerformanceNow)); global_template->Set( String::NewFromUtf8(isolate, "performance", NewStringType::kNormal) .ToLocalChecked(), performance_template); Local<FunctionTemplate> worker_fun_template = FunctionTemplate::New(isolate, WorkerNew); Local<Signature> worker_signature = Signature::New(isolate, worker_fun_template); worker_fun_template->SetClassName( String::NewFromUtf8(isolate, "Worker", NewStringType::kNormal) .ToLocalChecked()); worker_fun_template->ReadOnlyPrototype(); worker_fun_template->PrototypeTemplate()->Set( String::NewFromUtf8(isolate, "terminate", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, WorkerTerminate, Local<Value>(), worker_signature)); worker_fun_template->PrototypeTemplate()->Set( String::NewFromUtf8(isolate, "postMessage", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, WorkerPostMessage, Local<Value>(), worker_signature)); worker_fun_template->PrototypeTemplate()->Set( String::NewFromUtf8(isolate, "getMessage", NewStringType::kNormal) .ToLocalChecked(), FunctionTemplate::New(isolate, WorkerGetMessage, Local<Value>(), worker_signature)); worker_fun_template->InstanceTemplate()->SetInternalFieldCount(1); global_template->Set( String::NewFromUtf8(isolate, "Worker", NewStringType::kNormal) .ToLocalChecked(), worker_fun_template); #endif // !V8_SHARED Local<ObjectTemplate> os_templ = ObjectTemplate::New(isolate); AddOSMethods(isolate, os_templ); global_template->Set( String::NewFromUtf8(isolate, "os", NewStringType::kNormal) .ToLocalChecked(), os_templ); return global_template; } static void EmptyMessageCallback(Local<Message> message, Local<Value> error) { // Nothing to be done here, exceptions thrown up to the shell will be reported // separately by {Shell::ReportException} after they are caught. } void Shell::Initialize(Isolate* isolate) { #ifndef V8_SHARED // Set up counters if (i::StrLength(i::FLAG_map_counters) != 0) MapCounters(isolate, i::FLAG_map_counters); #endif // !V8_SHARED // Disable default message reporting. isolate->AddMessageListener(EmptyMessageCallback); } Local<Context> Shell::CreateEvaluationContext(Isolate* isolate) { #ifndef V8_SHARED // This needs to be a critical section since this is not thread-safe base::LockGuard<base::Mutex> lock_guard(context_mutex_.Pointer()); #endif // !V8_SHARED // Initialize the global objects Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate); EscapableHandleScope handle_scope(isolate); Local<Context> context = Context::New(isolate, NULL, global_template); DCHECK(!context.IsEmpty()); Context::Scope scope(context); #ifndef V8_SHARED i::Factory* factory = reinterpret_cast<i::Isolate*>(isolate)->factory(); i::JSArguments js_args = i::FLAG_js_arguments; i::Handle<i::FixedArray> arguments_array = factory->NewFixedArray(js_args.argc); for (int j = 0; j < js_args.argc; j++) { i::Handle<i::String> arg = factory->NewStringFromUtf8(i::CStrVector(js_args[j])).ToHandleChecked(); arguments_array->set(j, *arg); } i::Handle<i::JSArray> arguments_jsarray = factory->NewJSArrayWithElements(arguments_array); context->Global() ->Set(context, String::NewFromUtf8(isolate, "arguments", NewStringType::kNormal) .ToLocalChecked(), Utils::ToLocal(arguments_jsarray)) .FromJust(); #endif // !V8_SHARED return handle_scope.Escape(context); } void Shell::Exit(int exit_code) { // Use _exit instead of exit to avoid races between isolate // threads and static destructors. fflush(stdout); fflush(stderr); _exit(exit_code); } #ifndef V8_SHARED struct CounterAndKey { Counter* counter; const char* key; }; inline bool operator<(const CounterAndKey& lhs, const CounterAndKey& rhs) { return strcmp(lhs.key, rhs.key) < 0; } void Shell::WriteIgnitionDispatchCountersFile(v8::Isolate* isolate) { HandleScope handle_scope(isolate); Local<Context> context = Context::New(isolate); Context::Scope context_scope(context); Local<Object> dispatch_counters = reinterpret_cast<i::Isolate*>(isolate) ->interpreter() ->GetDispatchCountersObject(); std::ofstream dispatch_counters_stream( i::FLAG_trace_ignition_dispatches_output_file); dispatch_counters_stream << *String::Utf8Value( JSON::Stringify(context, dispatch_counters).ToLocalChecked()); } #endif // !V8_SHARED void Shell::OnExit(v8::Isolate* isolate) { #ifndef V8_SHARED if (i::FLAG_dump_counters) { int number_of_counters = 0; for (CounterMap::Iterator i(counter_map_); i.More(); i.Next()) { number_of_counters++; } CounterAndKey* counters = new CounterAndKey[number_of_counters]; int j = 0; for (CounterMap::Iterator i(counter_map_); i.More(); i.Next(), j++) { counters[j].counter = i.CurrentValue(); counters[j].key = i.CurrentKey(); } std::sort(counters, counters + number_of_counters); printf("+----------------------------------------------------------------+" "-------------+\n"); printf("| Name |" " Value |\n"); printf("+----------------------------------------------------------------+" "-------------+\n"); for (j = 0; j < number_of_counters; j++) { Counter* counter = counters[j].counter; const char* key = counters[j].key; if (counter->is_histogram()) { printf("| c:%-60s | %11i |\n", key, counter->count()); printf("| t:%-60s | %11i |\n", key, counter->sample_total()); } else { printf("| %-62s | %11i |\n", key, counter->count()); } } printf("+----------------------------------------------------------------+" "-------------+\n"); delete [] counters; } delete counters_file_; delete counter_map_; #endif // !V8_SHARED } static FILE* FOpen(const char* path, const char* mode) { #if defined(_MSC_VER) && (defined(_WIN32) || defined(_WIN64)) FILE* result; if (fopen_s(&result, path, mode) == 0) { return result; } else { return NULL; } #else FILE* file = fopen(path, mode); if (file == NULL) return NULL; struct stat file_stat; if (fstat(fileno(file), &file_stat) != 0) return NULL; bool is_regular_file = ((file_stat.st_mode & S_IFREG) != 0); if (is_regular_file) return file; fclose(file); return NULL; #endif } static char* ReadChars(Isolate* isolate, const char* name, int* size_out) { FILE* file = FOpen(name, "rb"); if (file == NULL) return NULL; fseek(file, 0, SEEK_END); size_t size = ftell(file); rewind(file); char* chars = new char[size + 1]; chars[size] = '\0'; for (size_t i = 0; i < size;) { i += fread(&chars[i], 1, size - i, file); if (ferror(file)) { fclose(file); delete[] chars; return nullptr; } } fclose(file); *size_out = static_cast<int>(size); return chars; } struct DataAndPersistent { uint8_t* data; int byte_length; Global<ArrayBuffer> handle; }; static void ReadBufferWeakCallback( const v8::WeakCallbackInfo<DataAndPersistent>& data) { int byte_length = data.GetParameter()->byte_length; data.GetIsolate()->AdjustAmountOfExternalAllocatedMemory( -static_cast<intptr_t>(byte_length)); delete[] data.GetParameter()->data; data.GetParameter()->handle.Reset(); delete data.GetParameter(); } void Shell::ReadBuffer(const v8::FunctionCallbackInfo<v8::Value>& args) { DCHECK(sizeof(char) == sizeof(uint8_t)); // NOLINT String::Utf8Value filename(args[0]); int length; if (*filename == NULL) { Throw(args.GetIsolate(), "Error loading file"); return; } Isolate* isolate = args.GetIsolate(); DataAndPersistent* data = new DataAndPersistent; data->data = reinterpret_cast<uint8_t*>( ReadChars(args.GetIsolate(), *filename, &length)); if (data->data == NULL) { delete data; Throw(args.GetIsolate(), "Error reading file"); return; } data->byte_length = length; Local<v8::ArrayBuffer> buffer = ArrayBuffer::New(isolate, data->data, length); data->handle.Reset(isolate, buffer); data->handle.SetWeak(data, ReadBufferWeakCallback, v8::WeakCallbackType::kParameter); data->handle.MarkIndependent(); isolate->AdjustAmountOfExternalAllocatedMemory(length); args.GetReturnValue().Set(buffer); } // Reads a file into a v8 string. Local<String> Shell::ReadFile(Isolate* isolate, const char* name) { int size = 0; char* chars = ReadChars(isolate, name, &size); if (chars == NULL) return Local<String>(); Local<String> result = String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size) .ToLocalChecked(); delete[] chars; return result; } void Shell::RunShell(Isolate* isolate) { HandleScope outer_scope(isolate); v8::Local<v8::Context> context = v8::Local<v8::Context>::New(isolate, evaluation_context_); v8::Context::Scope context_scope(context); PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate)); Local<String> name = String::NewFromUtf8(isolate, "(d8)", NewStringType::kNormal) .ToLocalChecked(); printf("V8 version %s\n", V8::GetVersion()); while (true) { HandleScope inner_scope(isolate); printf("d8> "); #if defined(__native_client__) // Native Client libc is used to being embedded in Chrome and // has trouble recognizing when to flush. fflush(stdout); #endif Local<String> input = Shell::ReadFromStdin(isolate); if (input.IsEmpty()) break; ExecuteString(isolate, input, name, true, true); } printf("\n"); } SourceGroup::~SourceGroup() { #ifndef V8_SHARED delete thread_; thread_ = NULL; #endif // !V8_SHARED } void SourceGroup::Execute(Isolate* isolate) { bool exception_was_thrown = false; for (int i = begin_offset_; i < end_offset_; ++i) { const char* arg = argv_[i]; Shell::SourceType source_type = Shell::SCRIPT; if (strcmp(arg, "-e") == 0 && i + 1 < end_offset_) { // Execute argument given to -e option directly. HandleScope handle_scope(isolate); Local<String> file_name = String::NewFromUtf8(isolate, "unnamed", NewStringType::kNormal) .ToLocalChecked(); Local<String> source = String::NewFromUtf8(isolate, argv_[i + 1], NewStringType::kNormal) .ToLocalChecked(); Shell::options.script_executed = true; if (!Shell::ExecuteString(isolate, source, file_name, false, true)) { exception_was_thrown = true; break; } ++i; continue; } else if (strcmp(arg, "--module") == 0 && i + 1 < end_offset_) { // Treat the next file as a module. source_type = Shell::MODULE; arg = argv_[++i]; } else if (arg[0] == '-') { // Ignore other options. They have been parsed already. continue; } // Use all other arguments as names of files to load and run. HandleScope handle_scope(isolate); Local<String> file_name = String::NewFromUtf8(isolate, arg, NewStringType::kNormal) .ToLocalChecked(); Local<String> source = ReadFile(isolate, arg); if (source.IsEmpty()) { printf("Error reading '%s'\n", arg); Shell::Exit(1); } Shell::options.script_executed = true; if (!Shell::ExecuteString(isolate, source, file_name, false, true, source_type)) { exception_was_thrown = true; break; } } if (exception_was_thrown != Shell::options.expected_to_throw) { Shell::Exit(1); } } Local<String> SourceGroup::ReadFile(Isolate* isolate, const char* name) { int size; char* chars = ReadChars(isolate, name, &size); if (chars == NULL) return Local<String>(); Local<String> result = String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size) .ToLocalChecked(); delete[] chars; return result; } #ifndef V8_SHARED base::Thread::Options SourceGroup::GetThreadOptions() { // On some systems (OSX 10.6) the stack size default is 0.5Mb or less // which is not enough to parse the big literal expressions used in tests. // The stack size should be at least StackGuard::kLimitSize + some // OS-specific padding for thread startup code. 2Mbytes seems to be enough. return base::Thread::Options("IsolateThread", 2 * MB); } void SourceGroup::ExecuteInThread() { Isolate::CreateParams create_params; create_params.array_buffer_allocator = Shell::array_buffer_allocator; Isolate* isolate = Isolate::New(create_params); for (int i = 0; i < Shell::options.stress_runs; ++i) { next_semaphore_.Wait(); { Isolate::Scope iscope(isolate); { HandleScope scope(isolate); PerIsolateData data(isolate); Local<Context> context = Shell::CreateEvaluationContext(isolate); { Context::Scope cscope(context); PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate)); Execute(isolate); } } Shell::CollectGarbage(isolate); } done_semaphore_.Signal(); } isolate->Dispose(); } void SourceGroup::StartExecuteInThread() { if (thread_ == NULL) { thread_ = new IsolateThread(this); thread_->Start(); } next_semaphore_.Signal(); } void SourceGroup::WaitForThread() { if (thread_ == NULL) return; done_semaphore_.Wait(); } void SourceGroup::JoinThread() { if (thread_ == NULL) return; thread_->Join(); } SerializationData::~SerializationData() { // Any ArrayBuffer::Contents are owned by this SerializationData object if // ownership hasn't been transferred out via ReadArrayBufferContents. // SharedArrayBuffer::Contents may be used by multiple threads, so must be // cleaned up by the main thread in Shell::CleanupWorkers(). for (int i = 0; i < array_buffer_contents_.length(); ++i) { ArrayBuffer::Contents& contents = array_buffer_contents_[i]; if (contents.Data()) { Shell::array_buffer_allocator->Free(contents.Data(), contents.ByteLength()); } } } void SerializationData::WriteTag(SerializationTag tag) { data_.Add(tag); } void SerializationData::WriteMemory(const void* p, int length) { if (length > 0) { i::Vector<uint8_t> block = data_.AddBlock(0, length); memcpy(&block[0], p, length); } } void SerializationData::WriteArrayBufferContents( const ArrayBuffer::Contents& contents) { array_buffer_contents_.Add(contents); WriteTag(kSerializationTagTransferredArrayBuffer); int index = array_buffer_contents_.length() - 1; Write(index); } void SerializationData::WriteSharedArrayBufferContents( const SharedArrayBuffer::Contents& contents) { shared_array_buffer_contents_.Add(contents); WriteTag(kSerializationTagTransferredSharedArrayBuffer); int index = shared_array_buffer_contents_.length() - 1; Write(index); } SerializationTag SerializationData::ReadTag(int* offset) const { return static_cast<SerializationTag>(Read<uint8_t>(offset)); } void SerializationData::ReadMemory(void* p, int length, int* offset) const { if (length > 0) { memcpy(p, &data_[*offset], length); (*offset) += length; } } void SerializationData::ReadArrayBufferContents(ArrayBuffer::Contents* contents, int* offset) const { int index = Read<int>(offset); DCHECK(index < array_buffer_contents_.length()); *contents = array_buffer_contents_[index]; // Ownership of this ArrayBuffer::Contents is passed to the caller. Neuter // our copy so it won't be double-free'd when this SerializationData is // destroyed. array_buffer_contents_[index] = ArrayBuffer::Contents(); } void SerializationData::ReadSharedArrayBufferContents( SharedArrayBuffer::Contents* contents, int* offset) const { int index = Read<int>(offset); DCHECK(index < shared_array_buffer_contents_.length()); *contents = shared_array_buffer_contents_[index]; } void SerializationDataQueue::Enqueue(SerializationData* data) { base::LockGuard<base::Mutex> lock_guard(&mutex_); data_.Add(data); } bool SerializationDataQueue::Dequeue(SerializationData** data) { base::LockGuard<base::Mutex> lock_guard(&mutex_); *data = NULL; if (data_.is_empty()) return false; *data = data_.Remove(0); return true; } bool SerializationDataQueue::IsEmpty() { base::LockGuard<base::Mutex> lock_guard(&mutex_); return data_.is_empty(); } void SerializationDataQueue::Clear() { base::LockGuard<base::Mutex> lock_guard(&mutex_); for (int i = 0; i < data_.length(); ++i) { delete data_[i]; } data_.Clear(); } Worker::Worker() : in_semaphore_(0), out_semaphore_(0), thread_(NULL), script_(NULL), running_(false) {} Worker::~Worker() { delete thread_; thread_ = NULL; delete[] script_; script_ = NULL; in_queue_.Clear(); out_queue_.Clear(); } void Worker::StartExecuteInThread(const char* script) { running_ = true; script_ = i::StrDup(script); thread_ = new WorkerThread(this); thread_->Start(); } void Worker::PostMessage(SerializationData* data) { in_queue_.Enqueue(data); in_semaphore_.Signal(); } SerializationData* Worker::GetMessage() { SerializationData* data = NULL; while (!out_queue_.Dequeue(&data)) { // If the worker is no longer running, and there are no messages in the // queue, don't expect any more messages from it. if (!base::NoBarrier_Load(&running_)) break; out_semaphore_.Wait(); } return data; } void Worker::Terminate() { base::NoBarrier_Store(&running_, false); // Post NULL to wake the Worker thread message loop, and tell it to stop // running. PostMessage(NULL); } void Worker::WaitForThread() { Terminate(); thread_->Join(); } void Worker::ExecuteInThread() { Isolate::CreateParams create_params; create_params.array_buffer_allocator = Shell::array_buffer_allocator; Isolate* isolate = Isolate::New(create_params); { Isolate::Scope iscope(isolate); { HandleScope scope(isolate); PerIsolateData data(isolate); Local<Context> context = Shell::CreateEvaluationContext(isolate); { Context::Scope cscope(context); PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate)); Local<Object> global = context->Global(); Local<Value> this_value = External::New(isolate, this); Local<FunctionTemplate> postmessage_fun_template = FunctionTemplate::New(isolate, PostMessageOut, this_value); Local<Function> postmessage_fun; if (postmessage_fun_template->GetFunction(context) .ToLocal(&postmessage_fun)) { global->Set(context, String::NewFromUtf8(isolate, "postMessage", NewStringType::kNormal) .ToLocalChecked(), postmessage_fun).FromJust(); } // First run the script Local<String> file_name = String::NewFromUtf8(isolate, "unnamed", NewStringType::kNormal) .ToLocalChecked(); Local<String> source = String::NewFromUtf8(isolate, script_, NewStringType::kNormal) .ToLocalChecked(); if (Shell::ExecuteString(isolate, source, file_name, false, true)) { // Get the message handler Local<Value> onmessage = global->Get(context, String::NewFromUtf8(isolate, "onmessage", NewStringType::kNormal) .ToLocalChecked()).ToLocalChecked(); if (onmessage->IsFunction()) { Local<Function> onmessage_fun = Local<Function>::Cast(onmessage); // Now wait for messages while (true) { in_semaphore_.Wait(); SerializationData* data; if (!in_queue_.Dequeue(&data)) continue; if (data == NULL) { break; } int offset = 0; Local<Value> data_value; if (Shell::DeserializeValue(isolate, *data, &offset) .ToLocal(&data_value)) { Local<Value> argv[] = {data_value}; (void)onmessage_fun->Call(context, global, 1, argv); } delete data; } } } } } Shell::CollectGarbage(isolate); } isolate->Dispose(); // Post NULL to wake the thread waiting on GetMessage() if there is one. out_queue_.Enqueue(NULL); out_semaphore_.Signal(); } void Worker::PostMessageOut(const v8::FunctionCallbackInfo<v8::Value>& args) { Isolate* isolate = args.GetIsolate(); HandleScope handle_scope(isolate); if (args.Length() < 1) { Throw(isolate, "Invalid argument"); return; } Local<Value> message = args[0]; // TODO(binji): Allow transferring from worker to main thread? Shell::ObjectList to_transfer; Shell::ObjectList seen_objects; SerializationData* data = new SerializationData; if (Shell::SerializeValue(isolate, message, to_transfer, &seen_objects, data)) { DCHECK(args.Data()->IsExternal()); Local<External> this_value = Local<External>::Cast(args.Data()); Worker* worker = static_cast<Worker*>(this_value->Value()); worker->out_queue_.Enqueue(data); worker->out_semaphore_.Signal(); } else { delete data; } } #endif // !V8_SHARED void SetFlagsFromString(const char* flags) { v8::V8::SetFlagsFromString(flags, static_cast<int>(strlen(flags))); } bool Shell::SetOptions(int argc, char* argv[]) { bool logfile_per_isolate = false; for (int i = 0; i < argc; i++) { if (strcmp(argv[i], "--stress-opt") == 0) { options.stress_opt = true; argv[i] = NULL; } else if (strcmp(argv[i], "--nostress-opt") == 0) { options.stress_opt = false; argv[i] = NULL; } else if (strcmp(argv[i], "--stress-deopt") == 0) { options.stress_deopt = true; argv[i] = NULL; } else if (strcmp(argv[i], "--mock-arraybuffer-allocator") == 0) { options.mock_arraybuffer_allocator = true; argv[i] = NULL; } else if (strcmp(argv[i], "--noalways-opt") == 0) { // No support for stressing if we can't use --always-opt. options.stress_opt = false; options.stress_deopt = false; } else if (strcmp(argv[i], "--logfile-per-isolate") == 0) { logfile_per_isolate = true; argv[i] = NULL; } else if (strcmp(argv[i], "--shell") == 0) { options.interactive_shell = true; argv[i] = NULL; } else if (strcmp(argv[i], "--test") == 0) { options.test_shell = true; argv[i] = NULL; } else if (strcmp(argv[i], "--notest") == 0 || strcmp(argv[i], "--no-test") == 0) { options.test_shell = false; argv[i] = NULL; } else if (strcmp(argv[i], "--send-idle-notification") == 0) { options.send_idle_notification = true; argv[i] = NULL; } else if (strcmp(argv[i], "--invoke-weak-callbacks") == 0) { options.invoke_weak_callbacks = true; // TODO(jochen) See issue 3351 options.send_idle_notification = true; argv[i] = NULL; } else if (strcmp(argv[i], "--omit-quit") == 0) { options.omit_quit = true; argv[i] = NULL; } else if (strcmp(argv[i], "-f") == 0) { // Ignore any -f flags for compatibility with other stand-alone // JavaScript engines. continue; } else if (strcmp(argv[i], "--isolate") == 0) { #ifdef V8_SHARED printf("D8 with shared library does not support multi-threading\n"); return false; #endif // V8_SHARED options.num_isolates++; } else if (strcmp(argv[i], "--dump-heap-constants") == 0) { #ifdef V8_SHARED printf("D8 with shared library does not support constant dumping\n"); return false; #else options.dump_heap_constants = true; argv[i] = NULL; #endif // V8_SHARED } else if (strcmp(argv[i], "--throws") == 0) { options.expected_to_throw = true; argv[i] = NULL; } else if (strncmp(argv[i], "--icu-data-file=", 16) == 0) { options.icu_data_file = argv[i] + 16; argv[i] = NULL; #ifdef V8_SHARED } else if (strcmp(argv[i], "--dump-counters") == 0) { printf("D8 with shared library does not include counters\n"); return false; #endif // V8_SHARED #ifdef V8_USE_EXTERNAL_STARTUP_DATA } else if (strncmp(argv[i], "--natives_blob=", 15) == 0) { options.natives_blob = argv[i] + 15; argv[i] = NULL; } else if (strncmp(argv[i], "--snapshot_blob=", 16) == 0) { options.snapshot_blob = argv[i] + 16; argv[i] = NULL; #endif // V8_USE_EXTERNAL_STARTUP_DATA } else if (strcmp(argv[i], "--cache") == 0 || strncmp(argv[i], "--cache=", 8) == 0) { const char* value = argv[i] + 7; if (!*value || strncmp(value, "=code", 6) == 0) { options.compile_options = v8::ScriptCompiler::kProduceCodeCache; } else if (strncmp(value, "=parse", 7) == 0) { options.compile_options = v8::ScriptCompiler::kProduceParserCache; } else if (strncmp(value, "=none", 6) == 0) { options.compile_options = v8::ScriptCompiler::kNoCompileOptions; } else { printf("Unknown option to --cache.\n"); return false; } argv[i] = NULL; } } v8::V8::SetFlagsFromCommandLine(&argc, argv, true); // Set up isolated source groups. options.isolate_sources = new SourceGroup[options.num_isolates]; SourceGroup* current = options.isolate_sources; current->Begin(argv, 1); for (int i = 1; i < argc; i++) { const char* str = argv[i]; if (strcmp(str, "--isolate") == 0) { current->End(i); current++; current->Begin(argv, i + 1); } else if (strcmp(str, "--module") == 0) { // Pass on to SourceGroup, which understands this option. } else if (strncmp(argv[i], "--", 2) == 0) { printf("Warning: unknown flag %s.\nTry --help for options\n", argv[i]); } else if (strcmp(str, "-e") == 0 && i + 1 < argc) { options.script_executed = true; } else if (strncmp(str, "-", 1) != 0) { // Not a flag, so it must be a script to execute. options.script_executed = true; } } current->End(argc); if (!logfile_per_isolate && options.num_isolates) { SetFlagsFromString("--nologfile_per_isolate"); } return true; } int Shell::RunMain(Isolate* isolate, int argc, char* argv[], bool last_run) { #ifndef V8_SHARED for (int i = 1; i < options.num_isolates; ++i) { options.isolate_sources[i].StartExecuteInThread(); } #endif // !V8_SHARED { HandleScope scope(isolate); Local<Context> context = CreateEvaluationContext(isolate); if (last_run && options.use_interactive_shell()) { // Keep using the same context in the interactive shell. evaluation_context_.Reset(isolate, context); } { Context::Scope cscope(context); PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate)); options.isolate_sources[0].Execute(isolate); } } CollectGarbage(isolate); #ifndef V8_SHARED for (int i = 1; i < options.num_isolates; ++i) { if (last_run) { options.isolate_sources[i].JoinThread(); } else { options.isolate_sources[i].WaitForThread(); } } CleanupWorkers(); #endif // !V8_SHARED return 0; } void Shell::CollectGarbage(Isolate* isolate) { if (options.send_idle_notification) { const double kLongIdlePauseInSeconds = 1.0; isolate->ContextDisposedNotification(); isolate->IdleNotificationDeadline( g_platform->MonotonicallyIncreasingTime() + kLongIdlePauseInSeconds); } if (options.invoke_weak_callbacks) { // By sending a low memory notifications, we will try hard to collect all // garbage and will therefore also invoke all weak callbacks of actually // unreachable persistent handles. isolate->LowMemoryNotification(); } } void Shell::EmptyMessageQueues(Isolate* isolate) { #ifndef V8_SHARED if (!i::FLAG_verify_predictable) { #endif while (v8::platform::PumpMessageLoop(g_platform, isolate)) continue; #ifndef V8_SHARED } #endif } #ifndef V8_SHARED bool Shell::SerializeValue(Isolate* isolate, Local<Value> value, const ObjectList& to_transfer, ObjectList* seen_objects, SerializationData* out_data) { DCHECK(out_data); Local<Context> context = isolate->GetCurrentContext(); if (value->IsUndefined()) { out_data->WriteTag(kSerializationTagUndefined); } else if (value->IsNull()) { out_data->WriteTag(kSerializationTagNull); } else if (value->IsTrue()) { out_data->WriteTag(kSerializationTagTrue); } else if (value->IsFalse()) { out_data->WriteTag(kSerializationTagFalse); } else if (value->IsNumber()) { Local<Number> num = Local<Number>::Cast(value); double value = num->Value(); out_data->WriteTag(kSerializationTagNumber); out_data->Write(value); } else if (value->IsString()) { v8::String::Utf8Value str(value); out_data->WriteTag(kSerializationTagString); out_data->Write(str.length()); out_data->WriteMemory(*str, str.length()); } else if (value->IsArray()) { Local<Array> array = Local<Array>::Cast(value); if (FindInObjectList(array, *seen_objects)) { Throw(isolate, "Duplicated arrays not supported"); return false; } seen_objects->Add(array); out_data->WriteTag(kSerializationTagArray); uint32_t length = array->Length(); out_data->Write(length); for (uint32_t i = 0; i < length; ++i) { Local<Value> element_value; if (array->Get(context, i).ToLocal(&element_value)) { if (!SerializeValue(isolate, element_value, to_transfer, seen_objects, out_data)) return false; } else { Throw(isolate, "Failed to serialize array element."); return false; } } } else if (value->IsArrayBuffer()) { Local<ArrayBuffer> array_buffer = Local<ArrayBuffer>::Cast(value); if (FindInObjectList(array_buffer, *seen_objects)) { Throw(isolate, "Duplicated array buffers not supported"); return false; } seen_objects->Add(array_buffer); if (FindInObjectList(array_buffer, to_transfer)) { // Transfer ArrayBuffer if (!array_buffer->IsNeuterable()) { Throw(isolate, "Attempting to transfer an un-neuterable ArrayBuffer"); return false; } ArrayBuffer::Contents contents = array_buffer->IsExternal() ? array_buffer->GetContents() : array_buffer->Externalize(); array_buffer->Neuter(); out_data->WriteArrayBufferContents(contents); } else { ArrayBuffer::Contents contents = array_buffer->GetContents(); // Clone ArrayBuffer if (contents.ByteLength() > i::kMaxInt) { Throw(isolate, "ArrayBuffer is too big to clone"); return false; } int32_t byte_length = static_cast<int32_t>(contents.ByteLength()); out_data->WriteTag(kSerializationTagArrayBuffer); out_data->Write(byte_length); out_data->WriteMemory(contents.Data(), byte_length); } } else if (value->IsSharedArrayBuffer()) { Local<SharedArrayBuffer> sab = Local<SharedArrayBuffer>::Cast(value); if (FindInObjectList(sab, *seen_objects)) { Throw(isolate, "Duplicated shared array buffers not supported"); return false; } seen_objects->Add(sab); if (!FindInObjectList(sab, to_transfer)) { Throw(isolate, "SharedArrayBuffer must be transferred"); return false; } SharedArrayBuffer::Contents contents; if (sab->IsExternal()) { contents = sab->GetContents(); } else { contents = sab->Externalize(); base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer()); externalized_shared_contents_.Add(contents); } out_data->WriteSharedArrayBufferContents(contents); } else if (value->IsObject()) { Local<Object> object = Local<Object>::Cast(value); if (FindInObjectList(object, *seen_objects)) { Throw(isolate, "Duplicated objects not supported"); return false; } seen_objects->Add(object); Local<Array> property_names; if (!object->GetOwnPropertyNames(context).ToLocal(&property_names)) { Throw(isolate, "Unable to get property names"); return false; } uint32_t length = property_names->Length(); out_data->WriteTag(kSerializationTagObject); out_data->Write(length); for (uint32_t i = 0; i < length; ++i) { Local<Value> name; Local<Value> property_value; if (property_names->Get(context, i).ToLocal(&name) && object->Get(context, name).ToLocal(&property_value)) { if (!SerializeValue(isolate, name, to_transfer, seen_objects, out_data)) return false; if (!SerializeValue(isolate, property_value, to_transfer, seen_objects, out_data)) return false; } else { Throw(isolate, "Failed to serialize property."); return false; } } } else { Throw(isolate, "Don't know how to serialize object"); return false; } return true; } MaybeLocal<Value> Shell::DeserializeValue(Isolate* isolate, const SerializationData& data, int* offset) { DCHECK(offset); EscapableHandleScope scope(isolate); Local<Value> result; SerializationTag tag = data.ReadTag(offset); switch (tag) { case kSerializationTagUndefined: result = Undefined(isolate); break; case kSerializationTagNull: result = Null(isolate); break; case kSerializationTagTrue: result = True(isolate); break; case kSerializationTagFalse: result = False(isolate); break; case kSerializationTagNumber: result = Number::New(isolate, data.Read<double>(offset)); break; case kSerializationTagString: { int length = data.Read<int>(offset); CHECK(length >= 0); std::vector<char> buffer(length + 1); // + 1 so it is never empty. data.ReadMemory(&buffer[0], length, offset); MaybeLocal<String> str = String::NewFromUtf8(isolate, &buffer[0], NewStringType::kNormal, length).ToLocalChecked(); if (!str.IsEmpty()) result = str.ToLocalChecked(); break; } case kSerializationTagArray: { uint32_t length = data.Read<uint32_t>(offset); Local<Array> array = Array::New(isolate, length); for (uint32_t i = 0; i < length; ++i) { Local<Value> element_value; CHECK(DeserializeValue(isolate, data, offset).ToLocal(&element_value)); array->Set(isolate->GetCurrentContext(), i, element_value).FromJust(); } result = array; break; } case kSerializationTagObject: { int length = data.Read<int>(offset); Local<Object> object = Object::New(isolate); for (int i = 0; i < length; ++i) { Local<Value> property_name; CHECK(DeserializeValue(isolate, data, offset).ToLocal(&property_name)); Local<Value> property_value; CHECK(DeserializeValue(isolate, data, offset).ToLocal(&property_value)); object->Set(isolate->GetCurrentContext(), property_name, property_value) .FromJust(); } result = object; break; } case kSerializationTagArrayBuffer: { int32_t byte_length = data.Read<int32_t>(offset); Local<ArrayBuffer> array_buffer = ArrayBuffer::New(isolate, byte_length); ArrayBuffer::Contents contents = array_buffer->GetContents(); DCHECK(static_cast<size_t>(byte_length) == contents.ByteLength()); data.ReadMemory(contents.Data(), byte_length, offset); result = array_buffer; break; } case kSerializationTagTransferredArrayBuffer: { ArrayBuffer::Contents contents; data.ReadArrayBufferContents(&contents, offset); result = ArrayBuffer::New(isolate, contents.Data(), contents.ByteLength(), ArrayBufferCreationMode::kInternalized); break; } case kSerializationTagTransferredSharedArrayBuffer: { SharedArrayBuffer::Contents contents; data.ReadSharedArrayBufferContents(&contents, offset); result = SharedArrayBuffer::New(isolate, contents.Data(), contents.ByteLength()); break; } default: UNREACHABLE(); } return scope.Escape(result); } void Shell::CleanupWorkers() { // Make a copy of workers_, because we don't want to call Worker::Terminate // while holding the workers_mutex_ lock. Otherwise, if a worker is about to // create a new Worker, it would deadlock. i::List<Worker*> workers_copy; { base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer()); allow_new_workers_ = false; workers_copy.AddAll(workers_); workers_.Clear(); } for (int i = 0; i < workers_copy.length(); ++i) { Worker* worker = workers_copy[i]; worker->WaitForThread(); delete worker; } // Now that all workers are terminated, we can re-enable Worker creation. base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer()); allow_new_workers_ = true; for (int i = 0; i < externalized_shared_contents_.length(); ++i) { const SharedArrayBuffer::Contents& contents = externalized_shared_contents_[i]; Shell::array_buffer_allocator->Free(contents.Data(), contents.ByteLength()); } externalized_shared_contents_.Clear(); } static void DumpHeapConstants(i::Isolate* isolate) { i::Heap* heap = isolate->heap(); // Dump the INSTANCE_TYPES table to the console. printf("# List of known V8 instance types.\n"); #define DUMP_TYPE(T) printf(" %d: \"%s\",\n", i::T, #T); printf("INSTANCE_TYPES = {\n"); INSTANCE_TYPE_LIST(DUMP_TYPE) printf("}\n"); #undef DUMP_TYPE // Dump the KNOWN_MAP table to the console. printf("\n# List of known V8 maps.\n"); #define ROOT_LIST_CASE(type, name, camel_name) \ if (n == NULL && o == heap->name()) n = #camel_name; #define STRUCT_LIST_CASE(upper_name, camel_name, name) \ if (n == NULL && o == heap->name##_map()) n = #camel_name "Map"; i::HeapObjectIterator it(heap->map_space()); printf("KNOWN_MAPS = {\n"); for (i::Object* o = it.Next(); o != NULL; o = it.Next()) { i::Map* m = i::Map::cast(o); const char* n = NULL; intptr_t p = reinterpret_cast<intptr_t>(m) & 0xfffff; int t = m->instance_type(); ROOT_LIST(ROOT_LIST_CASE) STRUCT_LIST(STRUCT_LIST_CASE) if (n == NULL) continue; printf(" 0x%05" V8PRIxPTR ": (%d, \"%s\"),\n", p, t, n); } printf("}\n"); #undef STRUCT_LIST_CASE #undef ROOT_LIST_CASE // Dump the KNOWN_OBJECTS table to the console. printf("\n# List of known V8 objects.\n"); #define ROOT_LIST_CASE(type, name, camel_name) \ if (n == NULL && o == heap->name()) n = #camel_name; i::OldSpaces spit(heap); printf("KNOWN_OBJECTS = {\n"); for (i::PagedSpace* s = spit.next(); s != NULL; s = spit.next()) { i::HeapObjectIterator it(s); const char* sname = AllocationSpaceName(s->identity()); for (i::Object* o = it.Next(); o != NULL; o = it.Next()) { const char* n = NULL; intptr_t p = reinterpret_cast<intptr_t>(o) & 0xfffff; ROOT_LIST(ROOT_LIST_CASE) if (n == NULL) continue; printf(" (\"%s\", 0x%05" V8PRIxPTR "): \"%s\",\n", sname, p, n); } } printf("}\n"); #undef ROOT_LIST_CASE } #endif // !V8_SHARED int Shell::Main(int argc, char* argv[]) { #if (defined(_WIN32) || defined(_WIN64)) UINT new_flags = SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX; UINT existing_flags = SetErrorMode(new_flags); SetErrorMode(existing_flags | new_flags); #if defined(_MSC_VER) _CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE); _CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR); _CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE); _CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR); _CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE); _CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDERR); _set_error_mode(_OUT_TO_STDERR); #endif // defined(_MSC_VER) #endif // defined(_WIN32) || defined(_WIN64) if (!SetOptions(argc, argv)) return 1; v8::V8::InitializeICUDefaultLocation(argv[0], options.icu_data_file); #ifndef V8_SHARED g_platform = i::FLAG_verify_predictable ? new PredictablePlatform() : v8::platform::CreateDefaultPlatform(); #else g_platform = v8::platform::CreateDefaultPlatform(); #endif // !V8_SHARED v8::V8::InitializePlatform(g_platform); v8::V8::Initialize(); if (options.natives_blob || options.snapshot_blob) { v8::V8::InitializeExternalStartupData(options.natives_blob, options.snapshot_blob); } else { v8::V8::InitializeExternalStartupData(argv[0]); } SetFlagsFromString("--trace-hydrogen-file=hydrogen.cfg"); SetFlagsFromString("--trace-turbo-cfg-file=turbo.cfg"); SetFlagsFromString("--redirect-code-traces-to=code.asm"); int result = 0; Isolate::CreateParams create_params; ShellArrayBufferAllocator shell_array_buffer_allocator; MockArrayBufferAllocator mock_arraybuffer_allocator; if (options.mock_arraybuffer_allocator) { Shell::array_buffer_allocator = &mock_arraybuffer_allocator; } else { Shell::array_buffer_allocator = &shell_array_buffer_allocator; } create_params.array_buffer_allocator = Shell::array_buffer_allocator; #ifdef ENABLE_VTUNE_JIT_INTERFACE create_params.code_event_handler = vTune::GetVtuneCodeEventHandler(); #endif #ifndef V8_SHARED create_params.constraints.ConfigureDefaults( base::SysInfo::AmountOfPhysicalMemory(), base::SysInfo::AmountOfVirtualMemory()); Shell::counter_map_ = new CounterMap(); if (i::FLAG_dump_counters || i::FLAG_track_gc_object_stats) { create_params.counter_lookup_callback = LookupCounter; create_params.create_histogram_callback = CreateHistogram; create_params.add_histogram_sample_callback = AddHistogramSample; } #endif Isolate* isolate = Isolate::New(create_params); { Isolate::Scope scope(isolate); Initialize(isolate); PerIsolateData data(isolate); #ifndef V8_SHARED if (options.dump_heap_constants) { DumpHeapConstants(reinterpret_cast<i::Isolate*>(isolate)); return 0; } #endif if (options.stress_opt || options.stress_deopt) { Testing::SetStressRunType(options.stress_opt ? Testing::kStressTypeOpt : Testing::kStressTypeDeopt); options.stress_runs = Testing::GetStressRuns(); for (int i = 0; i < options.stress_runs && result == 0; i++) { printf("============ Stress %d/%d ============\n", i + 1, options.stress_runs); Testing::PrepareStressRun(i); bool last_run = i == options.stress_runs - 1; result = RunMain(isolate, argc, argv, last_run); } printf("======== Full Deoptimization =======\n"); Testing::DeoptimizeAll(isolate); #if !defined(V8_SHARED) } else if (i::FLAG_stress_runs > 0) { options.stress_runs = i::FLAG_stress_runs; for (int i = 0; i < options.stress_runs && result == 0; i++) { printf("============ Run %d/%d ============\n", i + 1, options.stress_runs); bool last_run = i == options.stress_runs - 1; result = RunMain(isolate, argc, argv, last_run); } #endif } else { bool last_run = true; result = RunMain(isolate, argc, argv, last_run); } // Run interactive shell if explicitly requested or if no script has been // executed, but never on --test if (options.use_interactive_shell()) { RunShell(isolate); } #ifndef V8_SHARED if (i::FLAG_ignition && i::FLAG_trace_ignition_dispatches && i::FLAG_trace_ignition_dispatches_output_file != nullptr) { WriteIgnitionDispatchCountersFile(isolate); } #endif // Shut down contexts and collect garbage. evaluation_context_.Reset(); #ifndef V8_SHARED stringify_function_.Reset(); #endif // !V8_SHARED CollectGarbage(isolate); } OnExit(isolate); #ifndef V8_SHARED // Dump basic block profiling data. if (i::BasicBlockProfiler* profiler = reinterpret_cast<i::Isolate*>(isolate)->basic_block_profiler()) { i::OFStream os(stdout); os << *profiler; } #endif // !V8_SHARED isolate->Dispose(); V8::Dispose(); V8::ShutdownPlatform(); delete g_platform; return result; } } // namespace v8 #ifndef GOOGLE3 int main(int argc, char* argv[]) { return v8::Shell::Main(argc, argv); } #endif