// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X87 #include "src/crankshaft/x87/lithium-gap-resolver-x87.h" #include "src/register-configuration.h" #include "src/crankshaft/x87/lithium-codegen-x87.h" namespace v8 { namespace internal { LGapResolver::LGapResolver(LCodeGen* owner) : cgen_(owner), moves_(32, owner->zone()), source_uses_(), destination_uses_(), spilled_register_(-1) {} void LGapResolver::Resolve(LParallelMove* parallel_move) { DCHECK(HasBeenReset()); // Build up a worklist of moves. BuildInitialMoveList(parallel_move); for (int i = 0; i < moves_.length(); ++i) { LMoveOperands move = moves_[i]; // Skip constants to perform them last. They don't block other moves // and skipping such moves with register destinations keeps those // registers free for the whole algorithm. if (!move.IsEliminated() && !move.source()->IsConstantOperand()) { PerformMove(i); } } // Perform the moves with constant sources. for (int i = 0; i < moves_.length(); ++i) { if (!moves_[i].IsEliminated()) { DCHECK(moves_[i].source()->IsConstantOperand()); EmitMove(i); } } Finish(); DCHECK(HasBeenReset()); } void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) { // Perform a linear sweep of the moves to add them to the initial list of // moves to perform, ignoring any move that is redundant (the source is // the same as the destination, the destination is ignored and // unallocated, or the move was already eliminated). const ZoneList<LMoveOperands>* moves = parallel_move->move_operands(); for (int i = 0; i < moves->length(); ++i) { LMoveOperands move = moves->at(i); if (!move.IsRedundant()) AddMove(move); } Verify(); } void LGapResolver::PerformMove(int index) { // Each call to this function performs a move and deletes it from the move // graph. We first recursively perform any move blocking this one. We // mark a move as "pending" on entry to PerformMove in order to detect // cycles in the move graph. We use operand swaps to resolve cycles, // which means that a call to PerformMove could change any source operand // in the move graph. DCHECK(!moves_[index].IsPending()); DCHECK(!moves_[index].IsRedundant()); // Clear this move's destination to indicate a pending move. The actual // destination is saved on the side. DCHECK(moves_[index].source() != NULL); // Or else it will look eliminated. LOperand* destination = moves_[index].destination(); moves_[index].set_destination(NULL); // Perform a depth-first traversal of the move graph to resolve // dependencies. Any unperformed, unpending move with a source the same // as this one's destination blocks this one so recursively perform all // such moves. for (int i = 0; i < moves_.length(); ++i) { LMoveOperands other_move = moves_[i]; if (other_move.Blocks(destination) && !other_move.IsPending()) { // Though PerformMove can change any source operand in the move graph, // this call cannot create a blocking move via a swap (this loop does // not miss any). Assume there is a non-blocking move with source A // and this move is blocked on source B and there is a swap of A and // B. Then A and B must be involved in the same cycle (or they would // not be swapped). Since this move's destination is B and there is // only a single incoming edge to an operand, this move must also be // involved in the same cycle. In that case, the blocking move will // be created but will be "pending" when we return from PerformMove. PerformMove(i); } } // We are about to resolve this move and don't need it marked as // pending, so restore its destination. moves_[index].set_destination(destination); // This move's source may have changed due to swaps to resolve cycles and // so it may now be the last move in the cycle. If so remove it. if (moves_[index].source()->Equals(destination)) { RemoveMove(index); return; } // The move may be blocked on a (at most one) pending move, in which case // we have a cycle. Search for such a blocking move and perform a swap to // resolve it. for (int i = 0; i < moves_.length(); ++i) { LMoveOperands other_move = moves_[i]; if (other_move.Blocks(destination)) { DCHECK(other_move.IsPending()); EmitSwap(index); return; } } // This move is not blocked. EmitMove(index); } void LGapResolver::AddMove(LMoveOperands move) { LOperand* source = move.source(); if (source->IsRegister()) ++source_uses_[source->index()]; LOperand* destination = move.destination(); if (destination->IsRegister()) ++destination_uses_[destination->index()]; moves_.Add(move, cgen_->zone()); } void LGapResolver::RemoveMove(int index) { LOperand* source = moves_[index].source(); if (source->IsRegister()) { --source_uses_[source->index()]; DCHECK(source_uses_[source->index()] >= 0); } LOperand* destination = moves_[index].destination(); if (destination->IsRegister()) { --destination_uses_[destination->index()]; DCHECK(destination_uses_[destination->index()] >= 0); } moves_[index].Eliminate(); } int LGapResolver::CountSourceUses(LOperand* operand) { int count = 0; for (int i = 0; i < moves_.length(); ++i) { if (!moves_[i].IsEliminated() && moves_[i].source()->Equals(operand)) { ++count; } } return count; } Register LGapResolver::GetFreeRegisterNot(Register reg) { int skip_index = reg.is(no_reg) ? -1 : reg.code(); const RegisterConfiguration* config = RegisterConfiguration::Crankshaft(); for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { int code = config->GetAllocatableGeneralCode(i); if (source_uses_[code] == 0 && destination_uses_[code] > 0 && code != skip_index) { return Register::from_code(code); } } return no_reg; } bool LGapResolver::HasBeenReset() { if (!moves_.is_empty()) return false; if (spilled_register_ >= 0) return false; const RegisterConfiguration* config = RegisterConfiguration::Crankshaft(); for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { int code = config->GetAllocatableGeneralCode(i); if (source_uses_[code] != 0) return false; if (destination_uses_[code] != 0) return false; } return true; } void LGapResolver::Verify() { #ifdef ENABLE_SLOW_DCHECKS // No operand should be the destination for more than one move. for (int i = 0; i < moves_.length(); ++i) { LOperand* destination = moves_[i].destination(); for (int j = i + 1; j < moves_.length(); ++j) { SLOW_DCHECK(!destination->Equals(moves_[j].destination())); } } #endif } #define __ ACCESS_MASM(cgen_->masm()) void LGapResolver::Finish() { if (spilled_register_ >= 0) { __ pop(Register::from_code(spilled_register_)); spilled_register_ = -1; } moves_.Rewind(0); } void LGapResolver::EnsureRestored(LOperand* operand) { if (operand->IsRegister() && operand->index() == spilled_register_) { __ pop(Register::from_code(spilled_register_)); spilled_register_ = -1; } } Register LGapResolver::EnsureTempRegister() { // 1. We may have already spilled to create a temp register. if (spilled_register_ >= 0) { return Register::from_code(spilled_register_); } // 2. We may have a free register that we can use without spilling. Register free = GetFreeRegisterNot(no_reg); if (!free.is(no_reg)) return free; // 3. Prefer to spill a register that is not used in any remaining move // because it will not need to be restored until the end. const RegisterConfiguration* config = RegisterConfiguration::Crankshaft(); for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { int code = config->GetAllocatableGeneralCode(i); if (source_uses_[code] == 0 && destination_uses_[code] == 0) { Register scratch = Register::from_code(code); __ push(scratch); spilled_register_ = code; return scratch; } } // 4. Use an arbitrary register. Register 0 is as arbitrary as any other. spilled_register_ = config->GetAllocatableGeneralCode(0); Register scratch = Register::from_code(spilled_register_); __ push(scratch); return scratch; } void LGapResolver::EmitMove(int index) { LOperand* source = moves_[index].source(); LOperand* destination = moves_[index].destination(); EnsureRestored(source); EnsureRestored(destination); // Dispatch on the source and destination operand kinds. Not all // combinations are possible. if (source->IsRegister()) { DCHECK(destination->IsRegister() || destination->IsStackSlot()); Register src = cgen_->ToRegister(source); Operand dst = cgen_->ToOperand(destination); __ mov(dst, src); } else if (source->IsStackSlot()) { DCHECK(destination->IsRegister() || destination->IsStackSlot()); Operand src = cgen_->ToOperand(source); if (destination->IsRegister()) { Register dst = cgen_->ToRegister(destination); __ mov(dst, src); } else { // Spill on demand to use a temporary register for memory-to-memory // moves. Register tmp = EnsureTempRegister(); Operand dst = cgen_->ToOperand(destination); __ mov(tmp, src); __ mov(dst, tmp); } } else if (source->IsConstantOperand()) { LConstantOperand* constant_source = LConstantOperand::cast(source); if (destination->IsRegister()) { Register dst = cgen_->ToRegister(destination); Representation r = cgen_->IsSmi(constant_source) ? Representation::Smi() : Representation::Integer32(); if (cgen_->IsInteger32(constant_source)) { __ Move(dst, cgen_->ToImmediate(constant_source, r)); } else { __ LoadObject(dst, cgen_->ToHandle(constant_source)); } } else if (destination->IsDoubleRegister()) { double v = cgen_->ToDouble(constant_source); uint64_t int_val = bit_cast<uint64_t, double>(v); int32_t lower = static_cast<int32_t>(int_val); int32_t upper = static_cast<int32_t>(int_val >> kBitsPerInt); __ push(Immediate(upper)); __ push(Immediate(lower)); X87Register dst = cgen_->ToX87Register(destination); cgen_->X87Mov(dst, MemOperand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); } else { DCHECK(destination->IsStackSlot()); Operand dst = cgen_->ToOperand(destination); Representation r = cgen_->IsSmi(constant_source) ? Representation::Smi() : Representation::Integer32(); if (cgen_->IsInteger32(constant_source)) { __ Move(dst, cgen_->ToImmediate(constant_source, r)); } else { Register tmp = EnsureTempRegister(); __ LoadObject(tmp, cgen_->ToHandle(constant_source)); __ mov(dst, tmp); } } } else if (source->IsDoubleRegister()) { // load from the register onto the stack, store in destination, which must // be a double stack slot in the non-SSE2 case. if (destination->IsDoubleStackSlot()) { Operand dst = cgen_->ToOperand(destination); X87Register src = cgen_->ToX87Register(source); cgen_->X87Mov(dst, src); } else { X87Register dst = cgen_->ToX87Register(destination); X87Register src = cgen_->ToX87Register(source); cgen_->X87Mov(dst, src); } } else if (source->IsDoubleStackSlot()) { // load from the stack slot on top of the floating point stack, and then // store in destination. If destination is a double register, then it // represents the top of the stack and nothing needs to be done. if (destination->IsDoubleStackSlot()) { Register tmp = EnsureTempRegister(); Operand src0 = cgen_->ToOperand(source); Operand src1 = cgen_->HighOperand(source); Operand dst0 = cgen_->ToOperand(destination); Operand dst1 = cgen_->HighOperand(destination); __ mov(tmp, src0); // Then use tmp to copy source to destination. __ mov(dst0, tmp); __ mov(tmp, src1); __ mov(dst1, tmp); } else { Operand src = cgen_->ToOperand(source); X87Register dst = cgen_->ToX87Register(destination); cgen_->X87Mov(dst, src); } } else { UNREACHABLE(); } RemoveMove(index); } void LGapResolver::EmitSwap(int index) { LOperand* source = moves_[index].source(); LOperand* destination = moves_[index].destination(); EnsureRestored(source); EnsureRestored(destination); // Dispatch on the source and destination operand kinds. Not all // combinations are possible. if (source->IsRegister() && destination->IsRegister()) { // Register-register. Register src = cgen_->ToRegister(source); Register dst = cgen_->ToRegister(destination); __ xchg(dst, src); } else if ((source->IsRegister() && destination->IsStackSlot()) || (source->IsStackSlot() && destination->IsRegister())) { // Register-memory. Use a free register as a temp if possible. Do not // spill on demand because the simple spill implementation cannot avoid // spilling src at this point. Register tmp = GetFreeRegisterNot(no_reg); Register reg = cgen_->ToRegister(source->IsRegister() ? source : destination); Operand mem = cgen_->ToOperand(source->IsRegister() ? destination : source); if (tmp.is(no_reg)) { __ xor_(reg, mem); __ xor_(mem, reg); __ xor_(reg, mem); } else { __ mov(tmp, mem); __ mov(mem, reg); __ mov(reg, tmp); } } else if (source->IsStackSlot() && destination->IsStackSlot()) { // Memory-memory. Spill on demand to use a temporary. If there is a // free register after that, use it as a second temporary. Register tmp0 = EnsureTempRegister(); Register tmp1 = GetFreeRegisterNot(tmp0); Operand src = cgen_->ToOperand(source); Operand dst = cgen_->ToOperand(destination); if (tmp1.is(no_reg)) { // Only one temp register available to us. __ mov(tmp0, dst); __ xor_(tmp0, src); __ xor_(src, tmp0); __ xor_(tmp0, src); __ mov(dst, tmp0); } else { __ mov(tmp0, dst); __ mov(tmp1, src); __ mov(dst, tmp1); __ mov(src, tmp0); } } else { // No other combinations are possible. UNREACHABLE(); } // The swap of source and destination has executed a move from source to // destination. RemoveMove(index); // Any unperformed (including pending) move with a source of either // this move's source or destination needs to have their source // changed to reflect the state of affairs after the swap. for (int i = 0; i < moves_.length(); ++i) { LMoveOperands other_move = moves_[i]; if (other_move.Blocks(source)) { moves_[i].set_source(destination); } else if (other_move.Blocks(destination)) { moves_[i].set_source(source); } } // In addition to swapping the actual uses as sources, we need to update // the use counts. if (source->IsRegister() && destination->IsRegister()) { int temp = source_uses_[source->index()]; source_uses_[source->index()] = source_uses_[destination->index()]; source_uses_[destination->index()] = temp; } else if (source->IsRegister()) { // We don't have use counts for non-register operands like destination. // Compute those counts now. source_uses_[source->index()] = CountSourceUses(source); } else if (destination->IsRegister()) { source_uses_[destination->index()] = CountSourceUses(destination); } } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X87