// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/code-generator.h" #include "src/ast/scopes.h" #include "src/compiler/code-generator-impl.h" #include "src/compiler/gap-resolver.h" #include "src/compiler/node-matchers.h" #include "src/compiler/osr.h" #include "src/frames.h" #include "src/ia32/assembler-ia32.h" #include "src/ia32/frames-ia32.h" #include "src/ia32/macro-assembler-ia32.h" namespace v8 { namespace internal { namespace compiler { #define __ masm()-> #define kScratchDoubleReg xmm0 // Adds IA-32 specific methods for decoding operands. class IA32OperandConverter : public InstructionOperandConverter { public: IA32OperandConverter(CodeGenerator* gen, Instruction* instr) : InstructionOperandConverter(gen, instr) {} Operand InputOperand(size_t index, int extra = 0) { return ToOperand(instr_->InputAt(index), extra); } Immediate InputImmediate(size_t index) { return ToImmediate(instr_->InputAt(index)); } Operand OutputOperand() { return ToOperand(instr_->Output()); } Operand ToOperand(InstructionOperand* op, int extra = 0) { if (op->IsRegister()) { DCHECK(extra == 0); return Operand(ToRegister(op)); } else if (op->IsFPRegister()) { DCHECK(extra == 0); return Operand(ToDoubleRegister(op)); } DCHECK(op->IsStackSlot() || op->IsFPStackSlot()); return SlotToOperand(AllocatedOperand::cast(op)->index(), extra); } Operand SlotToOperand(int slot, int extra = 0) { FrameOffset offset = frame_access_state()->GetFrameOffset(slot); return Operand(offset.from_stack_pointer() ? esp : ebp, offset.offset() + extra); } Operand HighOperand(InstructionOperand* op) { DCHECK(op->IsFPStackSlot()); return ToOperand(op, kPointerSize); } Immediate ToImmediate(InstructionOperand* operand) { Constant constant = ToConstant(operand); if (constant.type() == Constant::kInt32 && (constant.rmode() == RelocInfo::WASM_MEMORY_REFERENCE || constant.rmode() == RelocInfo::WASM_GLOBAL_REFERENCE || constant.rmode() == RelocInfo::WASM_MEMORY_SIZE_REFERENCE)) { return Immediate(reinterpret_cast<Address>(constant.ToInt32()), constant.rmode()); } switch (constant.type()) { case Constant::kInt32: return Immediate(constant.ToInt32()); case Constant::kFloat32: return Immediate( isolate()->factory()->NewNumber(constant.ToFloat32(), TENURED)); case Constant::kFloat64: return Immediate( isolate()->factory()->NewNumber(constant.ToFloat64(), TENURED)); case Constant::kExternalReference: return Immediate(constant.ToExternalReference()); case Constant::kHeapObject: return Immediate(constant.ToHeapObject()); case Constant::kInt64: break; case Constant::kRpoNumber: return Immediate::CodeRelativeOffset(ToLabel(operand)); } UNREACHABLE(); return Immediate(-1); } static size_t NextOffset(size_t* offset) { size_t i = *offset; (*offset)++; return i; } static ScaleFactor ScaleFor(AddressingMode one, AddressingMode mode) { STATIC_ASSERT(0 == static_cast<int>(times_1)); STATIC_ASSERT(1 == static_cast<int>(times_2)); STATIC_ASSERT(2 == static_cast<int>(times_4)); STATIC_ASSERT(3 == static_cast<int>(times_8)); int scale = static_cast<int>(mode - one); DCHECK(scale >= 0 && scale < 4); return static_cast<ScaleFactor>(scale); } Operand MemoryOperand(size_t* offset) { AddressingMode mode = AddressingModeField::decode(instr_->opcode()); switch (mode) { case kMode_MR: { Register base = InputRegister(NextOffset(offset)); int32_t disp = 0; return Operand(base, disp); } case kMode_MRI: { Register base = InputRegister(NextOffset(offset)); Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset))); return Operand(base, ctant.ToInt32(), ctant.rmode()); } case kMode_MR1: case kMode_MR2: case kMode_MR4: case kMode_MR8: { Register base = InputRegister(NextOffset(offset)); Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_MR1, mode); int32_t disp = 0; return Operand(base, index, scale, disp); } case kMode_MR1I: case kMode_MR2I: case kMode_MR4I: case kMode_MR8I: { Register base = InputRegister(NextOffset(offset)); Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_MR1I, mode); Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset))); return Operand(base, index, scale, ctant.ToInt32(), ctant.rmode()); } case kMode_M1: case kMode_M2: case kMode_M4: case kMode_M8: { Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_M1, mode); int32_t disp = 0; return Operand(index, scale, disp); } case kMode_M1I: case kMode_M2I: case kMode_M4I: case kMode_M8I: { Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_M1I, mode); Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset))); return Operand(index, scale, ctant.ToInt32(), ctant.rmode()); } case kMode_MI: { Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset))); return Operand(ctant.ToInt32(), ctant.rmode()); } case kMode_None: UNREACHABLE(); return Operand(no_reg, 0); } UNREACHABLE(); return Operand(no_reg, 0); } Operand MemoryOperand(size_t first_input = 0) { return MemoryOperand(&first_input); } }; namespace { bool HasImmediateInput(Instruction* instr, size_t index) { return instr->InputAt(index)->IsImmediate(); } class OutOfLineLoadInteger final : public OutOfLineCode { public: OutOfLineLoadInteger(CodeGenerator* gen, Register result) : OutOfLineCode(gen), result_(result) {} void Generate() final { __ xor_(result_, result_); } private: Register const result_; }; class OutOfLineLoadFloat final : public OutOfLineCode { public: OutOfLineLoadFloat(CodeGenerator* gen, XMMRegister result) : OutOfLineCode(gen), result_(result) {} void Generate() final { __ pcmpeqd(result_, result_); } private: XMMRegister const result_; }; class OutOfLineTruncateDoubleToI final : public OutOfLineCode { public: OutOfLineTruncateDoubleToI(CodeGenerator* gen, Register result, XMMRegister input) : OutOfLineCode(gen), result_(result), input_(input) {} void Generate() final { __ sub(esp, Immediate(kDoubleSize)); __ movsd(MemOperand(esp, 0), input_); __ SlowTruncateToI(result_, esp, 0); __ add(esp, Immediate(kDoubleSize)); } private: Register const result_; XMMRegister const input_; }; class OutOfLineRecordWrite final : public OutOfLineCode { public: OutOfLineRecordWrite(CodeGenerator* gen, Register object, Operand operand, Register value, Register scratch0, Register scratch1, RecordWriteMode mode) : OutOfLineCode(gen), object_(object), operand_(operand), value_(value), scratch0_(scratch0), scratch1_(scratch1), mode_(mode) {} void Generate() final { if (mode_ > RecordWriteMode::kValueIsPointer) { __ JumpIfSmi(value_, exit()); } __ CheckPageFlag(value_, scratch0_, MemoryChunk::kPointersToHereAreInterestingMask, zero, exit()); RememberedSetAction const remembered_set_action = mode_ > RecordWriteMode::kValueIsMap ? EMIT_REMEMBERED_SET : OMIT_REMEMBERED_SET; SaveFPRegsMode const save_fp_mode = frame()->DidAllocateDoubleRegisters() ? kSaveFPRegs : kDontSaveFPRegs; RecordWriteStub stub(isolate(), object_, scratch0_, scratch1_, remembered_set_action, save_fp_mode); __ lea(scratch1_, operand_); __ CallStub(&stub); } private: Register const object_; Operand const operand_; Register const value_; Register const scratch0_; Register const scratch1_; RecordWriteMode const mode_; }; } // namespace #define ASSEMBLE_CHECKED_LOAD_FLOAT(asm_instr) \ do { \ auto result = i.OutputDoubleRegister(); \ auto offset = i.InputRegister(0); \ if (instr->InputAt(1)->IsRegister()) { \ __ cmp(offset, i.InputRegister(1)); \ } else { \ __ cmp(offset, i.InputImmediate(1)); \ } \ OutOfLineCode* ool = new (zone()) OutOfLineLoadFloat(this, result); \ __ j(above_equal, ool->entry()); \ __ asm_instr(result, i.MemoryOperand(2)); \ __ bind(ool->exit()); \ } while (false) #define ASSEMBLE_CHECKED_LOAD_INTEGER(asm_instr) \ do { \ auto result = i.OutputRegister(); \ auto offset = i.InputRegister(0); \ if (instr->InputAt(1)->IsRegister()) { \ __ cmp(offset, i.InputRegister(1)); \ } else { \ __ cmp(offset, i.InputImmediate(1)); \ } \ OutOfLineCode* ool = new (zone()) OutOfLineLoadInteger(this, result); \ __ j(above_equal, ool->entry()); \ __ asm_instr(result, i.MemoryOperand(2)); \ __ bind(ool->exit()); \ } while (false) #define ASSEMBLE_CHECKED_STORE_FLOAT(asm_instr) \ do { \ auto offset = i.InputRegister(0); \ if (instr->InputAt(1)->IsRegister()) { \ __ cmp(offset, i.InputRegister(1)); \ } else { \ __ cmp(offset, i.InputImmediate(1)); \ } \ Label done; \ __ j(above_equal, &done, Label::kNear); \ __ asm_instr(i.MemoryOperand(3), i.InputDoubleRegister(2)); \ __ bind(&done); \ } while (false) #define ASSEMBLE_CHECKED_STORE_INTEGER(asm_instr) \ do { \ auto offset = i.InputRegister(0); \ if (instr->InputAt(1)->IsRegister()) { \ __ cmp(offset, i.InputRegister(1)); \ } else { \ __ cmp(offset, i.InputImmediate(1)); \ } \ Label done; \ __ j(above_equal, &done, Label::kNear); \ if (instr->InputAt(2)->IsRegister()) { \ __ asm_instr(i.MemoryOperand(3), i.InputRegister(2)); \ } else { \ __ asm_instr(i.MemoryOperand(3), i.InputImmediate(2)); \ } \ __ bind(&done); \ } while (false) #define ASSEMBLE_COMPARE(asm_instr) \ do { \ if (AddressingModeField::decode(instr->opcode()) != kMode_None) { \ size_t index = 0; \ Operand left = i.MemoryOperand(&index); \ if (HasImmediateInput(instr, index)) { \ __ asm_instr(left, i.InputImmediate(index)); \ } else { \ __ asm_instr(left, i.InputRegister(index)); \ } \ } else { \ if (HasImmediateInput(instr, 1)) { \ if (instr->InputAt(0)->IsRegister()) { \ __ asm_instr(i.InputRegister(0), i.InputImmediate(1)); \ } else { \ __ asm_instr(i.InputOperand(0), i.InputImmediate(1)); \ } \ } else { \ if (instr->InputAt(1)->IsRegister()) { \ __ asm_instr(i.InputRegister(0), i.InputRegister(1)); \ } else { \ __ asm_instr(i.InputRegister(0), i.InputOperand(1)); \ } \ } \ } \ } while (0) #define ASSEMBLE_IEEE754_BINOP(name) \ do { \ /* Pass two doubles as arguments on the stack. */ \ __ PrepareCallCFunction(4, eax); \ __ movsd(Operand(esp, 0 * kDoubleSize), i.InputDoubleRegister(0)); \ __ movsd(Operand(esp, 1 * kDoubleSize), i.InputDoubleRegister(1)); \ __ CallCFunction(ExternalReference::ieee754_##name##_function(isolate()), \ 4); \ /* Return value is in st(0) on ia32. */ \ /* Store it into the result register. */ \ __ sub(esp, Immediate(kDoubleSize)); \ __ fstp_d(Operand(esp, 0)); \ __ movsd(i.OutputDoubleRegister(), Operand(esp, 0)); \ __ add(esp, Immediate(kDoubleSize)); \ } while (false) #define ASSEMBLE_IEEE754_UNOP(name) \ do { \ /* Pass one double as argument on the stack. */ \ __ PrepareCallCFunction(2, eax); \ __ movsd(Operand(esp, 0 * kDoubleSize), i.InputDoubleRegister(0)); \ __ CallCFunction(ExternalReference::ieee754_##name##_function(isolate()), \ 2); \ /* Return value is in st(0) on ia32. */ \ /* Store it into the result register. */ \ __ sub(esp, Immediate(kDoubleSize)); \ __ fstp_d(Operand(esp, 0)); \ __ movsd(i.OutputDoubleRegister(), Operand(esp, 0)); \ __ add(esp, Immediate(kDoubleSize)); \ } while (false) void CodeGenerator::AssembleDeconstructFrame() { __ mov(esp, ebp); __ pop(ebp); } void CodeGenerator::AssembleDeconstructActivationRecord(int stack_param_delta) { int sp_slot_delta = TailCallFrameStackSlotDelta(stack_param_delta); if (sp_slot_delta > 0) { __ add(esp, Immediate(sp_slot_delta * kPointerSize)); } frame_access_state()->SetFrameAccessToDefault(); } void CodeGenerator::AssemblePrepareTailCall(int stack_param_delta) { int sp_slot_delta = TailCallFrameStackSlotDelta(stack_param_delta); if (sp_slot_delta < 0) { __ sub(esp, Immediate(-sp_slot_delta * kPointerSize)); frame_access_state()->IncreaseSPDelta(-sp_slot_delta); } if (frame_access_state()->has_frame()) { __ mov(ebp, MemOperand(ebp, 0)); } frame_access_state()->SetFrameAccessToSP(); } void CodeGenerator::AssemblePopArgumentsAdaptorFrame(Register args_reg, Register, Register, Register) { // There are not enough temp registers left on ia32 for a call instruction // so we pick some scratch registers and save/restore them manually here. int scratch_count = 3; Register scratch1 = ebx; Register scratch2 = ecx; Register scratch3 = edx; DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3)); Label done; // Check if current frame is an arguments adaptor frame. __ cmp(Operand(ebp, StandardFrameConstants::kContextOffset), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &done, Label::kNear); __ push(scratch1); __ push(scratch2); __ push(scratch3); // Load arguments count from current arguments adaptor frame (note, it // does not include receiver). Register caller_args_count_reg = scratch1; __ mov(caller_args_count_reg, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(caller_args_count_reg); ParameterCount callee_args_count(args_reg); __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2, scratch3, ReturnAddressState::kOnStack, scratch_count); __ pop(scratch3); __ pop(scratch2); __ pop(scratch1); __ bind(&done); } // Assembles an instruction after register allocation, producing machine code. CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction( Instruction* instr) { IA32OperandConverter i(this, instr); InstructionCode opcode = instr->opcode(); ArchOpcode arch_opcode = ArchOpcodeField::decode(opcode); switch (arch_opcode) { case kArchCallCodeObject: { EnsureSpaceForLazyDeopt(); if (HasImmediateInput(instr, 0)) { Handle<Code> code = Handle<Code>::cast(i.InputHeapObject(0)); __ call(code, RelocInfo::CODE_TARGET); } else { Register reg = i.InputRegister(0); __ add(reg, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(reg); } RecordCallPosition(instr); frame_access_state()->ClearSPDelta(); break; } case kArchTailCallCodeObjectFromJSFunction: case kArchTailCallCodeObject: { int stack_param_delta = i.InputInt32(instr->InputCount() - 1); AssembleDeconstructActivationRecord(stack_param_delta); if (arch_opcode == kArchTailCallCodeObjectFromJSFunction) { AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister, no_reg, no_reg, no_reg); } if (HasImmediateInput(instr, 0)) { Handle<Code> code = Handle<Code>::cast(i.InputHeapObject(0)); __ jmp(code, RelocInfo::CODE_TARGET); } else { Register reg = i.InputRegister(0); __ add(reg, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(reg); } frame_access_state()->ClearSPDelta(); break; } case kArchTailCallAddress: { int stack_param_delta = i.InputInt32(instr->InputCount() - 1); AssembleDeconstructActivationRecord(stack_param_delta); CHECK(!HasImmediateInput(instr, 0)); Register reg = i.InputRegister(0); __ jmp(reg); frame_access_state()->ClearSPDelta(); break; } case kArchCallJSFunction: { EnsureSpaceForLazyDeopt(); Register func = i.InputRegister(0); if (FLAG_debug_code) { // Check the function's context matches the context argument. __ cmp(esi, FieldOperand(func, JSFunction::kContextOffset)); __ Assert(equal, kWrongFunctionContext); } __ call(FieldOperand(func, JSFunction::kCodeEntryOffset)); RecordCallPosition(instr); frame_access_state()->ClearSPDelta(); break; } case kArchTailCallJSFunctionFromJSFunction: case kArchTailCallJSFunction: { Register func = i.InputRegister(0); if (FLAG_debug_code) { // Check the function's context matches the context argument. __ cmp(esi, FieldOperand(func, JSFunction::kContextOffset)); __ Assert(equal, kWrongFunctionContext); } int stack_param_delta = i.InputInt32(instr->InputCount() - 1); AssembleDeconstructActivationRecord(stack_param_delta); if (arch_opcode == kArchTailCallJSFunctionFromJSFunction) { AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister, no_reg, no_reg, no_reg); } __ jmp(FieldOperand(func, JSFunction::kCodeEntryOffset)); frame_access_state()->ClearSPDelta(); break; } case kArchPrepareCallCFunction: { // Frame alignment requires using FP-relative frame addressing. frame_access_state()->SetFrameAccessToFP(); int const num_parameters = MiscField::decode(instr->opcode()); __ PrepareCallCFunction(num_parameters, i.TempRegister(0)); break; } case kArchPrepareTailCall: AssemblePrepareTailCall(i.InputInt32(instr->InputCount() - 1)); break; case kArchCallCFunction: { int const num_parameters = MiscField::decode(instr->opcode()); if (HasImmediateInput(instr, 0)) { ExternalReference ref = i.InputExternalReference(0); __ CallCFunction(ref, num_parameters); } else { Register func = i.InputRegister(0); __ CallCFunction(func, num_parameters); } frame_access_state()->SetFrameAccessToDefault(); frame_access_state()->ClearSPDelta(); break; } case kArchJmp: AssembleArchJump(i.InputRpo(0)); break; case kArchLookupSwitch: AssembleArchLookupSwitch(instr); break; case kArchTableSwitch: AssembleArchTableSwitch(instr); break; case kArchComment: { Address comment_string = i.InputExternalReference(0).address(); __ RecordComment(reinterpret_cast<const char*>(comment_string)); break; } case kArchDebugBreak: __ int3(); break; case kArchNop: case kArchThrowTerminator: // don't emit code for nops. break; case kArchDeoptimize: { int deopt_state_id = BuildTranslation(instr, -1, 0, OutputFrameStateCombine::Ignore()); Deoptimizer::BailoutType bailout_type = Deoptimizer::BailoutType(MiscField::decode(instr->opcode())); CodeGenResult result = AssembleDeoptimizerCall(deopt_state_id, bailout_type); if (result != kSuccess) return result; break; } case kArchRet: AssembleReturn(); break; case kArchStackPointer: __ mov(i.OutputRegister(), esp); break; case kArchFramePointer: __ mov(i.OutputRegister(), ebp); break; case kArchParentFramePointer: if (frame_access_state()->has_frame()) { __ mov(i.OutputRegister(), Operand(ebp, 0)); } else { __ mov(i.OutputRegister(), ebp); } break; case kArchTruncateDoubleToI: { auto result = i.OutputRegister(); auto input = i.InputDoubleRegister(0); auto ool = new (zone()) OutOfLineTruncateDoubleToI(this, result, input); __ cvttsd2si(result, Operand(input)); __ cmp(result, 1); __ j(overflow, ool->entry()); __ bind(ool->exit()); break; } case kArchStoreWithWriteBarrier: { RecordWriteMode mode = static_cast<RecordWriteMode>(MiscField::decode(instr->opcode())); Register object = i.InputRegister(0); size_t index = 0; Operand operand = i.MemoryOperand(&index); Register value = i.InputRegister(index); Register scratch0 = i.TempRegister(0); Register scratch1 = i.TempRegister(1); auto ool = new (zone()) OutOfLineRecordWrite(this, object, operand, value, scratch0, scratch1, mode); __ mov(operand, value); __ CheckPageFlag(object, scratch0, MemoryChunk::kPointersFromHereAreInterestingMask, not_zero, ool->entry()); __ bind(ool->exit()); break; } case kArchStackSlot: { FrameOffset offset = frame_access_state()->GetFrameOffset(i.InputInt32(0)); Register base; if (offset.from_stack_pointer()) { base = esp; } else { base = ebp; } __ lea(i.OutputRegister(), Operand(base, offset.offset())); break; } case kIeee754Float64Atan: ASSEMBLE_IEEE754_UNOP(atan); break; case kIeee754Float64Atan2: ASSEMBLE_IEEE754_BINOP(atan2); break; case kIeee754Float64Cbrt: ASSEMBLE_IEEE754_UNOP(cbrt); break; case kIeee754Float64Cos: ASSEMBLE_IEEE754_UNOP(cos); break; case kIeee754Float64Expm1: ASSEMBLE_IEEE754_UNOP(expm1); break; case kIeee754Float64Exp: ASSEMBLE_IEEE754_UNOP(exp); break; case kIeee754Float64Atanh: ASSEMBLE_IEEE754_UNOP(atanh); break; case kIeee754Float64Log: ASSEMBLE_IEEE754_UNOP(log); break; case kIeee754Float64Log1p: ASSEMBLE_IEEE754_UNOP(log1p); break; case kIeee754Float64Log2: ASSEMBLE_IEEE754_UNOP(log2); break; case kIeee754Float64Log10: ASSEMBLE_IEEE754_UNOP(log10); break; case kIeee754Float64Sin: ASSEMBLE_IEEE754_UNOP(sin); break; case kIeee754Float64Tan: ASSEMBLE_IEEE754_UNOP(tan); break; case kIA32Add: if (HasImmediateInput(instr, 1)) { __ add(i.InputOperand(0), i.InputImmediate(1)); } else { __ add(i.InputRegister(0), i.InputOperand(1)); } break; case kIA32And: if (HasImmediateInput(instr, 1)) { __ and_(i.InputOperand(0), i.InputImmediate(1)); } else { __ and_(i.InputRegister(0), i.InputOperand(1)); } break; case kIA32Cmp: ASSEMBLE_COMPARE(cmp); break; case kIA32Cmp16: ASSEMBLE_COMPARE(cmpw); break; case kIA32Cmp8: ASSEMBLE_COMPARE(cmpb); break; case kIA32Test: ASSEMBLE_COMPARE(test); break; case kIA32Test16: ASSEMBLE_COMPARE(test_w); break; case kIA32Test8: ASSEMBLE_COMPARE(test_b); break; case kIA32Imul: if (HasImmediateInput(instr, 1)) { __ imul(i.OutputRegister(), i.InputOperand(0), i.InputInt32(1)); } else { __ imul(i.OutputRegister(), i.InputOperand(1)); } break; case kIA32ImulHigh: __ imul(i.InputRegister(1)); break; case kIA32UmulHigh: __ mul(i.InputRegister(1)); break; case kIA32Idiv: __ cdq(); __ idiv(i.InputOperand(1)); break; case kIA32Udiv: __ Move(edx, Immediate(0)); __ div(i.InputOperand(1)); break; case kIA32Not: __ not_(i.OutputOperand()); break; case kIA32Neg: __ neg(i.OutputOperand()); break; case kIA32Or: if (HasImmediateInput(instr, 1)) { __ or_(i.InputOperand(0), i.InputImmediate(1)); } else { __ or_(i.InputRegister(0), i.InputOperand(1)); } break; case kIA32Xor: if (HasImmediateInput(instr, 1)) { __ xor_(i.InputOperand(0), i.InputImmediate(1)); } else { __ xor_(i.InputRegister(0), i.InputOperand(1)); } break; case kIA32Sub: if (HasImmediateInput(instr, 1)) { __ sub(i.InputOperand(0), i.InputImmediate(1)); } else { __ sub(i.InputRegister(0), i.InputOperand(1)); } break; case kIA32Shl: if (HasImmediateInput(instr, 1)) { __ shl(i.OutputOperand(), i.InputInt5(1)); } else { __ shl_cl(i.OutputOperand()); } break; case kIA32Shr: if (HasImmediateInput(instr, 1)) { __ shr(i.OutputOperand(), i.InputInt5(1)); } else { __ shr_cl(i.OutputOperand()); } break; case kIA32Sar: if (HasImmediateInput(instr, 1)) { __ sar(i.OutputOperand(), i.InputInt5(1)); } else { __ sar_cl(i.OutputOperand()); } break; case kIA32AddPair: { // i.OutputRegister(0) == i.InputRegister(0) ... left low word. // i.InputRegister(1) ... left high word. // i.InputRegister(2) ... right low word. // i.InputRegister(3) ... right high word. bool use_temp = false; if (i.OutputRegister(0).code() == i.InputRegister(1).code() || i.OutputRegister(0).code() == i.InputRegister(3).code()) { // We cannot write to the output register directly, because it would // overwrite an input for adc. We have to use the temp register. use_temp = true; __ Move(i.TempRegister(0), i.InputRegister(0)); __ add(i.TempRegister(0), i.InputRegister(2)); } else { __ add(i.OutputRegister(0), i.InputRegister(2)); } __ adc(i.InputRegister(1), Operand(i.InputRegister(3))); if (i.OutputRegister(1).code() != i.InputRegister(1).code()) { __ Move(i.OutputRegister(1), i.InputRegister(1)); } if (use_temp) { __ Move(i.OutputRegister(0), i.TempRegister(0)); } break; } case kIA32SubPair: { // i.OutputRegister(0) == i.InputRegister(0) ... left low word. // i.InputRegister(1) ... left high word. // i.InputRegister(2) ... right low word. // i.InputRegister(3) ... right high word. bool use_temp = false; if (i.OutputRegister(0).code() == i.InputRegister(1).code() || i.OutputRegister(0).code() == i.InputRegister(3).code()) { // We cannot write to the output register directly, because it would // overwrite an input for adc. We have to use the temp register. use_temp = true; __ Move(i.TempRegister(0), i.InputRegister(0)); __ sub(i.TempRegister(0), i.InputRegister(2)); } else { __ sub(i.OutputRegister(0), i.InputRegister(2)); } __ sbb(i.InputRegister(1), Operand(i.InputRegister(3))); if (i.OutputRegister(1).code() != i.InputRegister(1).code()) { __ Move(i.OutputRegister(1), i.InputRegister(1)); } if (use_temp) { __ Move(i.OutputRegister(0), i.TempRegister(0)); } break; } case kIA32MulPair: { __ imul(i.OutputRegister(1), i.InputOperand(0)); __ mov(i.TempRegister(0), i.InputOperand(1)); __ imul(i.TempRegister(0), i.InputOperand(2)); __ add(i.OutputRegister(1), i.TempRegister(0)); __ mov(i.OutputRegister(0), i.InputOperand(0)); // Multiplies the low words and stores them in eax and edx. __ mul(i.InputRegister(2)); __ add(i.OutputRegister(1), i.TempRegister(0)); break; } case kIA32ShlPair: if (HasImmediateInput(instr, 2)) { __ ShlPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2)); } else { // Shift has been loaded into CL by the register allocator. __ ShlPair_cl(i.InputRegister(1), i.InputRegister(0)); } break; case kIA32ShrPair: if (HasImmediateInput(instr, 2)) { __ ShrPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2)); } else { // Shift has been loaded into CL by the register allocator. __ ShrPair_cl(i.InputRegister(1), i.InputRegister(0)); } break; case kIA32SarPair: if (HasImmediateInput(instr, 2)) { __ SarPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2)); } else { // Shift has been loaded into CL by the register allocator. __ SarPair_cl(i.InputRegister(1), i.InputRegister(0)); } break; case kIA32Ror: if (HasImmediateInput(instr, 1)) { __ ror(i.OutputOperand(), i.InputInt5(1)); } else { __ ror_cl(i.OutputOperand()); } break; case kIA32Lzcnt: __ Lzcnt(i.OutputRegister(), i.InputOperand(0)); break; case kIA32Tzcnt: __ Tzcnt(i.OutputRegister(), i.InputOperand(0)); break; case kIA32Popcnt: __ Popcnt(i.OutputRegister(), i.InputOperand(0)); break; case kSSEFloat32Cmp: __ ucomiss(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat32Add: __ addss(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat32Sub: __ subss(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat32Mul: __ mulss(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat32Div: __ divss(i.InputDoubleRegister(0), i.InputOperand(1)); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulss depending on the result. __ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; case kSSEFloat32Max: __ maxss(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat32Min: __ minss(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat32Sqrt: __ sqrtss(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEFloat32Abs: { // TODO(bmeurer): Use 128-bit constants. __ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ psrlq(kScratchDoubleReg, 33); __ andps(i.OutputDoubleRegister(), kScratchDoubleReg); break; } case kSSEFloat32Neg: { // TODO(bmeurer): Use 128-bit constants. __ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ psllq(kScratchDoubleReg, 31); __ xorps(i.OutputDoubleRegister(), kScratchDoubleReg); break; } case kSSEFloat32Round: { CpuFeatureScope sse_scope(masm(), SSE4_1); RoundingMode const mode = static_cast<RoundingMode>(MiscField::decode(instr->opcode())); __ roundss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), mode); break; } case kSSEFloat64Cmp: __ ucomisd(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat64Add: __ addsd(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat64Sub: __ subsd(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat64Mul: __ mulsd(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat64Div: __ divsd(i.InputDoubleRegister(0), i.InputOperand(1)); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulsd depending on the result. __ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; case kSSEFloat64Max: __ maxsd(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat64Min: __ minsd(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat64Mod: { // TODO(dcarney): alignment is wrong. __ sub(esp, Immediate(kDoubleSize)); // Move values to st(0) and st(1). __ movsd(Operand(esp, 0), i.InputDoubleRegister(1)); __ fld_d(Operand(esp, 0)); __ movsd(Operand(esp, 0), i.InputDoubleRegister(0)); __ fld_d(Operand(esp, 0)); // Loop while fprem isn't done. Label mod_loop; __ bind(&mod_loop); // This instructions traps on all kinds inputs, but we are assuming the // floating point control word is set to ignore them all. __ fprem(); // The following 2 instruction implicitly use eax. __ fnstsw_ax(); __ sahf(); __ j(parity_even, &mod_loop); // Move output to stack and clean up. __ fstp(1); __ fstp_d(Operand(esp, 0)); __ movsd(i.OutputDoubleRegister(), Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); break; } case kSSEFloat64Abs: { // TODO(bmeurer): Use 128-bit constants. __ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ psrlq(kScratchDoubleReg, 1); __ andpd(i.OutputDoubleRegister(), kScratchDoubleReg); break; } case kSSEFloat64Neg: { // TODO(bmeurer): Use 128-bit constants. __ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ psllq(kScratchDoubleReg, 63); __ xorpd(i.OutputDoubleRegister(), kScratchDoubleReg); break; } case kSSEFloat64Sqrt: __ sqrtsd(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEFloat64Round: { CpuFeatureScope sse_scope(masm(), SSE4_1); RoundingMode const mode = static_cast<RoundingMode>(MiscField::decode(instr->opcode())); __ roundsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), mode); break; } case kSSEFloat32ToFloat64: __ cvtss2sd(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEFloat64ToFloat32: __ cvtsd2ss(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEFloat32ToInt32: __ cvttss2si(i.OutputRegister(), i.InputOperand(0)); break; case kSSEFloat32ToUint32: { Label success; __ cvttss2si(i.OutputRegister(), i.InputOperand(0)); __ test(i.OutputRegister(), i.OutputRegister()); __ j(positive, &success); __ Move(kScratchDoubleReg, static_cast<float>(INT32_MIN)); __ addss(kScratchDoubleReg, i.InputOperand(0)); __ cvttss2si(i.OutputRegister(), kScratchDoubleReg); __ or_(i.OutputRegister(), Immediate(0x80000000)); __ bind(&success); break; } case kSSEFloat64ToInt32: __ cvttsd2si(i.OutputRegister(), i.InputOperand(0)); break; case kSSEFloat64ToUint32: { __ Move(kScratchDoubleReg, -2147483648.0); __ addsd(kScratchDoubleReg, i.InputOperand(0)); __ cvttsd2si(i.OutputRegister(), kScratchDoubleReg); __ add(i.OutputRegister(), Immediate(0x80000000)); break; } case kSSEInt32ToFloat32: __ cvtsi2ss(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEUint32ToFloat32: { Register scratch0 = i.TempRegister(0); Register scratch1 = i.TempRegister(1); __ mov(scratch0, i.InputOperand(0)); __ Cvtui2ss(i.OutputDoubleRegister(), scratch0, scratch1); break; } case kSSEInt32ToFloat64: __ cvtsi2sd(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEUint32ToFloat64: __ LoadUint32(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEFloat64ExtractLowWord32: if (instr->InputAt(0)->IsFPStackSlot()) { __ mov(i.OutputRegister(), i.InputOperand(0)); } else { __ movd(i.OutputRegister(), i.InputDoubleRegister(0)); } break; case kSSEFloat64ExtractHighWord32: if (instr->InputAt(0)->IsFPStackSlot()) { __ mov(i.OutputRegister(), i.InputOperand(0, kDoubleSize / 2)); } else { __ Pextrd(i.OutputRegister(), i.InputDoubleRegister(0), 1); } break; case kSSEFloat64InsertLowWord32: __ Pinsrd(i.OutputDoubleRegister(), i.InputOperand(1), 0); break; case kSSEFloat64InsertHighWord32: __ Pinsrd(i.OutputDoubleRegister(), i.InputOperand(1), 1); break; case kSSEFloat64LoadLowWord32: __ movd(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kAVXFloat32Add: { CpuFeatureScope avx_scope(masm(), AVX); __ vaddss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat32Sub: { CpuFeatureScope avx_scope(masm(), AVX); __ vsubss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat32Mul: { CpuFeatureScope avx_scope(masm(), AVX); __ vmulss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat32Div: { CpuFeatureScope avx_scope(masm(), AVX); __ vdivss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulss depending on the result. __ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; } case kAVXFloat32Max: { CpuFeatureScope avx_scope(masm(), AVX); __ vmaxss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat32Min: { CpuFeatureScope avx_scope(masm(), AVX); __ vminss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat64Add: { CpuFeatureScope avx_scope(masm(), AVX); __ vaddsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat64Sub: { CpuFeatureScope avx_scope(masm(), AVX); __ vsubsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat64Mul: { CpuFeatureScope avx_scope(masm(), AVX); __ vmulsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat64Div: { CpuFeatureScope avx_scope(masm(), AVX); __ vdivsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulsd depending on the result. __ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; } case kAVXFloat64Max: { CpuFeatureScope avx_scope(masm(), AVX); __ vmaxsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat64Min: { CpuFeatureScope avx_scope(masm(), AVX); __ vminsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat32Abs: { // TODO(bmeurer): Use RIP relative 128-bit constants. __ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ psrlq(kScratchDoubleReg, 33); CpuFeatureScope avx_scope(masm(), AVX); __ vandps(i.OutputDoubleRegister(), kScratchDoubleReg, i.InputOperand(0)); break; } case kAVXFloat32Neg: { // TODO(bmeurer): Use RIP relative 128-bit constants. __ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ psllq(kScratchDoubleReg, 31); CpuFeatureScope avx_scope(masm(), AVX); __ vxorps(i.OutputDoubleRegister(), kScratchDoubleReg, i.InputOperand(0)); break; } case kAVXFloat64Abs: { // TODO(bmeurer): Use RIP relative 128-bit constants. __ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ psrlq(kScratchDoubleReg, 1); CpuFeatureScope avx_scope(masm(), AVX); __ vandpd(i.OutputDoubleRegister(), kScratchDoubleReg, i.InputOperand(0)); break; } case kAVXFloat64Neg: { // TODO(bmeurer): Use RIP relative 128-bit constants. __ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ psllq(kScratchDoubleReg, 63); CpuFeatureScope avx_scope(masm(), AVX); __ vxorpd(i.OutputDoubleRegister(), kScratchDoubleReg, i.InputOperand(0)); break; } case kSSEFloat64SilenceNaN: __ xorpd(kScratchDoubleReg, kScratchDoubleReg); __ subsd(i.InputDoubleRegister(0), kScratchDoubleReg); break; case kIA32Movsxbl: __ movsx_b(i.OutputRegister(), i.MemoryOperand()); break; case kIA32Movzxbl: __ movzx_b(i.OutputRegister(), i.MemoryOperand()); break; case kIA32Movb: { size_t index = 0; Operand operand = i.MemoryOperand(&index); if (HasImmediateInput(instr, index)) { __ mov_b(operand, i.InputInt8(index)); } else { __ mov_b(operand, i.InputRegister(index)); } break; } case kIA32Movsxwl: __ movsx_w(i.OutputRegister(), i.MemoryOperand()); break; case kIA32Movzxwl: __ movzx_w(i.OutputRegister(), i.MemoryOperand()); break; case kIA32Movw: { size_t index = 0; Operand operand = i.MemoryOperand(&index); if (HasImmediateInput(instr, index)) { __ mov_w(operand, i.InputInt16(index)); } else { __ mov_w(operand, i.InputRegister(index)); } break; } case kIA32Movl: if (instr->HasOutput()) { __ mov(i.OutputRegister(), i.MemoryOperand()); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); if (HasImmediateInput(instr, index)) { __ mov(operand, i.InputImmediate(index)); } else { __ mov(operand, i.InputRegister(index)); } } break; case kIA32Movsd: if (instr->HasOutput()) { __ movsd(i.OutputDoubleRegister(), i.MemoryOperand()); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ movsd(operand, i.InputDoubleRegister(index)); } break; case kIA32Movss: if (instr->HasOutput()) { __ movss(i.OutputDoubleRegister(), i.MemoryOperand()); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ movss(operand, i.InputDoubleRegister(index)); } break; case kIA32BitcastFI: if (instr->InputAt(0)->IsFPStackSlot()) { __ mov(i.OutputRegister(), i.InputOperand(0)); } else { __ movd(i.OutputRegister(), i.InputDoubleRegister(0)); } break; case kIA32BitcastIF: if (instr->InputAt(0)->IsRegister()) { __ movd(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ movss(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kIA32Lea: { AddressingMode mode = AddressingModeField::decode(instr->opcode()); // Shorten "leal" to "addl", "subl" or "shll" if the register allocation // and addressing mode just happens to work out. The "addl"/"subl" forms // in these cases are faster based on measurements. if (mode == kMode_MI) { __ Move(i.OutputRegister(), Immediate(i.InputInt32(0))); } else if (i.InputRegister(0).is(i.OutputRegister())) { if (mode == kMode_MRI) { int32_t constant_summand = i.InputInt32(1); if (constant_summand > 0) { __ add(i.OutputRegister(), Immediate(constant_summand)); } else if (constant_summand < 0) { __ sub(i.OutputRegister(), Immediate(-constant_summand)); } } else if (mode == kMode_MR1) { if (i.InputRegister(1).is(i.OutputRegister())) { __ shl(i.OutputRegister(), 1); } else { __ lea(i.OutputRegister(), i.MemoryOperand()); } } else if (mode == kMode_M2) { __ shl(i.OutputRegister(), 1); } else if (mode == kMode_M4) { __ shl(i.OutputRegister(), 2); } else if (mode == kMode_M8) { __ shl(i.OutputRegister(), 3); } else { __ lea(i.OutputRegister(), i.MemoryOperand()); } } else { __ lea(i.OutputRegister(), i.MemoryOperand()); } break; } case kIA32PushFloat32: if (instr->InputAt(0)->IsFPRegister()) { __ sub(esp, Immediate(kFloatSize)); __ movss(Operand(esp, 0), i.InputDoubleRegister(0)); frame_access_state()->IncreaseSPDelta(kFloatSize / kPointerSize); } else if (HasImmediateInput(instr, 0)) { __ Move(kScratchDoubleReg, i.InputDouble(0)); __ sub(esp, Immediate(kDoubleSize)); __ movss(Operand(esp, 0), kScratchDoubleReg); frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize); } else { __ movsd(kScratchDoubleReg, i.InputOperand(0)); __ sub(esp, Immediate(kDoubleSize)); __ movss(Operand(esp, 0), kScratchDoubleReg); frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize); } break; case kIA32PushFloat64: if (instr->InputAt(0)->IsFPRegister()) { __ sub(esp, Immediate(kDoubleSize)); __ movsd(Operand(esp, 0), i.InputDoubleRegister(0)); frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize); } else if (HasImmediateInput(instr, 0)) { __ Move(kScratchDoubleReg, i.InputDouble(0)); __ sub(esp, Immediate(kDoubleSize)); __ movsd(Operand(esp, 0), kScratchDoubleReg); frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize); } else { __ movsd(kScratchDoubleReg, i.InputOperand(0)); __ sub(esp, Immediate(kDoubleSize)); __ movsd(Operand(esp, 0), kScratchDoubleReg); frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize); } break; case kIA32Push: if (instr->InputAt(0)->IsFPRegister()) { __ sub(esp, Immediate(kFloatSize)); __ movsd(Operand(esp, 0), i.InputDoubleRegister(0)); frame_access_state()->IncreaseSPDelta(kFloatSize / kPointerSize); } else if (HasImmediateInput(instr, 0)) { __ push(i.InputImmediate(0)); frame_access_state()->IncreaseSPDelta(1); } else { __ push(i.InputOperand(0)); frame_access_state()->IncreaseSPDelta(1); } break; case kIA32Poke: { int const slot = MiscField::decode(instr->opcode()); if (HasImmediateInput(instr, 0)) { __ mov(Operand(esp, slot * kPointerSize), i.InputImmediate(0)); } else { __ mov(Operand(esp, slot * kPointerSize), i.InputRegister(0)); } break; } case kIA32Xchgb: { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ xchg_b(i.InputRegister(index), operand); break; } case kIA32Xchgw: { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ xchg_w(i.InputRegister(index), operand); break; } case kIA32Xchgl: { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ xchg(i.InputRegister(index), operand); break; } case kCheckedLoadInt8: ASSEMBLE_CHECKED_LOAD_INTEGER(movsx_b); break; case kCheckedLoadUint8: ASSEMBLE_CHECKED_LOAD_INTEGER(movzx_b); break; case kCheckedLoadInt16: ASSEMBLE_CHECKED_LOAD_INTEGER(movsx_w); break; case kCheckedLoadUint16: ASSEMBLE_CHECKED_LOAD_INTEGER(movzx_w); break; case kCheckedLoadWord32: ASSEMBLE_CHECKED_LOAD_INTEGER(mov); break; case kCheckedLoadFloat32: ASSEMBLE_CHECKED_LOAD_FLOAT(movss); break; case kCheckedLoadFloat64: ASSEMBLE_CHECKED_LOAD_FLOAT(movsd); break; case kCheckedStoreWord8: ASSEMBLE_CHECKED_STORE_INTEGER(mov_b); break; case kCheckedStoreWord16: ASSEMBLE_CHECKED_STORE_INTEGER(mov_w); break; case kCheckedStoreWord32: ASSEMBLE_CHECKED_STORE_INTEGER(mov); break; case kCheckedStoreFloat32: ASSEMBLE_CHECKED_STORE_FLOAT(movss); break; case kCheckedStoreFloat64: ASSEMBLE_CHECKED_STORE_FLOAT(movsd); break; case kIA32StackCheck: { ExternalReference const stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); break; } case kCheckedLoadWord64: case kCheckedStoreWord64: UNREACHABLE(); // currently unsupported checked int64 load/store. break; case kAtomicLoadInt8: case kAtomicLoadUint8: case kAtomicLoadInt16: case kAtomicLoadUint16: case kAtomicLoadWord32: case kAtomicStoreWord8: case kAtomicStoreWord16: case kAtomicStoreWord32: UNREACHABLE(); // Won't be generated by instruction selector. break; } return kSuccess; } // NOLINT(readability/fn_size) // Assembles a branch after an instruction. void CodeGenerator::AssembleArchBranch(Instruction* instr, BranchInfo* branch) { IA32OperandConverter i(this, instr); Label::Distance flabel_distance = branch->fallthru ? Label::kNear : Label::kFar; Label* tlabel = branch->true_label; Label* flabel = branch->false_label; switch (branch->condition) { case kUnorderedEqual: __ j(parity_even, flabel, flabel_distance); // Fall through. case kEqual: __ j(equal, tlabel); break; case kUnorderedNotEqual: __ j(parity_even, tlabel); // Fall through. case kNotEqual: __ j(not_equal, tlabel); break; case kSignedLessThan: __ j(less, tlabel); break; case kSignedGreaterThanOrEqual: __ j(greater_equal, tlabel); break; case kSignedLessThanOrEqual: __ j(less_equal, tlabel); break; case kSignedGreaterThan: __ j(greater, tlabel); break; case kUnsignedLessThan: __ j(below, tlabel); break; case kUnsignedGreaterThanOrEqual: __ j(above_equal, tlabel); break; case kUnsignedLessThanOrEqual: __ j(below_equal, tlabel); break; case kUnsignedGreaterThan: __ j(above, tlabel); break; case kOverflow: __ j(overflow, tlabel); break; case kNotOverflow: __ j(no_overflow, tlabel); break; default: UNREACHABLE(); break; } // Add a jump if not falling through to the next block. if (!branch->fallthru) __ jmp(flabel); } void CodeGenerator::AssembleArchJump(RpoNumber target) { if (!IsNextInAssemblyOrder(target)) __ jmp(GetLabel(target)); } // Assembles boolean materializations after an instruction. void CodeGenerator::AssembleArchBoolean(Instruction* instr, FlagsCondition condition) { IA32OperandConverter i(this, instr); Label done; // Materialize a full 32-bit 1 or 0 value. The result register is always the // last output of the instruction. Label check; DCHECK_NE(0u, instr->OutputCount()); Register reg = i.OutputRegister(instr->OutputCount() - 1); Condition cc = no_condition; switch (condition) { case kUnorderedEqual: __ j(parity_odd, &check, Label::kNear); __ Move(reg, Immediate(0)); __ jmp(&done, Label::kNear); // Fall through. case kEqual: cc = equal; break; case kUnorderedNotEqual: __ j(parity_odd, &check, Label::kNear); __ mov(reg, Immediate(1)); __ jmp(&done, Label::kNear); // Fall through. case kNotEqual: cc = not_equal; break; case kSignedLessThan: cc = less; break; case kSignedGreaterThanOrEqual: cc = greater_equal; break; case kSignedLessThanOrEqual: cc = less_equal; break; case kSignedGreaterThan: cc = greater; break; case kUnsignedLessThan: cc = below; break; case kUnsignedGreaterThanOrEqual: cc = above_equal; break; case kUnsignedLessThanOrEqual: cc = below_equal; break; case kUnsignedGreaterThan: cc = above; break; case kOverflow: cc = overflow; break; case kNotOverflow: cc = no_overflow; break; default: UNREACHABLE(); break; } __ bind(&check); if (reg.is_byte_register()) { // setcc for byte registers (al, bl, cl, dl). __ setcc(cc, reg); __ movzx_b(reg, reg); } else { // Emit a branch to set a register to either 1 or 0. Label set; __ j(cc, &set, Label::kNear); __ Move(reg, Immediate(0)); __ jmp(&done, Label::kNear); __ bind(&set); __ mov(reg, Immediate(1)); } __ bind(&done); } void CodeGenerator::AssembleArchLookupSwitch(Instruction* instr) { IA32OperandConverter i(this, instr); Register input = i.InputRegister(0); for (size_t index = 2; index < instr->InputCount(); index += 2) { __ cmp(input, Immediate(i.InputInt32(index + 0))); __ j(equal, GetLabel(i.InputRpo(index + 1))); } AssembleArchJump(i.InputRpo(1)); } void CodeGenerator::AssembleArchTableSwitch(Instruction* instr) { IA32OperandConverter i(this, instr); Register input = i.InputRegister(0); size_t const case_count = instr->InputCount() - 2; Label** cases = zone()->NewArray<Label*>(case_count); for (size_t index = 0; index < case_count; ++index) { cases[index] = GetLabel(i.InputRpo(index + 2)); } Label* const table = AddJumpTable(cases, case_count); __ cmp(input, Immediate(case_count)); __ j(above_equal, GetLabel(i.InputRpo(1))); __ jmp(Operand::JumpTable(input, times_4, table)); } CodeGenerator::CodeGenResult CodeGenerator::AssembleDeoptimizerCall( int deoptimization_id, Deoptimizer::BailoutType bailout_type) { Address deopt_entry = Deoptimizer::GetDeoptimizationEntry( isolate(), deoptimization_id, bailout_type); if (deopt_entry == nullptr) return kTooManyDeoptimizationBailouts; __ call(deopt_entry, RelocInfo::RUNTIME_ENTRY); return kSuccess; } // The calling convention for JSFunctions on IA32 passes arguments on the // stack and the JSFunction and context in EDI and ESI, respectively, thus // the steps of the call look as follows: // --{ before the call instruction }-------------------------------------------- // | caller frame | // ^ esp ^ ebp // --{ push arguments and setup ESI, EDI }-------------------------------------- // | args + receiver | caller frame | // ^ esp ^ ebp // [edi = JSFunction, esi = context] // --{ call [edi + kCodeEntryOffset] }------------------------------------------ // | RET | args + receiver | caller frame | // ^ esp ^ ebp // =={ prologue of called function }============================================ // --{ push ebp }--------------------------------------------------------------- // | FP | RET | args + receiver | caller frame | // ^ esp ^ ebp // --{ mov ebp, esp }----------------------------------------------------------- // | FP | RET | args + receiver | caller frame | // ^ ebp,esp // --{ push esi }--------------------------------------------------------------- // | CTX | FP | RET | args + receiver | caller frame | // ^esp ^ ebp // --{ push edi }--------------------------------------------------------------- // | FNC | CTX | FP | RET | args + receiver | caller frame | // ^esp ^ ebp // --{ subi esp, #N }----------------------------------------------------------- // | callee frame | FNC | CTX | FP | RET | args + receiver | caller frame | // ^esp ^ ebp // =={ body of called function }================================================ // =={ epilogue of called function }============================================ // --{ mov esp, ebp }----------------------------------------------------------- // | FP | RET | args + receiver | caller frame | // ^ esp,ebp // --{ pop ebp }----------------------------------------------------------- // | | RET | args + receiver | caller frame | // ^ esp ^ ebp // --{ ret #A+1 }----------------------------------------------------------- // | | caller frame | // ^ esp ^ ebp // Runtime function calls are accomplished by doing a stub call to the // CEntryStub (a real code object). On IA32 passes arguments on the // stack, the number of arguments in EAX, the address of the runtime function // in EBX, and the context in ESI. // --{ before the call instruction }-------------------------------------------- // | caller frame | // ^ esp ^ ebp // --{ push arguments and setup EAX, EBX, and ESI }----------------------------- // | args + receiver | caller frame | // ^ esp ^ ebp // [eax = #args, ebx = runtime function, esi = context] // --{ call #CEntryStub }------------------------------------------------------- // | RET | args + receiver | caller frame | // ^ esp ^ ebp // =={ body of runtime function }=============================================== // --{ runtime returns }-------------------------------------------------------- // | caller frame | // ^ esp ^ ebp // Other custom linkages (e.g. for calling directly into and out of C++) may // need to save callee-saved registers on the stack, which is done in the // function prologue of generated code. // --{ before the call instruction }-------------------------------------------- // | caller frame | // ^ esp ^ ebp // --{ set up arguments in registers on stack }--------------------------------- // | args | caller frame | // ^ esp ^ ebp // [r0 = arg0, r1 = arg1, ...] // --{ call code }-------------------------------------------------------------- // | RET | args | caller frame | // ^ esp ^ ebp // =={ prologue of called function }============================================ // --{ push ebp }--------------------------------------------------------------- // | FP | RET | args | caller frame | // ^ esp ^ ebp // --{ mov ebp, esp }----------------------------------------------------------- // | FP | RET | args | caller frame | // ^ ebp,esp // --{ save registers }--------------------------------------------------------- // | regs | FP | RET | args | caller frame | // ^ esp ^ ebp // --{ subi esp, #N }----------------------------------------------------------- // | callee frame | regs | FP | RET | args | caller frame | // ^esp ^ ebp // =={ body of called function }================================================ // =={ epilogue of called function }============================================ // --{ restore registers }------------------------------------------------------ // | regs | FP | RET | args | caller frame | // ^ esp ^ ebp // --{ mov esp, ebp }----------------------------------------------------------- // | FP | RET | args | caller frame | // ^ esp,ebp // --{ pop ebp }---------------------------------------------------------------- // | RET | args | caller frame | // ^ esp ^ ebp void CodeGenerator::FinishFrame(Frame* frame) { CallDescriptor* descriptor = linkage()->GetIncomingDescriptor(); const RegList saves = descriptor->CalleeSavedRegisters(); if (saves != 0) { // Save callee-saved registers. DCHECK(!info()->is_osr()); int pushed = 0; for (int i = Register::kNumRegisters - 1; i >= 0; i--) { if (!((1 << i) & saves)) continue; ++pushed; } frame->AllocateSavedCalleeRegisterSlots(pushed); } } void CodeGenerator::AssembleConstructFrame() { CallDescriptor* descriptor = linkage()->GetIncomingDescriptor(); if (frame_access_state()->has_frame()) { if (descriptor->IsCFunctionCall()) { __ push(ebp); __ mov(ebp, esp); } else if (descriptor->IsJSFunctionCall()) { __ Prologue(this->info()->GeneratePreagedPrologue()); } else { __ StubPrologue(info()->GetOutputStackFrameType()); } } int shrink_slots = frame()->GetSpillSlotCount(); if (info()->is_osr()) { // TurboFan OSR-compiled functions cannot be entered directly. __ Abort(kShouldNotDirectlyEnterOsrFunction); // Unoptimized code jumps directly to this entrypoint while the unoptimized // frame is still on the stack. Optimized code uses OSR values directly from // the unoptimized frame. Thus, all that needs to be done is to allocate the // remaining stack slots. if (FLAG_code_comments) __ RecordComment("-- OSR entrypoint --"); osr_pc_offset_ = __ pc_offset(); shrink_slots -= OsrHelper(info()).UnoptimizedFrameSlots(); } const RegList saves = descriptor->CalleeSavedRegisters(); if (shrink_slots > 0) { __ sub(esp, Immediate(shrink_slots * kPointerSize)); } if (saves != 0) { // Save callee-saved registers. DCHECK(!info()->is_osr()); int pushed = 0; for (int i = Register::kNumRegisters - 1; i >= 0; i--) { if (!((1 << i) & saves)) continue; __ push(Register::from_code(i)); ++pushed; } } } void CodeGenerator::AssembleReturn() { CallDescriptor* descriptor = linkage()->GetIncomingDescriptor(); const RegList saves = descriptor->CalleeSavedRegisters(); // Restore registers. if (saves != 0) { for (int i = 0; i < Register::kNumRegisters; i++) { if (!((1 << i) & saves)) continue; __ pop(Register::from_code(i)); } } if (descriptor->IsCFunctionCall()) { AssembleDeconstructFrame(); } else if (frame_access_state()->has_frame()) { // Canonicalize JSFunction return sites for now. if (return_label_.is_bound()) { __ jmp(&return_label_); return; } else { __ bind(&return_label_); AssembleDeconstructFrame(); } } size_t pop_size = descriptor->StackParameterCount() * kPointerSize; // Might need ecx for scratch if pop_size is too big. DCHECK_EQ(0u, descriptor->CalleeSavedRegisters() & ecx.bit()); __ Ret(static_cast<int>(pop_size), ecx); } void CodeGenerator::AssembleMove(InstructionOperand* source, InstructionOperand* destination) { IA32OperandConverter g(this, nullptr); // Dispatch on the source and destination operand kinds. Not all // combinations are possible. if (source->IsRegister()) { DCHECK(destination->IsRegister() || destination->IsStackSlot()); Register src = g.ToRegister(source); Operand dst = g.ToOperand(destination); __ mov(dst, src); } else if (source->IsStackSlot()) { DCHECK(destination->IsRegister() || destination->IsStackSlot()); Operand src = g.ToOperand(source); if (destination->IsRegister()) { Register dst = g.ToRegister(destination); __ mov(dst, src); } else { Operand dst = g.ToOperand(destination); __ push(src); __ pop(dst); } } else if (source->IsConstant()) { Constant src_constant = g.ToConstant(source); if (src_constant.type() == Constant::kHeapObject) { Handle<HeapObject> src = src_constant.ToHeapObject(); int slot; if (IsMaterializableFromFrame(src, &slot)) { if (destination->IsRegister()) { Register dst = g.ToRegister(destination); __ mov(dst, g.SlotToOperand(slot)); } else { DCHECK(destination->IsStackSlot()); Operand dst = g.ToOperand(destination); __ push(g.SlotToOperand(slot)); __ pop(dst); } } else if (destination->IsRegister()) { Register dst = g.ToRegister(destination); __ LoadHeapObject(dst, src); } else { DCHECK(destination->IsStackSlot()); Operand dst = g.ToOperand(destination); AllowDeferredHandleDereference embedding_raw_address; if (isolate()->heap()->InNewSpace(*src)) { __ PushHeapObject(src); __ pop(dst); } else { __ mov(dst, src); } } } else if (destination->IsRegister()) { Register dst = g.ToRegister(destination); __ Move(dst, g.ToImmediate(source)); } else if (destination->IsStackSlot()) { Operand dst = g.ToOperand(destination); __ Move(dst, g.ToImmediate(source)); } else if (src_constant.type() == Constant::kFloat32) { // TODO(turbofan): Can we do better here? uint32_t src = bit_cast<uint32_t>(src_constant.ToFloat32()); if (destination->IsFPRegister()) { XMMRegister dst = g.ToDoubleRegister(destination); __ Move(dst, src); } else { DCHECK(destination->IsFPStackSlot()); Operand dst = g.ToOperand(destination); __ Move(dst, Immediate(src)); } } else { DCHECK_EQ(Constant::kFloat64, src_constant.type()); uint64_t src = bit_cast<uint64_t>(src_constant.ToFloat64()); uint32_t lower = static_cast<uint32_t>(src); uint32_t upper = static_cast<uint32_t>(src >> 32); if (destination->IsFPRegister()) { XMMRegister dst = g.ToDoubleRegister(destination); __ Move(dst, src); } else { DCHECK(destination->IsFPStackSlot()); Operand dst0 = g.ToOperand(destination); Operand dst1 = g.HighOperand(destination); __ Move(dst0, Immediate(lower)); __ Move(dst1, Immediate(upper)); } } } else if (source->IsFPRegister()) { XMMRegister src = g.ToDoubleRegister(source); if (destination->IsFPRegister()) { XMMRegister dst = g.ToDoubleRegister(destination); __ movaps(dst, src); } else { DCHECK(destination->IsFPStackSlot()); Operand dst = g.ToOperand(destination); __ movsd(dst, src); } } else if (source->IsFPStackSlot()) { DCHECK(destination->IsFPRegister() || destination->IsFPStackSlot()); Operand src = g.ToOperand(source); if (destination->IsFPRegister()) { XMMRegister dst = g.ToDoubleRegister(destination); __ movsd(dst, src); } else { Operand dst = g.ToOperand(destination); __ movsd(kScratchDoubleReg, src); __ movsd(dst, kScratchDoubleReg); } } else { UNREACHABLE(); } } void CodeGenerator::AssembleSwap(InstructionOperand* source, InstructionOperand* destination) { IA32OperandConverter g(this, nullptr); // Dispatch on the source and destination operand kinds. Not all // combinations are possible. if (source->IsRegister() && destination->IsRegister()) { // Register-register. Register src = g.ToRegister(source); Register dst = g.ToRegister(destination); __ push(src); __ mov(src, dst); __ pop(dst); } else if (source->IsRegister() && destination->IsStackSlot()) { // Register-memory. Register src = g.ToRegister(source); __ push(src); frame_access_state()->IncreaseSPDelta(1); Operand dst = g.ToOperand(destination); __ mov(src, dst); frame_access_state()->IncreaseSPDelta(-1); dst = g.ToOperand(destination); __ pop(dst); } else if (source->IsStackSlot() && destination->IsStackSlot()) { // Memory-memory. Operand dst1 = g.ToOperand(destination); __ push(dst1); frame_access_state()->IncreaseSPDelta(1); Operand src1 = g.ToOperand(source); __ push(src1); Operand dst2 = g.ToOperand(destination); __ pop(dst2); frame_access_state()->IncreaseSPDelta(-1); Operand src2 = g.ToOperand(source); __ pop(src2); } else if (source->IsFPRegister() && destination->IsFPRegister()) { // XMM register-register swap. XMMRegister src = g.ToDoubleRegister(source); XMMRegister dst = g.ToDoubleRegister(destination); __ movaps(kScratchDoubleReg, src); __ movaps(src, dst); __ movaps(dst, kScratchDoubleReg); } else if (source->IsFPRegister() && destination->IsFPStackSlot()) { // XMM register-memory swap. XMMRegister reg = g.ToDoubleRegister(source); Operand other = g.ToOperand(destination); __ movsd(kScratchDoubleReg, other); __ movsd(other, reg); __ movaps(reg, kScratchDoubleReg); } else if (source->IsFPStackSlot() && destination->IsFPStackSlot()) { // Double-width memory-to-memory. Operand src0 = g.ToOperand(source); Operand src1 = g.HighOperand(source); Operand dst0 = g.ToOperand(destination); Operand dst1 = g.HighOperand(destination); __ movsd(kScratchDoubleReg, dst0); // Save destination in scratch register. __ push(src0); // Then use stack to copy source to destination. __ pop(dst0); __ push(src1); __ pop(dst1); __ movsd(src0, kScratchDoubleReg); } else { // No other combinations are possible. UNREACHABLE(); } } void CodeGenerator::AssembleJumpTable(Label** targets, size_t target_count) { for (size_t index = 0; index < target_count; ++index) { __ dd(targets[index]); } } void CodeGenerator::EnsureSpaceForLazyDeopt() { if (!info()->ShouldEnsureSpaceForLazyDeopt()) { return; } int space_needed = Deoptimizer::patch_size(); // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. int current_pc = masm()->pc_offset(); if (current_pc < last_lazy_deopt_pc_ + space_needed) { int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; __ Nop(padding_size); } } #undef __ } // namespace compiler } // namespace internal } // namespace v8