/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGLSLFragmentShaderBuilder.h" #include "GrRenderTarget.h" #include "gl/GrGLGpu.h" #include "glsl/GrGLSL.h" #include "glsl/GrGLSLCaps.h" #include "glsl/GrGLSLProgramBuilder.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLVarying.h" const char* GrGLSLFragmentShaderBuilder::kDstTextureColorName = "_dstColor"; static const char* specific_layout_qualifier_name(GrBlendEquation equation) { SkASSERT(GrBlendEquationIsAdvanced(equation)); static const char* kLayoutQualifierNames[] = { "blend_support_screen", "blend_support_overlay", "blend_support_darken", "blend_support_lighten", "blend_support_colordodge", "blend_support_colorburn", "blend_support_hardlight", "blend_support_softlight", "blend_support_difference", "blend_support_exclusion", "blend_support_multiply", "blend_support_hsl_hue", "blend_support_hsl_saturation", "blend_support_hsl_color", "blend_support_hsl_luminosity" }; return kLayoutQualifierNames[equation - kFirstAdvancedGrBlendEquation]; GR_STATIC_ASSERT(0 == kScreen_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(1 == kOverlay_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(2 == kDarken_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(3 == kLighten_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(4 == kColorDodge_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(5 == kColorBurn_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(6 == kHardLight_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(7 == kSoftLight_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(8 == kDifference_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(9 == kExclusion_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(10 == kMultiply_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(11 == kHSLHue_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(12 == kHSLSaturation_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(13 == kHSLColor_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(14 == kHSLLuminosity_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(SK_ARRAY_COUNT(kLayoutQualifierNames) == kGrBlendEquationCnt - kFirstAdvancedGrBlendEquation); } GrGLSLFragmentShaderBuilder::FragPosKey GrGLSLFragmentShaderBuilder::KeyForFragmentPosition(const GrRenderTarget* dst) { if (kTopLeft_GrSurfaceOrigin == dst->origin()) { return kTopLeftFragPosRead_FragPosKey; } else { return kBottomLeftFragPosRead_FragPosKey; } } GrGLSLFragmentShaderBuilder::GrGLSLFragmentShaderBuilder(GrGLSLProgramBuilder* program, uint8_t fragPosKey) : GrGLSLFragmentBuilder(program) , fSetupFragPosition(false) , fTopLeftFragPosRead(kTopLeftFragPosRead_FragPosKey == fragPosKey) , fHasCustomColorOutput(false) , fCustomColorOutputIndex(-1) , fHasSecondaryOutput(false) , fHasInitializedSampleMask(false) , fHasReadDstColor(false) , fHasReadFragmentPosition(false) { fSubstageIndices.push_back(0); } bool GrGLSLFragmentShaderBuilder::enableFeature(GLSLFeature feature) { switch (feature) { case kStandardDerivatives_GLSLFeature: { if (!fProgramBuilder->glslCaps()->shaderDerivativeSupport()) { return false; } const char* extension = fProgramBuilder->glslCaps()->shaderDerivativeExtensionString(); if (extension) { this->addFeature(1 << kStandardDerivatives_GLSLFeature, extension); } return true; } case kPixelLocalStorage_GLSLFeature: { if (fProgramBuilder->glslCaps()->pixelLocalStorageSize() <= 0) { return false; } this->addFeature(1 << kPixelLocalStorage_GLSLFeature, "GL_EXT_shader_pixel_local_storage"); return true; } default: SkFAIL("Unexpected GLSLFeature requested."); return false; } } SkString GrGLSLFragmentShaderBuilder::ensureFSCoords2D(const GrGLSLTransformedCoordsArray& coords, int index) { if (kVec3f_GrSLType != coords[index].getType()) { SkASSERT(kVec2f_GrSLType == coords[index].getType()); return coords[index].getName(); } SkString coords2D("coords2D"); if (0 != index) { coords2D.appendf("_%i", index); } this->codeAppendf("\tvec2 %s = %s.xy / %s.z;", coords2D.c_str(), coords[index].c_str(), coords[index].c_str()); return coords2D; } const char* GrGLSLFragmentShaderBuilder::fragmentPosition() { fHasReadFragmentPosition = true; const GrGLSLCaps* glslCaps = fProgramBuilder->glslCaps(); // We only declare "gl_FragCoord" when we're in the case where we want to use layout qualifiers // to reverse y. Otherwise it isn't necessary and whether the "in" qualifier appears in the // declaration varies in earlier GLSL specs. So it is simpler to omit it. if (fTopLeftFragPosRead) { fSetupFragPosition = true; return "gl_FragCoord"; } else if (const char* extension = glslCaps->fragCoordConventionsExtensionString()) { if (!fSetupFragPosition) { if (glslCaps->generation() < k150_GrGLSLGeneration) { this->addFeature(1 << kFragCoordConventions_GLSLPrivateFeature, extension); } fInputs.push_back().set(kVec4f_GrSLType, GrGLSLShaderVar::kIn_TypeModifier, "gl_FragCoord", kDefault_GrSLPrecision, "origin_upper_left"); fSetupFragPosition = true; } return "gl_FragCoord"; } else { static const char* kTempName = "tmpXYFragCoord"; static const char* kCoordName = "fragCoordYDown"; if (!fSetupFragPosition) { const char* rtHeightName; fProgramBuilder->addRTHeightUniform("RTHeight", &rtHeightName); // The Adreno compiler seems to be very touchy about access to "gl_FragCoord". // Accessing glFragCoord.zw can cause a program to fail to link. Additionally, // depending on the surrounding code, accessing .xy with a uniform involved can // do the same thing. Copying gl_FragCoord.xy into a temp vec2 beforehand // (and only accessing .xy) seems to "fix" things. const char* precision = glslCaps->usesPrecisionModifiers() ? "highp " : ""; this->codePrependf("\t%svec4 %s = vec4(%s.x, %s - %s.y, 1.0, 1.0);\n", precision, kCoordName, kTempName, rtHeightName, kTempName); this->codePrependf("%svec2 %s = gl_FragCoord.xy;", precision, kTempName); fSetupFragPosition = true; } SkASSERT(fProgramBuilder->fUniformHandles.fRTHeightUni.isValid()); return kCoordName; } } void GrGLSLFragmentShaderBuilder::maskSampleCoverage(const char* mask, bool invert) { const GrGLSLCaps& glslCaps = *fProgramBuilder->glslCaps(); if (!glslCaps.sampleVariablesSupport()) { SkDEBUGFAIL("Attempted to mask sample coverage without support."); return; } if (const char* extension = glslCaps.sampleVariablesExtensionString()) { this->addFeature(1 << kSampleVariables_GLSLPrivateFeature, extension); } if (!fHasInitializedSampleMask) { this->codePrependf("gl_SampleMask[0] = -1;"); fHasInitializedSampleMask = true; } if (invert) { this->codeAppendf("gl_SampleMask[0] &= ~(%s);", mask); } else { this->codeAppendf("gl_SampleMask[0] &= %s;", mask); } } void GrGLSLFragmentShaderBuilder::overrideSampleCoverage(const char* mask) { const GrGLSLCaps& glslCaps = *fProgramBuilder->glslCaps(); if (!glslCaps.sampleMaskOverrideCoverageSupport()) { SkDEBUGFAIL("Attempted to override sample coverage without support."); return; } SkASSERT(glslCaps.sampleVariablesSupport()); if (const char* extension = glslCaps.sampleVariablesExtensionString()) { this->addFeature(1 << kSampleVariables_GLSLPrivateFeature, extension); } if (this->addFeature(1 << kSampleMaskOverrideCoverage_GLSLPrivateFeature, "GL_NV_sample_mask_override_coverage")) { // Redeclare gl_SampleMask with layout(override_coverage) if we haven't already. fOutputs.push_back().set(kInt_GrSLType, GrShaderVar::kOut_TypeModifier, "gl_SampleMask", 1, kHigh_GrSLPrecision, "override_coverage"); } this->codeAppendf("gl_SampleMask[0] = %s;", mask); fHasInitializedSampleMask = true; } const char* GrGLSLFragmentShaderBuilder::dstColor() { fHasReadDstColor = true; const char* override = fProgramBuilder->primitiveProcessor().getDestColorOverride(); if (override != nullptr) { return override; } const GrGLSLCaps* glslCaps = fProgramBuilder->glslCaps(); if (glslCaps->fbFetchSupport()) { this->addFeature(1 << kFramebufferFetch_GLSLPrivateFeature, glslCaps->fbFetchExtensionString()); // Some versions of this extension string require declaring custom color output on ES 3.0+ const char* fbFetchColorName = glslCaps->fbFetchColorName(); if (glslCaps->fbFetchNeedsCustomOutput()) { this->enableCustomOutput(); fOutputs[fCustomColorOutputIndex].setTypeModifier(GrShaderVar::kInOut_TypeModifier); fbFetchColorName = DeclaredColorOutputName(); } return fbFetchColorName; } else { return kDstTextureColorName; } } void GrGLSLFragmentShaderBuilder::enableAdvancedBlendEquationIfNeeded(GrBlendEquation equation) { SkASSERT(GrBlendEquationIsAdvanced(equation)); const GrGLSLCaps& caps = *fProgramBuilder->glslCaps(); if (!caps.mustEnableAdvBlendEqs()) { return; } this->addFeature(1 << kBlendEquationAdvanced_GLSLPrivateFeature, "GL_KHR_blend_equation_advanced"); if (caps.mustEnableSpecificAdvBlendEqs()) { this->addLayoutQualifier(specific_layout_qualifier_name(equation), kOut_InterfaceQualifier); } else { this->addLayoutQualifier("blend_support_all_equations", kOut_InterfaceQualifier); } } void GrGLSLFragmentShaderBuilder::enableCustomOutput() { if (!fHasCustomColorOutput) { fHasCustomColorOutput = true; fCustomColorOutputIndex = fOutputs.count(); fOutputs.push_back().set(kVec4f_GrSLType, GrGLSLShaderVar::kOut_TypeModifier, DeclaredColorOutputName()); fProgramBuilder->finalizeFragmentOutputColor(fOutputs.back()); } } void GrGLSLFragmentShaderBuilder::enableSecondaryOutput() { SkASSERT(!fHasSecondaryOutput); fHasSecondaryOutput = true; const GrGLSLCaps& caps = *fProgramBuilder->glslCaps(); if (const char* extension = caps.secondaryOutputExtensionString()) { this->addFeature(1 << kBlendFuncExtended_GLSLPrivateFeature, extension); } // If the primary output is declared, we must declare also the secondary output // and vice versa, since it is not allowed to use a built-in gl_FragColor and a custom // output. The condition also co-incides with the condition in whici GLES SL 2.0 // requires the built-in gl_SecondaryFragColorEXT, where as 3.0 requires a custom output. if (caps.mustDeclareFragmentShaderOutput()) { fOutputs.push_back().set(kVec4f_GrSLType, GrGLSLShaderVar::kOut_TypeModifier, DeclaredSecondaryColorOutputName()); fProgramBuilder->finalizeFragmentSecondaryColor(fOutputs.back()); } } const char* GrGLSLFragmentShaderBuilder::getPrimaryColorOutputName() const { return fHasCustomColorOutput ? DeclaredColorOutputName() : "gl_FragColor"; } void GrGLSLFragmentBuilder::declAppendf(const char* fmt, ...) { va_list argp; va_start(argp, fmt); inputs().appendVAList(fmt, argp); va_end(argp); } const char* GrGLSLFragmentShaderBuilder::getSecondaryColorOutputName() const { const GrGLSLCaps& caps = *fProgramBuilder->glslCaps(); return caps.mustDeclareFragmentShaderOutput() ? DeclaredSecondaryColorOutputName() : "gl_SecondaryFragColorEXT"; } void GrGLSLFragmentShaderBuilder::onFinalize() { fProgramBuilder->varyingHandler()->getFragDecls(&this->inputs(), &this->outputs()); GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *fProgramBuilder->glslCaps(), &this->precisionQualifier()); } void GrGLSLFragmentShaderBuilder::onBeforeChildProcEmitCode() { SkASSERT(fSubstageIndices.count() >= 1); fSubstageIndices.push_back(0); // second-to-last value in the fSubstageIndices stack is the index of the child proc // at that level which is currently emitting code. fMangleString.appendf("_c%d", fSubstageIndices[fSubstageIndices.count() - 2]); } void GrGLSLFragmentShaderBuilder::onAfterChildProcEmitCode() { SkASSERT(fSubstageIndices.count() >= 2); fSubstageIndices.pop_back(); fSubstageIndices.back()++; int removeAt = fMangleString.findLastOf('_'); fMangleString.remove(removeAt, fMangleString.size() - removeAt); }