/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAAConvexPathRenderer.h" #include "GrAAConvexTessellator.h" #include "GrBatchFlushState.h" #include "GrBatchTest.h" #include "GrCaps.h" #include "GrContext.h" #include "GrDefaultGeoProcFactory.h" #include "GrGeometryProcessor.h" #include "GrInvariantOutput.h" #include "GrPathUtils.h" #include "GrProcessor.h" #include "GrPipelineBuilder.h" #include "GrStrokeInfo.h" #include "SkGeometry.h" #include "SkPathPriv.h" #include "SkString.h" #include "SkTraceEvent.h" #include "batches/GrVertexBatch.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLVertexShaderBuilder.h" GrAAConvexPathRenderer::GrAAConvexPathRenderer() { } struct Segment { enum { // These enum values are assumed in member functions below. kLine = 0, kQuad = 1, } fType; // line uses one pt, quad uses 2 pts SkPoint fPts[2]; // normal to edge ending at each pt SkVector fNorms[2]; // is the corner where the previous segment meets this segment // sharp. If so, fMid is a normalized bisector facing outward. SkVector fMid; int countPoints() { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fType + 1; } const SkPoint& endPt() const { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fPts[fType]; }; const SkPoint& endNorm() const { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fNorms[fType]; }; }; typedef SkTArray<Segment, true> SegmentArray; static void center_of_mass(const SegmentArray& segments, SkPoint* c) { SkScalar area = 0; SkPoint center = {0, 0}; int count = segments.count(); SkPoint p0 = {0, 0}; if (count > 2) { // We translate the polygon so that the first point is at the origin. // This avoids some precision issues with small area polygons far away // from the origin. p0 = segments[0].endPt(); SkPoint pi; SkPoint pj; // the first and last iteration of the below loop would compute // zeros since the starting / ending point is (0,0). So instead we start // at i=1 and make the last iteration i=count-2. pj = segments[1].endPt() - p0; for (int i = 1; i < count - 1; ++i) { pi = pj; pj = segments[i + 1].endPt() - p0; SkScalar t = SkPoint::CrossProduct(pi, pj); area += t; center.fX += (pi.fX + pj.fX) * t; center.fY += (pi.fY + pj.fY) * t; } } // If the poly has no area then we instead return the average of // its points. if (SkScalarNearlyZero(area)) { SkPoint avg; avg.set(0, 0); for (int i = 0; i < count; ++i) { const SkPoint& pt = segments[i].endPt(); avg.fX += pt.fX; avg.fY += pt.fY; } SkScalar denom = SK_Scalar1 / count; avg.scale(denom); *c = avg; } else { area *= 3; area = SkScalarInvert(area); center.scale(area); // undo the translate of p0 to the origin. *c = center + p0; } SkASSERT(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY)); } static void compute_vectors(SegmentArray* segments, SkPoint* fanPt, SkPathPriv::FirstDirection dir, int* vCount, int* iCount) { center_of_mass(*segments, fanPt); int count = segments->count(); // Make the normals point towards the outside SkPoint::Side normSide; if (dir == SkPathPriv::kCCW_FirstDirection) { normSide = SkPoint::kRight_Side; } else { normSide = SkPoint::kLeft_Side; } *vCount = 0; *iCount = 0; // compute normals at all points for (int a = 0; a < count; ++a) { Segment& sega = (*segments)[a]; int b = (a + 1) % count; Segment& segb = (*segments)[b]; const SkPoint* prevPt = &sega.endPt(); int n = segb.countPoints(); for (int p = 0; p < n; ++p) { segb.fNorms[p] = segb.fPts[p] - *prevPt; segb.fNorms[p].normalize(); segb.fNorms[p].setOrthog(segb.fNorms[p], normSide); prevPt = &segb.fPts[p]; } if (Segment::kLine == segb.fType) { *vCount += 5; *iCount += 9; } else { *vCount += 6; *iCount += 12; } } // compute mid-vectors where segments meet. TODO: Detect shallow corners // and leave out the wedges and close gaps by stitching segments together. for (int a = 0; a < count; ++a) { const Segment& sega = (*segments)[a]; int b = (a + 1) % count; Segment& segb = (*segments)[b]; segb.fMid = segb.fNorms[0] + sega.endNorm(); segb.fMid.normalize(); // corner wedges *vCount += 4; *iCount += 6; } } struct DegenerateTestData { DegenerateTestData() { fStage = kInitial; } bool isDegenerate() const { return kNonDegenerate != fStage; } enum { kInitial, kPoint, kLine, kNonDegenerate } fStage; SkPoint fFirstPoint; SkVector fLineNormal; SkScalar fLineC; }; static const SkScalar kClose = (SK_Scalar1 / 16); static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) { switch (data->fStage) { case DegenerateTestData::kInitial: data->fFirstPoint = pt; data->fStage = DegenerateTestData::kPoint; break; case DegenerateTestData::kPoint: if (pt.distanceToSqd(data->fFirstPoint) > kCloseSqd) { data->fLineNormal = pt - data->fFirstPoint; data->fLineNormal.normalize(); data->fLineNormal.setOrthog(data->fLineNormal); data->fLineC = -data->fLineNormal.dot(data->fFirstPoint); data->fStage = DegenerateTestData::kLine; } break; case DegenerateTestData::kLine: if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) { data->fStage = DegenerateTestData::kNonDegenerate; } case DegenerateTestData::kNonDegenerate: break; default: SkFAIL("Unexpected degenerate test stage."); } } static inline bool get_direction(const SkPath& path, const SkMatrix& m, SkPathPriv::FirstDirection* dir) { if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) { return false; } // check whether m reverses the orientation SkASSERT(!m.hasPerspective()); SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) - SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY)); if (det2x2 < 0) { *dir = SkPathPriv::OppositeFirstDirection(*dir); } return true; } static inline void add_line_to_segment(const SkPoint& pt, SegmentArray* segments) { segments->push_back(); segments->back().fType = Segment::kLine; segments->back().fPts[0] = pt; } static inline void add_quad_segment(const SkPoint pts[3], SegmentArray* segments) { if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || pts[1].distanceToSqd(pts[2]) < kCloseSqd) { if (pts[0] != pts[2]) { add_line_to_segment(pts[2], segments); } } else { segments->push_back(); segments->back().fType = Segment::kQuad; segments->back().fPts[0] = pts[1]; segments->back().fPts[1] = pts[2]; } } static inline void add_cubic_segments(const SkPoint pts[4], SkPathPriv::FirstDirection dir, SegmentArray* segments) { SkSTArray<15, SkPoint, true> quads; GrPathUtils::convertCubicToQuadsConstrainToTangents(pts, SK_Scalar1, dir, &quads); int count = quads.count(); for (int q = 0; q < count; q += 3) { add_quad_segment(&quads[q], segments); } } static bool get_segments(const SkPath& path, const SkMatrix& m, SegmentArray* segments, SkPoint* fanPt, int* vCount, int* iCount) { SkPath::Iter iter(path, true); // This renderer over-emphasizes very thin path regions. We use the distance // to the path from the sample to compute coverage. Every pixel intersected // by the path will be hit and the maximum distance is sqrt(2)/2. We don't // notice that the sample may be close to a very thin area of the path and // thus should be very light. This is particularly egregious for degenerate // line paths. We detect paths that are very close to a line (zero area) and // draw nothing. DegenerateTestData degenerateData; SkPathPriv::FirstDirection dir; // get_direction can fail for some degenerate paths. if (!get_direction(path, m, &dir)) { return false; } for (;;) { SkPoint pts[4]; SkPath::Verb verb = iter.next(pts); switch (verb) { case SkPath::kMove_Verb: m.mapPoints(pts, 1); update_degenerate_test(°enerateData, pts[0]); break; case SkPath::kLine_Verb: { m.mapPoints(&pts[1], 1); update_degenerate_test(°enerateData, pts[1]); add_line_to_segment(pts[1], segments); break; } case SkPath::kQuad_Verb: m.mapPoints(pts, 3); update_degenerate_test(°enerateData, pts[1]); update_degenerate_test(°enerateData, pts[2]); add_quad_segment(pts, segments); break; case SkPath::kConic_Verb: { m.mapPoints(pts, 3); SkScalar weight = iter.conicWeight(); SkAutoConicToQuads converter; const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5f); for (int i = 0; i < converter.countQuads(); ++i) { update_degenerate_test(°enerateData, quadPts[2*i + 1]); update_degenerate_test(°enerateData, quadPts[2*i + 2]); add_quad_segment(quadPts + 2*i, segments); } break; } case SkPath::kCubic_Verb: { m.mapPoints(pts, 4); update_degenerate_test(°enerateData, pts[1]); update_degenerate_test(°enerateData, pts[2]); update_degenerate_test(°enerateData, pts[3]); add_cubic_segments(pts, dir, segments); break; }; case SkPath::kDone_Verb: if (degenerateData.isDegenerate()) { return false; } else { compute_vectors(segments, fanPt, dir, vCount, iCount); return true; } default: break; } } } struct QuadVertex { SkPoint fPos; SkPoint fUV; SkScalar fD0; SkScalar fD1; }; struct Draw { Draw() : fVertexCnt(0), fIndexCnt(0) {} int fVertexCnt; int fIndexCnt; }; typedef SkTArray<Draw, true> DrawArray; static void create_vertices(const SegmentArray& segments, const SkPoint& fanPt, DrawArray* draws, QuadVertex* verts, uint16_t* idxs) { Draw* draw = &draws->push_back(); // alias just to make vert/index assignments easier to read. int* v = &draw->fVertexCnt; int* i = &draw->fIndexCnt; int count = segments.count(); for (int a = 0; a < count; ++a) { const Segment& sega = segments[a]; int b = (a + 1) % count; const Segment& segb = segments[b]; // Check whether adding the verts for this segment to the current draw would cause index // values to overflow. int vCount = 4; if (Segment::kLine == segb.fType) { vCount += 5; } else { vCount += 6; } if (draw->fVertexCnt + vCount > (1 << 16)) { verts += *v; idxs += *i; draw = &draws->push_back(); v = &draw->fVertexCnt; i = &draw->fIndexCnt; } // FIXME: These tris are inset in the 1 unit arc around the corner verts[*v + 0].fPos = sega.endPt(); verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm(); verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid; verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0]; verts[*v + 0].fUV.set(0,0); verts[*v + 1].fUV.set(0,-SK_Scalar1); verts[*v + 2].fUV.set(0,-SK_Scalar1); verts[*v + 3].fUV.set(0,-SK_Scalar1); verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; idxs[*i + 0] = *v + 0; idxs[*i + 1] = *v + 2; idxs[*i + 2] = *v + 1; idxs[*i + 3] = *v + 0; idxs[*i + 4] = *v + 3; idxs[*i + 5] = *v + 2; *v += 4; *i += 6; if (Segment::kLine == segb.fType) { verts[*v + 0].fPos = fanPt; verts[*v + 1].fPos = sega.endPt(); verts[*v + 2].fPos = segb.fPts[0]; verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0]; verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0]; // we draw the line edge as a degenerate quad (u is 0, v is the // signed distance to the edge) SkScalar dist = fanPt.distanceToLineBetween(verts[*v + 1].fPos, verts[*v + 2].fPos); verts[*v + 0].fUV.set(0, dist); verts[*v + 1].fUV.set(0, 0); verts[*v + 2].fUV.set(0, 0); verts[*v + 3].fUV.set(0, -SK_Scalar1); verts[*v + 4].fUV.set(0, -SK_Scalar1); verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1; idxs[*i + 0] = *v + 3; idxs[*i + 1] = *v + 1; idxs[*i + 2] = *v + 2; idxs[*i + 3] = *v + 4; idxs[*i + 4] = *v + 3; idxs[*i + 5] = *v + 2; *i += 6; // Draw the interior fan if it exists. // TODO: Detect and combine colinear segments. This will ensure we catch every case // with no interior, and that the resulting shared edge uses the same endpoints. if (count >= 3) { idxs[*i + 0] = *v + 0; idxs[*i + 1] = *v + 2; idxs[*i + 2] = *v + 1; *i += 3; } *v += 5; } else { SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]}; SkVector midVec = segb.fNorms[0] + segb.fNorms[1]; midVec.normalize(); verts[*v + 0].fPos = fanPt; verts[*v + 1].fPos = qpts[0]; verts[*v + 2].fPos = qpts[2]; verts[*v + 3].fPos = qpts[0] + segb.fNorms[0]; verts[*v + 4].fPos = qpts[2] + segb.fNorms[1]; verts[*v + 5].fPos = qpts[1] + midVec; SkScalar c = segb.fNorms[0].dot(qpts[0]); verts[*v + 0].fD0 = -segb.fNorms[0].dot(fanPt) + c; verts[*v + 1].fD0 = 0.f; verts[*v + 2].fD0 = -segb.fNorms[0].dot(qpts[2]) + c; verts[*v + 3].fD0 = -SK_ScalarMax/100; verts[*v + 4].fD0 = -SK_ScalarMax/100; verts[*v + 5].fD0 = -SK_ScalarMax/100; c = segb.fNorms[1].dot(qpts[2]); verts[*v + 0].fD1 = -segb.fNorms[1].dot(fanPt) + c; verts[*v + 1].fD1 = -segb.fNorms[1].dot(qpts[0]) + c; verts[*v + 2].fD1 = 0.f; verts[*v + 3].fD1 = -SK_ScalarMax/100; verts[*v + 4].fD1 = -SK_ScalarMax/100; verts[*v + 5].fD1 = -SK_ScalarMax/100; GrPathUtils::QuadUVMatrix toUV(qpts); toUV.apply<6, sizeof(QuadVertex), sizeof(SkPoint)>(verts + *v); idxs[*i + 0] = *v + 3; idxs[*i + 1] = *v + 1; idxs[*i + 2] = *v + 2; idxs[*i + 3] = *v + 4; idxs[*i + 4] = *v + 3; idxs[*i + 5] = *v + 2; idxs[*i + 6] = *v + 5; idxs[*i + 7] = *v + 3; idxs[*i + 8] = *v + 4; *i += 9; // Draw the interior fan if it exists. // TODO: Detect and combine colinear segments. This will ensure we catch every case // with no interior, and that the resulting shared edge uses the same endpoints. if (count >= 3) { idxs[*i + 0] = *v + 0; idxs[*i + 1] = *v + 2; idxs[*i + 2] = *v + 1; *i += 3; } *v += 6; } } } /////////////////////////////////////////////////////////////////////////////// /* * Quadratic specified by 0=u^2-v canonical coords. u and v are the first * two components of the vertex attribute. Coverage is based on signed * distance with negative being inside, positive outside. The edge is specified in * window space (y-down). If either the third or fourth component of the interpolated * vertex coord is > 0 then the pixel is considered outside the edge. This is used to * attempt to trim to a portion of the infinite quad. * Requires shader derivative instruction support. */ class QuadEdgeEffect : public GrGeometryProcessor { public: static GrGeometryProcessor* Create(GrColor color, const SkMatrix& localMatrix, bool usesLocalCoords) { return new QuadEdgeEffect(color, localMatrix, usesLocalCoords); } virtual ~QuadEdgeEffect() {} const char* name() const override { return "QuadEdge"; } const Attribute* inPosition() const { return fInPosition; } const Attribute* inQuadEdge() const { return fInQuadEdge; } GrColor color() const { return fColor; } bool colorIgnored() const { return GrColor_ILLEGAL == fColor; } const SkMatrix& localMatrix() const { return fLocalMatrix; } bool usesLocalCoords() const { return fUsesLocalCoords; } class GLSLProcessor : public GrGLSLGeometryProcessor { public: GLSLProcessor() : fColor(GrColor_ILLEGAL) {} void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(qe); GrGLSLVertToFrag v(kVec4f_GrSLType); varyingHandler->addVarying("QuadEdge", &v); vertBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.inQuadEdge()->fName); GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; // Setup pass through color if (!qe.colorIgnored()) { this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform); } // Setup position this->setupPosition(vertBuilder, gpArgs, qe.inPosition()->fName); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, qe.inPosition()->fName, qe.localMatrix(), args.fTransformsIn, args.fTransformsOut); SkAssertResult(fragBuilder->enableFeature( GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); fragBuilder->codeAppendf("float edgeAlpha;"); // keep the derivative instructions outside the conditional fragBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn()); fragBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn()); fragBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn()); // today we know z and w are in device space. We could use derivatives fragBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(), v.fsIn()); fragBuilder->codeAppendf ("} else {"); fragBuilder->codeAppendf("vec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y," " 2.0*%s.x*duvdy.x - duvdy.y);", v.fsIn(), v.fsIn()); fragBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(), v.fsIn()); fragBuilder->codeAppendf("edgeAlpha = " "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}"); fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); } static inline void GenKey(const GrGeometryProcessor& gp, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const QuadEdgeEffect& qee = gp.cast<QuadEdgeEffect>(); uint32_t key = 0; key |= qee.usesLocalCoords() && qee.localMatrix().hasPerspective() ? 0x1 : 0x0; key |= qee.colorIgnored() ? 0x2 : 0x0; b->add32(key); } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp) override { const QuadEdgeEffect& qe = gp.cast<QuadEdgeEffect>(); if (qe.color() != fColor) { float c[4]; GrColorToRGBAFloat(qe.color(), c); pdman.set4fv(fColorUniform, 1, c); fColor = qe.color(); } } void setTransformData(const GrPrimitiveProcessor& primProc, const GrGLSLProgramDataManager& pdman, int index, const SkTArray<const GrCoordTransform*, true>& transforms) override { this->setTransformDataHelper<QuadEdgeEffect>(primProc, pdman, index, transforms); } private: GrColor fColor; UniformHandle fColorUniform; typedef GrGLSLGeometryProcessor INHERITED; }; void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { GLSLProcessor::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override { return new GLSLProcessor(); } private: QuadEdgeEffect(GrColor color, const SkMatrix& localMatrix, bool usesLocalCoords) : fColor(color) , fLocalMatrix(localMatrix) , fUsesLocalCoords(usesLocalCoords) { this->initClassID<QuadEdgeEffect>(); fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); fInQuadEdge = &this->addVertexAttrib(Attribute("inQuadEdge", kVec4f_GrVertexAttribType)); } const Attribute* fInPosition; const Attribute* fInQuadEdge; GrColor fColor; SkMatrix fLocalMatrix; bool fUsesLocalCoords; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect); const GrGeometryProcessor* QuadEdgeEffect::TestCreate(GrProcessorTestData* d) { // Doesn't work without derivative instructions. return d->fCaps->shaderCaps()->shaderDerivativeSupport() ? QuadEdgeEffect::Create(GrRandomColor(d->fRandom), GrTest::TestMatrix(d->fRandom), d->fRandom->nextBool()) : nullptr; } /////////////////////////////////////////////////////////////////////////////// bool GrAAConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { return (args.fShaderCaps->shaderDerivativeSupport() && args.fAntiAlias && args.fStroke->isFillStyle() && !args.fPath->isInverseFillType() && args.fPath->isConvex()); } // extract the result vertices and indices from the GrAAConvexTessellator static void extract_verts(const GrAAConvexTessellator& tess, void* vertices, size_t vertexStride, GrColor color, uint16_t* idxs, bool tweakAlphaForCoverage) { intptr_t verts = reinterpret_cast<intptr_t>(vertices); for (int i = 0; i < tess.numPts(); ++i) { *((SkPoint*)((intptr_t)verts + i * vertexStride)) = tess.point(i); } // Make 'verts' point to the colors verts += sizeof(SkPoint); for (int i = 0; i < tess.numPts(); ++i) { if (tweakAlphaForCoverage) { SkASSERT(SkScalarRoundToInt(255.0f * tess.coverage(i)) <= 255); unsigned scale = SkScalarRoundToInt(255.0f * tess.coverage(i)); GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale); *reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor; } else { *reinterpret_cast<GrColor*>(verts + i * vertexStride) = color; *reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) = tess.coverage(i); } } for (int i = 0; i < tess.numIndices(); ++i) { idxs[i] = tess.index(i); } } static const GrGeometryProcessor* create_fill_gp(bool tweakAlphaForCoverage, const SkMatrix& viewMatrix, bool usesLocalCoords, bool coverageIgnored) { using namespace GrDefaultGeoProcFactory; Color color(Color::kAttribute_Type); Coverage::Type coverageType; // TODO remove coverage if coverage is ignored /*if (coverageIgnored) { coverageType = Coverage::kNone_Type; } else*/ if (tweakAlphaForCoverage) { coverageType = Coverage::kSolid_Type; } else { coverageType = Coverage::kAttribute_Type; } Coverage coverage(coverageType); LocalCoords localCoords(usesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type); return CreateForDeviceSpace(color, coverage, localCoords, viewMatrix); } class AAConvexPathBatch : public GrVertexBatch { public: DEFINE_BATCH_CLASS_ID struct Geometry { GrColor fColor; SkMatrix fViewMatrix; SkPath fPath; }; static GrDrawBatch* Create(const Geometry& geometry) { return new AAConvexPathBatch(geometry); } const char* name() const override { return "AAConvexBatch"; } void computePipelineOptimizations(GrInitInvariantOutput* color, GrInitInvariantOutput* coverage, GrBatchToXPOverrides* overrides) const override { // When this is called on a batch, there is only one geometry bundle color->setKnownFourComponents(fGeoData[0].fColor); coverage->setUnknownSingleComponent(); } private: void initBatchTracker(const GrXPOverridesForBatch& overrides) override { // Handle any color overrides if (!overrides.readsColor()) { fGeoData[0].fColor = GrColor_ILLEGAL; } overrides.getOverrideColorIfSet(&fGeoData[0].fColor); // setup batch properties fBatch.fColorIgnored = !overrides.readsColor(); fBatch.fColor = fGeoData[0].fColor; fBatch.fUsesLocalCoords = overrides.readsLocalCoords(); fBatch.fCoverageIgnored = !overrides.readsCoverage(); fBatch.fLinesOnly = SkPath::kLine_SegmentMask == fGeoData[0].fPath.getSegmentMasks(); fBatch.fCanTweakAlphaForCoverage = overrides.canTweakAlphaForCoverage(); } void prepareLinesOnlyDraws(Target* target) const { bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage(); // Setup GrGeometryProcessor SkAutoTUnref<const GrGeometryProcessor> gp(create_fill_gp(canTweakAlphaForCoverage, this->viewMatrix(), this->usesLocalCoords(), this->coverageIgnored())); if (!gp) { SkDebugf("Could not create GrGeometryProcessor\n"); return; } target->initDraw(gp, this->pipeline()); size_t vertexStride = gp->getVertexStride(); SkASSERT(canTweakAlphaForCoverage ? vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) : vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr)); GrAAConvexTessellator tess; int instanceCount = fGeoData.count(); for (int i = 0; i < instanceCount; i++) { tess.rewind(); const Geometry& args = fGeoData[i]; if (!tess.tessellate(args.fViewMatrix, args.fPath)) { continue; } const GrVertexBuffer* vertexBuffer; int firstVertex; void* verts = target->makeVertexSpace(vertexStride, tess.numPts(), &vertexBuffer, &firstVertex); if (!verts) { SkDebugf("Could not allocate vertices\n"); return; } const GrIndexBuffer* indexBuffer; int firstIndex; uint16_t* idxs = target->makeIndexSpace(tess.numIndices(), &indexBuffer, &firstIndex); if (!idxs) { SkDebugf("Could not allocate indices\n"); return; } extract_verts(tess, verts, vertexStride, args.fColor, idxs, canTweakAlphaForCoverage); GrVertices info; info.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, firstVertex, firstIndex, tess.numPts(), tess.numIndices()); target->draw(info); } } void onPrepareDraws(Target* target) const override { #ifndef SK_IGNORE_LINEONLY_AA_CONVEX_PATH_OPTS if (this->linesOnly()) { this->prepareLinesOnlyDraws(target); return; } #endif int instanceCount = fGeoData.count(); SkMatrix invert; if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) { SkDebugf("Could not invert viewmatrix\n"); return; } // Setup GrGeometryProcessor SkAutoTUnref<GrGeometryProcessor> quadProcessor( QuadEdgeEffect::Create(this->color(), invert, this->usesLocalCoords())); target->initDraw(quadProcessor, this->pipeline()); // TODO generate all segments for all paths and use one vertex buffer for (int i = 0; i < instanceCount; i++) { const Geometry& args = fGeoData[i]; // We use the fact that SkPath::transform path does subdivision based on // perspective. Otherwise, we apply the view matrix when copying to the // segment representation. const SkMatrix* viewMatrix = &args.fViewMatrix; // We avoid initializing the path unless we have to const SkPath* pathPtr = &args.fPath; SkTLazy<SkPath> tmpPath; if (viewMatrix->hasPerspective()) { SkPath* tmpPathPtr = tmpPath.init(*pathPtr); tmpPathPtr->setIsVolatile(true); tmpPathPtr->transform(*viewMatrix); viewMatrix = &SkMatrix::I(); pathPtr = tmpPathPtr; } int vertexCount; int indexCount; enum { kPreallocSegmentCnt = 512 / sizeof(Segment), kPreallocDrawCnt = 4, }; SkSTArray<kPreallocSegmentCnt, Segment, true> segments; SkPoint fanPt; if (!get_segments(*pathPtr, *viewMatrix, &segments, &fanPt, &vertexCount, &indexCount)) { continue; } const GrVertexBuffer* vertexBuffer; int firstVertex; size_t vertexStride = quadProcessor->getVertexStride(); QuadVertex* verts = reinterpret_cast<QuadVertex*>(target->makeVertexSpace( vertexStride, vertexCount, &vertexBuffer, &firstVertex)); if (!verts) { SkDebugf("Could not allocate vertices\n"); return; } const GrIndexBuffer* indexBuffer; int firstIndex; uint16_t *idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex); if (!idxs) { SkDebugf("Could not allocate indices\n"); return; } SkSTArray<kPreallocDrawCnt, Draw, true> draws; create_vertices(segments, fanPt, &draws, verts, idxs); GrVertices vertices; for (int j = 0; j < draws.count(); ++j) { const Draw& draw = draws[j]; vertices.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, firstVertex, firstIndex, draw.fVertexCnt, draw.fIndexCnt); target->draw(vertices); firstVertex += draw.fVertexCnt; firstIndex += draw.fIndexCnt; } } } SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } AAConvexPathBatch(const Geometry& geometry) : INHERITED(ClassID()) { fGeoData.push_back(geometry); // compute bounds fBounds = geometry.fPath.getBounds(); geometry.fViewMatrix.mapRect(&fBounds); } bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { AAConvexPathBatch* that = t->cast<AAConvexPathBatch>(); if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), that->bounds(), caps)) { return false; } if (this->color() != that->color()) { return false; } SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { return false; } if (this->linesOnly() != that->linesOnly()) { return false; } // In the event of two batches, one who can tweak, one who cannot, we just fall back to // not tweaking if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) { fBatch.fCanTweakAlphaForCoverage = false; } fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); this->joinBounds(that->bounds()); return true; } GrColor color() const { return fBatch.fColor; } bool linesOnly() const { return fBatch.fLinesOnly; } bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } bool canTweakAlphaForCoverage() const { return fBatch.fCanTweakAlphaForCoverage; } const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } bool coverageIgnored() const { return fBatch.fCoverageIgnored; } struct BatchTracker { GrColor fColor; bool fUsesLocalCoords; bool fColorIgnored; bool fCoverageIgnored; bool fLinesOnly; bool fCanTweakAlphaForCoverage; }; BatchTracker fBatch; SkSTArray<1, Geometry, true> fGeoData; typedef GrVertexBatch INHERITED; }; bool GrAAConvexPathRenderer::onDrawPath(const DrawPathArgs& args) { GR_AUDIT_TRAIL_AUTO_FRAME(args.fTarget->getAuditTrail(), "GrAAConvexPathRenderer::onDrawPath"); if (args.fPath->isEmpty()) { return true; } AAConvexPathBatch::Geometry geometry; geometry.fColor = args.fColor; geometry.fViewMatrix = *args.fViewMatrix; geometry.fPath = *args.fPath; SkAutoTUnref<GrDrawBatch> batch(AAConvexPathBatch::Create(geometry)); args.fTarget->drawBatch(*args.fPipelineBuilder, batch); return true; } /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef GR_TEST_UTILS DRAW_BATCH_TEST_DEFINE(AAConvexPathBatch) { AAConvexPathBatch::Geometry geometry; geometry.fColor = GrRandomColor(random); geometry.fViewMatrix = GrTest::TestMatrixInvertible(random); geometry.fPath = GrTest::TestPathConvex(random); return AAConvexPathBatch::Create(geometry); } #endif