/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkHalf.h" #include "SkPM4fPriv.h" #include "SkUtils.h" #include "SkXfermode.h" static void sk_memset64(uint64_t dst[], uint64_t value, int count) { for (int i = 0; i < count; ++i) { dst[i] = value; } } enum DstType { kU16_Dst, kF16_Dst, }; static Sk4f lerp_by_coverage(const Sk4f& src, const Sk4f& dst, uint8_t srcCoverage) { return dst + (src - dst) * Sk4f(srcCoverage * (1/255.0f)); } template <DstType D> Sk4f unit_to_bias(const Sk4f& x4) { return (D == kU16_Dst) ? x4 * Sk4f(65535) : x4; } template <DstType D> Sk4f bias_to_unit(const Sk4f& x4) { return (D == kU16_Dst) ? x4 * Sk4f(1.0f/65535) : x4; } // returns value already biased by 65535 static Sk4f load_from_u16(uint64_t value) { return SkNx_cast<float>(Sk4h::Load(&value)); } // takes floats already biased by 65535 static uint64_t store_to_u16(const Sk4f& x4) { uint64_t value; SkNx_cast<uint16_t>(x4 + Sk4f(0.5f)).store(&value); return value; } // Returns dst in its "natural" bias (either unit-float or 16bit int) // template <DstType D> Sk4f load_from_dst(uint64_t dst) { return (D == kU16_Dst) ? load_from_u16(dst) : SkHalfToFloat_01(dst); } // Assumes x4 is already in the "natural" bias (either unit-float or 16bit int) template <DstType D> uint64_t store_to_dst(const Sk4f& x4) { return (D == kU16_Dst) ? store_to_u16(x4) : SkFloatToHalf_01(x4); } static inline Sk4f pm_to_rgba_order(const Sk4f& x) { if (SkPM4f::R == 0) { return x; // we're already RGBA } else { // we're BGRA, so swap R and B return SkNx_shuffle<2, 1, 0, 3>(x); } } /////////////////////////////////////////////////////////////////////////////////////////////////// template <DstType D> void xfer_u64_1(const SkXfermode* xfer, uint64_t dst[], const SkPM4f* src, int count, const SkAlpha aa[]) { SkXfermodeProc4f proc = xfer->getProc4f(); SkPM4f d; if (aa) { for (int i = 0; i < count; ++i) { Sk4f d4 = bias_to_unit<D>(load_from_dst<D>(dst[i])); d4.store(d.fVec); Sk4f r4 = unit_to_bias<D>(Sk4f::Load(proc(*src, d).fVec)); dst[i] = store_to_dst<D>(lerp_by_coverage(r4, d4, aa[i])); } } else { for (int i = 0; i < count; ++i) { bias_to_unit<D>(load_from_dst<D>(dst[i])).store(d.fVec); Sk4f r4 = unit_to_bias<D>(Sk4f::Load(proc(*src, d).fVec)); dst[i] = store_to_dst<D>(r4); } } } template <DstType D> void xfer_u64_n(const SkXfermode* xfer, uint64_t dst[], const SkPM4f src[], int count, const SkAlpha aa[]) { SkXfermodeProc4f proc = xfer->getProc4f(); SkPM4f d; if (aa) { for (int i = 0; i < count; ++i) { Sk4f d4 = bias_to_unit<D>(load_from_dst<D>(dst[i])); d4.store(d.fVec); Sk4f r4 = unit_to_bias<D>(Sk4f::Load(proc(src[i], d).fVec)); dst[i] = store_to_dst<D>(lerp_by_coverage(r4, d4, aa[i])); } } else { for (int i = 0; i < count; ++i) { bias_to_unit<D>(load_from_dst<D>(dst[i])).store(d.fVec); Sk4f r4 = unit_to_bias<D>(Sk4f::Load(proc(src[i], d).fVec)); dst[i] = store_to_dst<D>(r4); } } } const SkXfermode::D64Proc gProcs_General[] = { xfer_u64_n<kU16_Dst>, xfer_u64_n<kU16_Dst>, xfer_u64_1<kU16_Dst>, xfer_u64_1<kU16_Dst>, xfer_u64_n<kF16_Dst>, xfer_u64_n<kF16_Dst>, xfer_u64_1<kF16_Dst>, xfer_u64_1<kF16_Dst>, }; /////////////////////////////////////////////////////////////////////////////////////////////////// template <DstType D> void clear(const SkXfermode*, uint64_t dst[], const SkPM4f*, int count, const SkAlpha aa[]) { if (aa) { for (int i = 0; i < count; ++i) { if (aa[i]) { const Sk4f d4 = load_from_dst<D>(dst[i]); dst[i] = store_to_dst<D>(d4 * Sk4f((255 - aa[i]) * 1.0f/255)); } } } else { sk_memset64(dst, 0, count); } } const SkXfermode::D64Proc gProcs_Clear[] = { clear<kU16_Dst>, clear<kU16_Dst>, clear<kU16_Dst>, clear<kU16_Dst>, clear<kF16_Dst>, clear<kF16_Dst>, clear<kF16_Dst>, clear<kF16_Dst>, }; /////////////////////////////////////////////////////////////////////////////////////////////////// template <DstType D> void src_1(const SkXfermode*, uint64_t dst[], const SkPM4f* src, int count, const SkAlpha aa[]) { const Sk4f s4 = pm_to_rgba_order(unit_to_bias<D>(Sk4f::Load(src->fVec))); if (aa) { for (int i = 0; i < count; ++i) { const Sk4f d4 = load_from_dst<D>(dst[i]); dst[i] = store_to_dst<D>(lerp_by_coverage(s4, d4, aa[i])); } } else { sk_memset64(dst, store_to_dst<D>(s4), count); } } template <DstType D> void src_n(const SkXfermode*, uint64_t dst[], const SkPM4f src[], int count, const SkAlpha aa[]) { if (aa) { for (int i = 0; i < count; ++i) { const Sk4f s4 = pm_to_rgba_order(unit_to_bias<D>(Sk4f::Load(src[i].fVec))); const Sk4f d4 = load_from_dst<D>(dst[i]); dst[i] = store_to_dst<D>(lerp_by_coverage(s4, d4, aa[i])); } } else { for (int i = 0; i < count; ++i) { const Sk4f s4 = pm_to_rgba_order(unit_to_bias<D>(Sk4f::Load(src[i].fVec))); dst[i] = store_to_dst<D>(s4); } } } const SkXfermode::D64Proc gProcs_Src[] = { src_n<kU16_Dst>, src_n<kU16_Dst>, src_1<kU16_Dst>, src_1<kU16_Dst>, src_n<kF16_Dst>, src_n<kF16_Dst>, src_1<kF16_Dst>, src_1<kF16_Dst>, }; /////////////////////////////////////////////////////////////////////////////////////////////////// static void dst(const SkXfermode*, uint64_t*, const SkPM4f*, int count, const SkAlpha[]) {} const SkXfermode::D64Proc gProcs_Dst[] = { dst, dst, dst, dst, dst, dst, dst, dst, }; /////////////////////////////////////////////////////////////////////////////////////////////////// template <DstType D> void srcover_1(const SkXfermode*, uint64_t dst[], const SkPM4f* src, int count, const SkAlpha aa[]) { const Sk4f s4 = pm_to_rgba_order(Sk4f::Load(src->fVec)); const Sk4f dst_scale = Sk4f(1 - get_alpha(s4)); const Sk4f s4bias = unit_to_bias<D>(s4); for (int i = 0; i < count; ++i) { const Sk4f d4bias = load_from_dst<D>(dst[i]); const Sk4f r4bias = s4bias + d4bias * dst_scale; if (aa) { dst[i] = store_to_dst<D>(lerp_by_coverage(r4bias, d4bias, aa[i])); } else { dst[i] = store_to_dst<D>(r4bias); } } } template <DstType D> void srcover_n(const SkXfermode*, uint64_t dst[], const SkPM4f src[], int count, const SkAlpha aa[]) { for (int i = 0; i < count; ++i) { const Sk4f s4 = pm_to_rgba_order(Sk4f::Load(src[i].fVec)); const Sk4f dst_scale = Sk4f(1 - get_alpha(s4)); const Sk4f s4bias = unit_to_bias<D>(s4); const Sk4f d4bias = load_from_dst<D>(dst[i]); const Sk4f r4bias = s4bias + d4bias * dst_scale; if (aa) { dst[i] = store_to_dst<D>(lerp_by_coverage(r4bias, d4bias, aa[i])); } else { dst[i] = store_to_dst<D>(r4bias); } } } const SkXfermode::D64Proc gProcs_SrcOver[] = { srcover_n<kU16_Dst>, src_n<kU16_Dst>, srcover_1<kU16_Dst>, src_1<kU16_Dst>, srcover_n<kF16_Dst>, src_n<kF16_Dst>, srcover_1<kF16_Dst>, src_1<kF16_Dst>, }; /////////////////////////////////////////////////////////////////////////////////////////////////// static SkXfermode::D64Proc find_proc(SkXfermode::Mode mode, uint32_t flags) { SkASSERT(0 == (flags & ~7)); flags &= 7; switch (mode) { case SkXfermode::kClear_Mode: return gProcs_Clear[flags]; case SkXfermode::kSrc_Mode: return gProcs_Src[flags]; case SkXfermode::kDst_Mode: return gProcs_Dst[flags]; case SkXfermode::kSrcOver_Mode: return gProcs_SrcOver[flags]; default: break; } return gProcs_General[flags]; } SkXfermode::D64Proc SkXfermode::onGetD64Proc(uint32_t flags) const { SkASSERT(0 == (flags & ~7)); flags &= 7; Mode mode; return this->asMode(&mode) ? find_proc(mode, flags) : gProcs_General[flags]; } SkXfermode::D64Proc SkXfermode::GetD64Proc(SkXfermode* xfer, uint32_t flags) { return xfer ? xfer->onGetD64Proc(flags) : find_proc(SkXfermode::kSrcOver_Mode, flags); }