/* * Copyright 2014 Google, Inc * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkSmallAllocator_DEFINED #define SkSmallAllocator_DEFINED #include "SkTDArray.h" #include "SkTypes.h" #include <new> /* * Template class for allocating small objects without additional heap memory * allocations. kMaxObjects is a hard limit on the number of objects that can * be allocated using this class. After that, attempts to create more objects * with this class will assert and return nullptr. * kTotalBytes is the total number of bytes provided for storage for all * objects created by this allocator. If an object to be created is larger * than the storage (minus storage already used), it will be allocated on the * heap. This class's destructor will handle calling the destructor for each * object it allocated and freeing its memory. */ template<uint32_t kMaxObjects, size_t kTotalBytes> class SkSmallAllocator : SkNoncopyable { public: SkSmallAllocator() : fStorageUsed(0) , fNumObjects(0) {} ~SkSmallAllocator() { // Destruct in reverse order, in case an earlier object points to a // later object. while (fNumObjects > 0) { fNumObjects--; Rec* rec = &fRecs[fNumObjects]; rec->fKillProc(rec->fObj); // Safe to do if fObj is in fStorage, since fHeapStorage will // point to nullptr. sk_free(rec->fHeapStorage); } } /* * Create a new object of type T. Its lifetime will be handled by this * SkSmallAllocator. * Note: If kMaxObjects have been created by this SkSmallAllocator, nullptr * will be returned. */ template<typename T, typename... Args> T* createT(const Args&... args) { void* buf = this->reserveT<T>(); if (nullptr == buf) { return nullptr; } return new (buf) T(args...); } /* * Reserve a specified amount of space (must be enough space for one T). * The space will be in fStorage if there is room, or on the heap otherwise. * Either way, this class will call ~T() in its destructor and free the heap * allocation if necessary. * Unlike createT(), this method will not call the constructor of T. */ template<typename T> void* reserveT(size_t storageRequired = sizeof(T)) { SkASSERT(fNumObjects < kMaxObjects); SkASSERT(storageRequired >= sizeof(T)); if (kMaxObjects == fNumObjects) { return nullptr; } const size_t storageRemaining = SkAlign4(kTotalBytes) - fStorageUsed; storageRequired = SkAlign4(storageRequired); Rec* rec = &fRecs[fNumObjects]; if (storageRequired > storageRemaining) { // Allocate on the heap. Ideally we want to avoid this situation, // but we're not sure we can catch all callers, so handle it but // assert false in debug mode. SkASSERT(false); rec->fStorageSize = 0; rec->fHeapStorage = sk_malloc_throw(storageRequired); rec->fObj = static_cast<void*>(rec->fHeapStorage); } else { // There is space in fStorage. rec->fStorageSize = storageRequired; rec->fHeapStorage = nullptr; SkASSERT(SkIsAlign4(fStorageUsed)); rec->fObj = static_cast<void*>(fStorage + (fStorageUsed / 4)); fStorageUsed += storageRequired; } rec->fKillProc = DestroyT<T>; fNumObjects++; return rec->fObj; } /* * Free the memory reserved last without calling the destructor. * Can be used in a nested way, i.e. after reserving A and B, calling * freeLast once will free B and calling it again will free A. */ void freeLast() { SkASSERT(fNumObjects > 0); Rec* rec = &fRecs[fNumObjects - 1]; sk_free(rec->fHeapStorage); fStorageUsed -= rec->fStorageSize; fNumObjects--; } private: struct Rec { size_t fStorageSize; // 0 if allocated on heap void* fObj; void* fHeapStorage; void (*fKillProc)(void*); }; // Used to call the destructor for allocated objects. template<typename T> static void DestroyT(void* ptr) { static_cast<T*>(ptr)->~T(); } // Number of bytes used so far. size_t fStorageUsed; // Pad the storage size to be 4-byte aligned. uint32_t fStorage[SkAlign4(kTotalBytes) >> 2]; uint32_t fNumObjects; Rec fRecs[kMaxObjects]; }; #endif // SkSmallAllocator_DEFINED