/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkRecord_DEFINED #define SkRecord_DEFINED #include "SkRecords.h" #include "SkTLogic.h" #include "SkTemplates.h" #include "SkVarAlloc.h" // SkRecord represents a sequence of SkCanvas calls, saved for future use. // These future uses may include: replay, optimization, serialization, or combinations of those. // // Though an enterprising user may find calling alloc(), append(), visit(), and mutate() enough to // work with SkRecord, you probably want to look at SkRecorder which presents an SkCanvas interface // for creating an SkRecord, and SkRecordDraw which plays an SkRecord back into another SkCanvas. // // SkRecord often looks like it's compatible with any type T, but really it's compatible with any // type T which has a static const SkRecords::Type kType. That is to say, SkRecord is compatible // only with SkRecords::* structs defined in SkRecords.h. Your compiler will helpfully yell if you // get this wrong. class SkRecord : public SkNVRefCnt<SkRecord> { enum { // TODO: tune these two constants. kInlineRecords = 4, // Ideally our lower limit on recorded ops per picture. kInlineAllocLgBytes = 8, // 1<<8 == 256 bytes inline, then SkVarAlloc starting at 512 bytes. }; public: SkRecord() : fCount(0) , fReserved(kInlineRecords) , fAlloc(kInlineAllocLgBytes+1, // First malloc'd block is 2x as large as fInlineAlloc. fInlineAlloc, sizeof(fInlineAlloc)) {} ~SkRecord(); // Returns the number of canvas commands in this SkRecord. int count() const { return fCount; } // Visit the i-th canvas command with a functor matching this interface: // template <typename T> // R operator()(const T& record) { ... } // This operator() must be defined for at least all SkRecords::*. template <typename R, typename F> R visit(int i, F& f) const { SkASSERT(i < this->count()); return fRecords[i].visit<R>(f); } // Mutate the i-th canvas command with a functor matching this interface: // template <typename T> // R operator()(T* record) { ... } // This operator() must be defined for at least all SkRecords::*. template <typename R, typename F> R mutate(int i, F& f) { SkASSERT(i < this->count()); return fRecords[i].mutate<R>(f); } // TODO: It'd be nice to infer R from F for visit and mutate. // Allocate contiguous space for count Ts, to be freed when the SkRecord is destroyed. // Here T can be any class, not just those from SkRecords. Throws on failure. template <typename T> T* alloc(size_t count = 1) { return (T*)fAlloc.alloc(sizeof(T) * count); } // Add a new command of type T to the end of this SkRecord. // You are expected to placement new an object of type T onto this pointer. template <typename T> T* append() { if (fCount == fReserved) { this->grow(); } return fRecords[fCount++].set(this->allocCommand<T>()); } // Replace the i-th command with a new command of type T. // You are expected to placement new an object of type T onto this pointer. // References to the original command are invalidated. template <typename T> T* replace(int i) { SkASSERT(i < this->count()); Destroyer destroyer; this->mutate<void>(i, destroyer); return fRecords[i].set(this->allocCommand<T>()); } // Replace the i-th command with a new command of type T. // You are expected to placement new an object of type T onto this pointer. // You must show proof that you've already adopted the existing command. template <typename T, typename Existing> T* replace(int i, const SkRecords::Adopted<Existing>& proofOfAdoption) { SkASSERT(i < this->count()); SkASSERT(Existing::kType == fRecords[i].type()); SkASSERT(proofOfAdoption == fRecords[i].ptr()); return fRecords[i].set(this->allocCommand<T>()); } // Does not return the bytes in any pointers embedded in the Records; callers // need to iterate with a visitor to measure those they care for. size_t bytesUsed() const; // Rearrange and resize this record to eliminate any NoOps. // May change count() and the indices of ops, but preserves their order. void defrag(); private: // An SkRecord is structured as an array of pointers into a big chunk of memory where // records representing each canvas draw call are stored: // // fRecords: [*][*][*]... // | | | // | | | // | | +---------------------------------------+ // | +-----------------+ | // | | | // v v v // fAlloc: [SkRecords::DrawRect][SkRecords::DrawPosTextH][SkRecords::DrawRect]... // // We store the types of each of the pointers alongside the pointer. // The cost to append a T to this structure is 8 + sizeof(T) bytes. // A mutator that can be used with replace to destroy canvas commands. struct Destroyer { template <typename T> void operator()(T* record) { record->~T(); } }; template <typename T> SK_WHEN(std::is_empty<T>::value, T*) allocCommand() { static T singleton = {}; return &singleton; } template <typename T> SK_WHEN(!std::is_empty<T>::value, T*) allocCommand() { return this->alloc<T>(); } void grow(); // A typed pointer to some bytes in fAlloc. visit() and mutate() allow polymorphic dispatch. struct Record { // On 32-bit machines we store type in 4 bytes, followed by a pointer. Simple. // On 64-bit machines we store a pointer with the type slotted into two top (unused) bytes. // FWIW, SkRecords::Type is tiny. It can easily fit in one byte. uint64_t fTypeAndPtr; static const int kTypeShift = sizeof(void*) == 4 ? 32 : 48; // Point this record to its data in fAlloc. Returns ptr for convenience. template <typename T> T* set(T* ptr) { fTypeAndPtr = ((uint64_t)T::kType) << kTypeShift | (uintptr_t)ptr; SkASSERT(this->ptr() == ptr && this->type() == T::kType); return ptr; } SkRecords::Type type() const { return (SkRecords::Type)(fTypeAndPtr >> kTypeShift); } void* ptr() const { return (void*)(fTypeAndPtr & ((1ull<<kTypeShift)-1)); } // Visit this record with functor F (see public API above). template <typename R, typename F> R visit(F& f) const { #define CASE(T) case SkRecords::T##_Type: return f(*(const SkRecords::T*)this->ptr()); switch(this->type()) { SK_RECORD_TYPES(CASE) } #undef CASE SkDEBUGFAIL("Unreachable"); return R(); } // Mutate this record with functor F (see public API above). template <typename R, typename F> R mutate(F& f) { #define CASE(T) case SkRecords::T##_Type: return f((SkRecords::T*)this->ptr()); switch(this->type()) { SK_RECORD_TYPES(CASE) } #undef CASE SkDEBUGFAIL("Unreachable"); return R(); } }; // fRecords needs to be a data structure that can append fixed length data, and need to // support efficient random access and forward iteration. (It doesn't need to be contiguous.) int fCount, fReserved; SkAutoSTMalloc<kInlineRecords, Record> fRecords; // fAlloc needs to be a data structure which can append variable length data in contiguous // chunks, returning a stable handle to that data for later retrieval. SkVarAlloc fAlloc; char fInlineAlloc[1 << kInlineAllocLgBytes]; }; #endif//SkRecord_DEFINED