/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkMipMap.h" #include "SkBitmap.h" #include "SkColorPriv.h" #include "SkMath.h" #include "SkNx.h" #include "SkTypes.h" // // ColorTypeFilter is the "Type" we pass to some downsample template functions. // It controls how we expand a pixel into a large type, with space between each component, // so we can then perform our simple filter (either box or triangle) and store the intermediates // in the expanded type. // struct ColorTypeFilter_8888 { typedef uint32_t Type; #if defined(SKNX_IS_FAST) static Sk4h Expand(uint32_t x) { return SkNx_cast<uint16_t>(Sk4b::Load(&x)); } static uint32_t Compact(const Sk4h& x) { uint32_t r; SkNx_cast<uint8_t>(x).store(&r); return r; } #else static uint64_t Expand(uint32_t x) { return (x & 0xFF00FF) | ((uint64_t)(x & 0xFF00FF00) << 24); } static uint32_t Compact(uint64_t x) { return (uint32_t)((x & 0xFF00FF) | ((x >> 24) & 0xFF00FF00)); } #endif }; struct ColorTypeFilter_565 { typedef uint16_t Type; static uint32_t Expand(uint16_t x) { return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16); } static uint16_t Compact(uint32_t x) { return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE); } }; struct ColorTypeFilter_4444 { typedef uint16_t Type; static uint32_t Expand(uint16_t x) { return (x & 0xF0F) | ((x & ~0xF0F) << 12); } static uint16_t Compact(uint32_t x) { return (x & 0xF0F) | ((x >> 12) & ~0xF0F); } }; struct ColorTypeFilter_8 { typedef uint8_t Type; static unsigned Expand(unsigned x) { return x; } static uint8_t Compact(unsigned x) { return (uint8_t)x; } }; template <typename T> T add_121(const T& a, const T& b, const T& c) { return a + b + b + c; } // // To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50) // If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50) // In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings, // else for even cases, we just use a 2x box filter. // // This produces 4 possible filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of src pixels // we need to sample in each dimension to produce 1 dst pixel. // template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) { auto p0 = static_cast<const typename F::Type*>(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto d = static_cast<typename F::Type*>(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c01 = F::Expand(p0[1]); auto c10 = F::Expand(p1[0]); auto c11 = F::Expand(p1[1]); auto c = c00 + c10 + c01 + c11; d[i] = F::Compact(c >> 2); p0 += 2; p1 += 2; } } template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast<const typename F::Type*>(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto d = static_cast<typename F::Type*>(dst); auto c02 = F::Expand(p0[0]); auto c12 = F::Expand(p1[0]); for (int i = 0; i < count; ++i) { auto c00 = c02; auto c01 = F::Expand(p0[1]); c02 = F::Expand(p0[2]); auto c10 = c12; auto c11 = F::Expand(p1[1]); c12 = F::Expand(p1[2]); auto c = add_121(c00, c01, c02) + add_121(c10, c11, c12); d[i] = F::Compact(c >> 3); p0 += 2; p1 += 2; } } template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) { auto p0 = static_cast<const typename F::Type*>(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); auto d = static_cast<typename F::Type*>(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c01 = F::Expand(p0[1]); auto c10 = F::Expand(p1[0]); auto c11 = F::Expand(p1[1]); auto c20 = F::Expand(p2[0]); auto c21 = F::Expand(p2[1]); auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21); d[i] = F::Compact(c >> 3); p0 += 2; p1 += 2; p2 += 2; } } template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) { auto p0 = static_cast<const typename F::Type*>(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); auto d = static_cast<typename F::Type*>(dst); auto c02 = F::Expand(p0[0]); auto c12 = F::Expand(p1[0]); auto c22 = F::Expand(p2[0]); for (int i = 0; i < count; ++i) { auto c00 = c02; auto c01 = F::Expand(p0[1]); c02 = F::Expand(p0[2]); auto c10 = c12; auto c11 = F::Expand(p1[1]); c12 = F::Expand(p1[2]); auto c20 = c22; auto c21 = F::Expand(p2[1]); c22 = F::Expand(p2[2]); auto c = add_121(c00, c01, c02) + (add_121(c10, c11, c12) << 1) + add_121(c20, c21, c22); d[i] = F::Compact(c >> 4); p0 += 2; p1 += 2; p2 += 2; } } /////////////////////////////////////////////////////////////////////////////////////////////////// size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) { if (levelCount < 0) { return 0; } int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize; if (!sk_64_isS32(size)) { return 0; } return sk_64_asS32(size); } SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) { typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count); FilterProc* proc_2_2 = nullptr; FilterProc* proc_2_3 = nullptr; FilterProc* proc_3_2 = nullptr; FilterProc* proc_3_3 = nullptr; const SkColorType ct = src.colorType(); const SkAlphaType at = src.alphaType(); switch (ct) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: proc_2_2 = downsample_2_2<ColorTypeFilter_8888>; proc_2_3 = downsample_2_3<ColorTypeFilter_8888>; proc_3_2 = downsample_3_2<ColorTypeFilter_8888>; proc_3_3 = downsample_3_3<ColorTypeFilter_8888>; break; case kRGB_565_SkColorType: proc_2_2 = downsample_2_2<ColorTypeFilter_565>; proc_2_3 = downsample_2_3<ColorTypeFilter_565>; proc_3_2 = downsample_3_2<ColorTypeFilter_565>; proc_3_3 = downsample_3_3<ColorTypeFilter_565>; break; case kARGB_4444_SkColorType: proc_2_2 = downsample_2_2<ColorTypeFilter_4444>; proc_2_3 = downsample_2_3<ColorTypeFilter_4444>; proc_3_2 = downsample_3_2<ColorTypeFilter_4444>; proc_3_3 = downsample_3_3<ColorTypeFilter_4444>; break; case kAlpha_8_SkColorType: case kGray_8_SkColorType: proc_2_2 = downsample_2_2<ColorTypeFilter_8>; proc_2_3 = downsample_2_3<ColorTypeFilter_8>; proc_3_2 = downsample_3_2<ColorTypeFilter_8>; proc_3_3 = downsample_3_3<ColorTypeFilter_8>; break; default: // TODO: We could build miplevels for kIndex8 if the levels were in 8888. // Means using more ram, but the quality would be fine. return nullptr; } // whip through our loop to compute the exact size needed size_t size = 0; int countLevels = 0; { int width = src.width(); int height = src.height(); for (;;) { width >>= 1; height >>= 1; if (0 == width || 0 == height) { break; } size += SkColorTypeMinRowBytes(ct, width) * height; countLevels += 1; } } if (0 == countLevels) { return nullptr; } SkASSERT(countLevels == SkMipMap::ComputeLevelCount(src.width(), src.height())); size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size); if (0 == storageSize) { return nullptr; } SkMipMap* mipmap; if (fact) { SkDiscardableMemory* dm = fact(storageSize); if (nullptr == dm) { return nullptr; } mipmap = new SkMipMap(storageSize, dm); } else { mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize); } // init mipmap->fCount = countLevels; mipmap->fLevels = (Level*)mipmap->writable_data(); Level* levels = mipmap->fLevels; uint8_t* baseAddr = (uint8_t*)&levels[countLevels]; uint8_t* addr = baseAddr; int width = src.width(); int height = src.height(); uint32_t rowBytes; SkPixmap srcPM(src); for (int i = 0; i < countLevels; ++i) { FilterProc* proc; if (height & 1) { // src-height is 3 if (width & 1) { // src-width is 3 proc = proc_3_3; } else { // src-width is 2 proc = proc_2_3; } } else { // src-height is 2 if (width & 1) { // src-width is 3 proc = proc_3_2; } else { // src-width is 2 proc = proc_2_2; } } width >>= 1; height >>= 1; rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width)); levels[i].fPixmap = SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes); levels[i].fScale = SkSize::Make(SkIntToScalar(width) / src.width(), SkIntToScalar(height) / src.height()); const SkPixmap& dstPM = levels[i].fPixmap; const void* srcBasePtr = srcPM.addr(); void* dstBasePtr = dstPM.writable_addr(); const size_t srcRB = srcPM.rowBytes(); for (int y = 0; y < height; y++) { proc(dstBasePtr, srcBasePtr, srcRB, width); srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes(); } srcPM = dstPM; addr += height * rowBytes; } SkASSERT(addr == baseAddr + size); return mipmap; } int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) { // OpenGL's spec requires that each mipmap level have height/width equal to // max(1, floor(original_height / 2^i) // (or original_width) where i is the mipmap level. // Continue scaling down until both axes are size 1. // // This means it maintains isotropic space (both axes scaling down // at the same rate) until one axis hits size 1. // At that point, OpenGL continues to scale down into anisotropic space // (where the scales are not the same between axes). // // Skia currently does not go into anisotropic space. // Once an axis hits size 1 we stop. // All this means is rather than use the largest axis we will use the // smallest axis. const int smallestAxis = SkTMin(baseWidth, baseHeight); if (smallestAxis < 2) { // SkMipMap::Build requires a minimum size of 2. return 0; } const int leadingZeros = SkCLZ(static_cast<uint32_t>(smallestAxis)); // If the value 00011010 has 3 leading 0s then it has 5 significant bits // (the bits which are not leading zeros) const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros; // This is making the assumption that the size of a byte is 8 bits // and that sizeof(uint32_t)'s implementation-defined behavior is 4. int mipLevelCount = significantBits; // SkMipMap does not include the base mip level. // For example, it contains levels 1-x instead of 0-x. // This is because the image used to create SkMipMap is the base level. // So subtract 1 from the mip level count. if (mipLevelCount > 0) { --mipLevelCount; } return mipLevelCount; } /////////////////////////////////////////////////////////////////////////////// bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const { if (nullptr == fLevels) { return false; } SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0); #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE // Use the smallest scale to match the GPU impl. const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height()); #else // Ideally we'd pick the smaller scale, to match Ganesh. But ignoring one of the // scales can produce some atrocious results, so for now we use the geometric mean. // (https://bugs.chromium.org/p/skia/issues/detail?id=4863) const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height()); #endif if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) { return false; } SkScalar L = -SkScalarLog2(scale); if (!SkScalarIsFinite(L)) { return false; } SkASSERT(L >= 0); // int rndLevel = SkScalarRoundToInt(L); int level = SkScalarFloorToInt(L); // SkDebugf("mipmap scale=%g L=%g level=%d rndLevel=%d\n", scale, L, level, rndLevel); SkASSERT(level >= 0); if (level <= 0) { return false; } if (level > fCount) { level = fCount; } if (levelPtr) { *levelPtr = fLevels[level - 1]; } return true; } // Helper which extracts a pixmap from the src bitmap // SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDiscardableFactoryProc fact) { SkAutoPixmapUnlock srcUnlocker; if (!src.requestLock(&srcUnlocker)) { return nullptr; } const SkPixmap& srcPixmap = srcUnlocker.pixmap(); // Try to catch where we might have returned nullptr for src crbug.com/492818 if (nullptr == srcPixmap.addr()) { sk_throw(); } return Build(srcPixmap, fact); } int SkMipMap::countLevels() const { return fCount; } bool SkMipMap::getLevel(int index, Level* levelPtr) const { if (NULL == fLevels) { return false; } if (index < 0) { return false; } if (index > fCount - 1) { return false; } if (levelPtr) { *levelPtr = fLevels[index]; } return true; }