/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkMatrix.h" #include "SkFloatBits.h" #include "SkRSXform.h" #include "SkString.h" #include "SkNx.h" #include "SkOpts.h" #include <stddef.h> static void normalize_perspective(SkScalar mat[9]) { // If it was interesting to never store the last element, we could divide all 8 other // elements here by the 9th, making it 1.0... // // When SkScalar was SkFixed, we would sometimes rescale the entire matrix to keep its // component values from getting too large. This is not a concern when using floats/doubles, // so we do nothing now. // Disable this for now, but it could be enabled. #if 0 if (0 == mat[SkMatrix::kMPersp0] && 0 == mat[SkMatrix::kMPersp1]) { SkScalar p2 = mat[SkMatrix::kMPersp2]; if (p2 != 0 && p2 != 1) { double inv = 1.0 / p2; for (int i = 0; i < 6; ++i) { mat[i] = SkDoubleToScalar(mat[i] * inv); } mat[SkMatrix::kMPersp2] = 1; } } #endif } // In a few places, we performed the following // a * b + c * d + e // as // a * b + (c * d + e) // // sdot and scross are indended to capture these compound operations into a // function, with an eye toward considering upscaling the intermediates to // doubles for more precision (as we do in concat and invert). // // However, these few lines that performed the last add before the "dot", cause // tiny image differences, so we guard that change until we see the impact on // chrome's layouttests. // #define SK_LEGACY_MATRIX_MATH_ORDER static inline float SkDoubleToFloat(double x) { return static_cast<float>(x); } /* [scale-x skew-x trans-x] [X] [X'] [skew-y scale-y trans-y] * [Y] = [Y'] [persp-0 persp-1 persp-2] [1] [1 ] */ void SkMatrix::reset() { fMat[kMScaleX] = fMat[kMScaleY] = fMat[kMPersp2] = 1; fMat[kMSkewX] = fMat[kMSkewY] = fMat[kMTransX] = fMat[kMTransY] = fMat[kMPersp0] = fMat[kMPersp1] = 0; this->setTypeMask(kIdentity_Mask | kRectStaysRect_Mask); } void SkMatrix::set9(const SkScalar buffer[]) { memcpy(fMat, buffer, 9 * sizeof(SkScalar)); normalize_perspective(fMat); this->setTypeMask(kUnknown_Mask); } void SkMatrix::setAffine(const SkScalar buffer[]) { fMat[kMScaleX] = buffer[kAScaleX]; fMat[kMSkewX] = buffer[kASkewX]; fMat[kMTransX] = buffer[kATransX]; fMat[kMSkewY] = buffer[kASkewY]; fMat[kMScaleY] = buffer[kAScaleY]; fMat[kMTransY] = buffer[kATransY]; fMat[kMPersp0] = 0; fMat[kMPersp1] = 0; fMat[kMPersp2] = 1; this->setTypeMask(kUnknown_Mask); } // this guy aligns with the masks, so we can compute a mask from a varaible 0/1 enum { kTranslate_Shift, kScale_Shift, kAffine_Shift, kPerspective_Shift, kRectStaysRect_Shift }; static const int32_t kScalar1Int = 0x3f800000; uint8_t SkMatrix::computePerspectiveTypeMask() const { // Benchmarking suggests that replacing this set of SkScalarAs2sCompliment // is a win, but replacing those below is not. We don't yet understand // that result. if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) { // If this is a perspective transform, we return true for all other // transform flags - this does not disable any optimizations, respects // the rule that the type mask must be conservative, and speeds up // type mask computation. return SkToU8(kORableMasks); } return SkToU8(kOnlyPerspectiveValid_Mask | kUnknown_Mask); } uint8_t SkMatrix::computeTypeMask() const { unsigned mask = 0; if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) { // Once it is determined that that this is a perspective transform, // all other flags are moot as far as optimizations are concerned. return SkToU8(kORableMasks); } if (fMat[kMTransX] != 0 || fMat[kMTransY] != 0) { mask |= kTranslate_Mask; } int m00 = SkScalarAs2sCompliment(fMat[SkMatrix::kMScaleX]); int m01 = SkScalarAs2sCompliment(fMat[SkMatrix::kMSkewX]); int m10 = SkScalarAs2sCompliment(fMat[SkMatrix::kMSkewY]); int m11 = SkScalarAs2sCompliment(fMat[SkMatrix::kMScaleY]); if (m01 | m10) { // The skew components may be scale-inducing, unless we are dealing // with a pure rotation. Testing for a pure rotation is expensive, // so we opt for being conservative by always setting the scale bit. // along with affine. // By doing this, we are also ensuring that matrices have the same // type masks as their inverses. mask |= kAffine_Mask | kScale_Mask; // For rectStaysRect, in the affine case, we only need check that // the primary diagonal is all zeros and that the secondary diagonal // is all non-zero. // map non-zero to 1 m01 = m01 != 0; m10 = m10 != 0; int dp0 = 0 == (m00 | m11) ; // true if both are 0 int ds1 = m01 & m10; // true if both are 1 mask |= (dp0 & ds1) << kRectStaysRect_Shift; } else { // Only test for scale explicitly if not affine, since affine sets the // scale bit. if ((m00 ^ kScalar1Int) | (m11 ^ kScalar1Int)) { mask |= kScale_Mask; } // Not affine, therefore we already know secondary diagonal is // all zeros, so we just need to check that primary diagonal is // all non-zero. // map non-zero to 1 m00 = m00 != 0; m11 = m11 != 0; // record if the (p)rimary diagonal is all non-zero mask |= (m00 & m11) << kRectStaysRect_Shift; } return SkToU8(mask); } /////////////////////////////////////////////////////////////////////////////// bool operator==(const SkMatrix& a, const SkMatrix& b) { const SkScalar* SK_RESTRICT ma = a.fMat; const SkScalar* SK_RESTRICT mb = b.fMat; return ma[0] == mb[0] && ma[1] == mb[1] && ma[2] == mb[2] && ma[3] == mb[3] && ma[4] == mb[4] && ma[5] == mb[5] && ma[6] == mb[6] && ma[7] == mb[7] && ma[8] == mb[8]; } /////////////////////////////////////////////////////////////////////////////// // helper function to determine if upper-left 2x2 of matrix is degenerate static inline bool is_degenerate_2x2(SkScalar scaleX, SkScalar skewX, SkScalar skewY, SkScalar scaleY) { SkScalar perp_dot = scaleX*scaleY - skewX*skewY; return SkScalarNearlyZero(perp_dot, SK_ScalarNearlyZero*SK_ScalarNearlyZero); } /////////////////////////////////////////////////////////////////////////////// bool SkMatrix::isSimilarity(SkScalar tol) const { // if identity or translate matrix TypeMask mask = this->getType(); if (mask <= kTranslate_Mask) { return true; } if (mask & kPerspective_Mask) { return false; } SkScalar mx = fMat[kMScaleX]; SkScalar my = fMat[kMScaleY]; // if no skew, can just compare scale factors if (!(mask & kAffine_Mask)) { return !SkScalarNearlyZero(mx) && SkScalarNearlyEqual(SkScalarAbs(mx), SkScalarAbs(my)); } SkScalar sx = fMat[kMSkewX]; SkScalar sy = fMat[kMSkewY]; if (is_degenerate_2x2(mx, sx, sy, my)) { return false; } // upper 2x2 is rotation/reflection + uniform scale if basis vectors // are 90 degree rotations of each other return (SkScalarNearlyEqual(mx, my, tol) && SkScalarNearlyEqual(sx, -sy, tol)) || (SkScalarNearlyEqual(mx, -my, tol) && SkScalarNearlyEqual(sx, sy, tol)); } bool SkMatrix::preservesRightAngles(SkScalar tol) const { TypeMask mask = this->getType(); if (mask <= kTranslate_Mask) { // identity, translate and/or scale return true; } if (mask & kPerspective_Mask) { return false; } SkASSERT(mask & (kAffine_Mask | kScale_Mask)); SkScalar mx = fMat[kMScaleX]; SkScalar my = fMat[kMScaleY]; SkScalar sx = fMat[kMSkewX]; SkScalar sy = fMat[kMSkewY]; if (is_degenerate_2x2(mx, sx, sy, my)) { return false; } // upper 2x2 is scale + rotation/reflection if basis vectors are orthogonal SkVector vec[2]; vec[0].set(mx, sy); vec[1].set(sx, my); return SkScalarNearlyZero(vec[0].dot(vec[1]), SkScalarSquare(tol)); } /////////////////////////////////////////////////////////////////////////////// static inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d) { return a * b + c * d; } static inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar e, SkScalar f) { return a * b + c * d + e * f; } static inline SkScalar scross(SkScalar a, SkScalar b, SkScalar c, SkScalar d) { return a * b - c * d; } void SkMatrix::setTranslate(SkScalar dx, SkScalar dy) { if (dx || dy) { fMat[kMTransX] = dx; fMat[kMTransY] = dy; fMat[kMScaleX] = fMat[kMScaleY] = fMat[kMPersp2] = 1; fMat[kMSkewX] = fMat[kMSkewY] = fMat[kMPersp0] = fMat[kMPersp1] = 0; this->setTypeMask(kTranslate_Mask | kRectStaysRect_Mask); } else { this->reset(); } } void SkMatrix::preTranslate(SkScalar dx, SkScalar dy) { if (!dx && !dy) { return; } if (this->hasPerspective()) { SkMatrix m; m.setTranslate(dx, dy); this->preConcat(m); } else { fMat[kMTransX] += sdot(fMat[kMScaleX], dx, fMat[kMSkewX], dy); fMat[kMTransY] += sdot(fMat[kMSkewY], dx, fMat[kMScaleY], dy); this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); } } void SkMatrix::postTranslate(SkScalar dx, SkScalar dy) { if (!dx && !dy) { return; } if (this->hasPerspective()) { SkMatrix m; m.setTranslate(dx, dy); this->postConcat(m); } else { fMat[kMTransX] += dx; fMat[kMTransY] += dy; this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); } } /////////////////////////////////////////////////////////////////////////////// void SkMatrix::setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { if (1 == sx && 1 == sy) { this->reset(); } else { this->setScaleTranslate(sx, sy, px - sx * px, py - sy * py); } } void SkMatrix::setScale(SkScalar sx, SkScalar sy) { if (1 == sx && 1 == sy) { this->reset(); } else { fMat[kMScaleX] = sx; fMat[kMScaleY] = sy; fMat[kMPersp2] = 1; fMat[kMTransX] = fMat[kMTransY] = fMat[kMSkewX] = fMat[kMSkewY] = fMat[kMPersp0] = fMat[kMPersp1] = 0; this->setTypeMask(kScale_Mask | kRectStaysRect_Mask); } } bool SkMatrix::setIDiv(int divx, int divy) { if (!divx || !divy) { return false; } this->setScale(SkScalarInvert(divx), SkScalarInvert(divy)); return true; } void SkMatrix::preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { if (1 == sx && 1 == sy) { return; } SkMatrix m; m.setScale(sx, sy, px, py); this->preConcat(m); } void SkMatrix::preScale(SkScalar sx, SkScalar sy) { if (1 == sx && 1 == sy) { return; } // the assumption is that these multiplies are very cheap, and that // a full concat and/or just computing the matrix type is more expensive. // Also, the fixed-point case checks for overflow, but the float doesn't, // so we can get away with these blind multiplies. fMat[kMScaleX] *= sx; fMat[kMSkewY] *= sx; fMat[kMPersp0] *= sx; fMat[kMSkewX] *= sy; fMat[kMScaleY] *= sy; fMat[kMPersp1] *= sy; // Attempt to simplify our type when applying an inverse scale. // TODO: The persp/affine preconditions are in place to keep the mask consistent with // what computeTypeMask() would produce (persp/skew always implies kScale). // We should investigate whether these flag dependencies are truly needed. if (fMat[kMScaleX] == 1 && fMat[kMScaleY] == 1 && !(fTypeMask & (kPerspective_Mask | kAffine_Mask))) { this->clearTypeMask(kScale_Mask); } else { this->orTypeMask(kScale_Mask); } } void SkMatrix::postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { if (1 == sx && 1 == sy) { return; } SkMatrix m; m.setScale(sx, sy, px, py); this->postConcat(m); } void SkMatrix::postScale(SkScalar sx, SkScalar sy) { if (1 == sx && 1 == sy) { return; } SkMatrix m; m.setScale(sx, sy); this->postConcat(m); } // this guy perhaps can go away, if we have a fract/high-precision way to // scale matrices bool SkMatrix::postIDiv(int divx, int divy) { if (divx == 0 || divy == 0) { return false; } const float invX = 1.f / divx; const float invY = 1.f / divy; fMat[kMScaleX] *= invX; fMat[kMSkewX] *= invX; fMat[kMTransX] *= invX; fMat[kMScaleY] *= invY; fMat[kMSkewY] *= invY; fMat[kMTransY] *= invY; this->setTypeMask(kUnknown_Mask); return true; } //////////////////////////////////////////////////////////////////////////////////// void SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV, SkScalar px, SkScalar py) { const SkScalar oneMinusCosV = 1 - cosV; fMat[kMScaleX] = cosV; fMat[kMSkewX] = -sinV; fMat[kMTransX] = sdot(sinV, py, oneMinusCosV, px); fMat[kMSkewY] = sinV; fMat[kMScaleY] = cosV; fMat[kMTransY] = sdot(-sinV, px, oneMinusCosV, py); fMat[kMPersp0] = fMat[kMPersp1] = 0; fMat[kMPersp2] = 1; this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); } SkMatrix& SkMatrix::setRSXform(const SkRSXform& xform) { fMat[kMScaleX] = xform.fSCos; fMat[kMSkewX] = -xform.fSSin; fMat[kMTransX] = xform.fTx; fMat[kMSkewY] = xform.fSSin; fMat[kMScaleY] = xform.fSCos; fMat[kMTransY] = xform.fTy; fMat[kMPersp0] = fMat[kMPersp1] = 0; fMat[kMPersp2] = 1; this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); return *this; } void SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV) { fMat[kMScaleX] = cosV; fMat[kMSkewX] = -sinV; fMat[kMTransX] = 0; fMat[kMSkewY] = sinV; fMat[kMScaleY] = cosV; fMat[kMTransY] = 0; fMat[kMPersp0] = fMat[kMPersp1] = 0; fMat[kMPersp2] = 1; this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); } void SkMatrix::setRotate(SkScalar degrees, SkScalar px, SkScalar py) { SkScalar sinV, cosV; sinV = SkScalarSinCos(SkDegreesToRadians(degrees), &cosV); this->setSinCos(sinV, cosV, px, py); } void SkMatrix::setRotate(SkScalar degrees) { SkScalar sinV, cosV; sinV = SkScalarSinCos(SkDegreesToRadians(degrees), &cosV); this->setSinCos(sinV, cosV); } void SkMatrix::preRotate(SkScalar degrees, SkScalar px, SkScalar py) { SkMatrix m; m.setRotate(degrees, px, py); this->preConcat(m); } void SkMatrix::preRotate(SkScalar degrees) { SkMatrix m; m.setRotate(degrees); this->preConcat(m); } void SkMatrix::postRotate(SkScalar degrees, SkScalar px, SkScalar py) { SkMatrix m; m.setRotate(degrees, px, py); this->postConcat(m); } void SkMatrix::postRotate(SkScalar degrees) { SkMatrix m; m.setRotate(degrees); this->postConcat(m); } //////////////////////////////////////////////////////////////////////////////////// void SkMatrix::setSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { fMat[kMScaleX] = 1; fMat[kMSkewX] = sx; fMat[kMTransX] = -sx * py; fMat[kMSkewY] = sy; fMat[kMScaleY] = 1; fMat[kMTransY] = -sy * px; fMat[kMPersp0] = fMat[kMPersp1] = 0; fMat[kMPersp2] = 1; this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); } void SkMatrix::setSkew(SkScalar sx, SkScalar sy) { fMat[kMScaleX] = 1; fMat[kMSkewX] = sx; fMat[kMTransX] = 0; fMat[kMSkewY] = sy; fMat[kMScaleY] = 1; fMat[kMTransY] = 0; fMat[kMPersp0] = fMat[kMPersp1] = 0; fMat[kMPersp2] = 1; this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); } void SkMatrix::preSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { SkMatrix m; m.setSkew(sx, sy, px, py); this->preConcat(m); } void SkMatrix::preSkew(SkScalar sx, SkScalar sy) { SkMatrix m; m.setSkew(sx, sy); this->preConcat(m); } void SkMatrix::postSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { SkMatrix m; m.setSkew(sx, sy, px, py); this->postConcat(m); } void SkMatrix::postSkew(SkScalar sx, SkScalar sy) { SkMatrix m; m.setSkew(sx, sy); this->postConcat(m); } /////////////////////////////////////////////////////////////////////////////// bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit align) { if (src.isEmpty()) { this->reset(); return false; } if (dst.isEmpty()) { sk_bzero(fMat, 8 * sizeof(SkScalar)); fMat[kMPersp2] = 1; this->setTypeMask(kScale_Mask | kRectStaysRect_Mask); } else { SkScalar tx, sx = dst.width() / src.width(); SkScalar ty, sy = dst.height() / src.height(); bool xLarger = false; if (align != kFill_ScaleToFit) { if (sx > sy) { xLarger = true; sx = sy; } else { sy = sx; } } tx = dst.fLeft - src.fLeft * sx; ty = dst.fTop - src.fTop * sy; if (align == kCenter_ScaleToFit || align == kEnd_ScaleToFit) { SkScalar diff; if (xLarger) { diff = dst.width() - src.width() * sy; } else { diff = dst.height() - src.height() * sy; } if (align == kCenter_ScaleToFit) { diff = SkScalarHalf(diff); } if (xLarger) { tx += diff; } else { ty += diff; } } this->setScaleTranslate(sx, sy, tx, ty); } return true; } /////////////////////////////////////////////////////////////////////////////// static inline float muladdmul(float a, float b, float c, float d) { return SkDoubleToFloat((double)a * b + (double)c * d); } static inline float rowcol3(const float row[], const float col[]) { return row[0] * col[0] + row[1] * col[3] + row[2] * col[6]; } static bool only_scale_and_translate(unsigned mask) { return 0 == (mask & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)); } void SkMatrix::setConcat(const SkMatrix& a, const SkMatrix& b) { TypeMask aType = a.getType(); TypeMask bType = b.getType(); if (a.isTriviallyIdentity()) { *this = b; } else if (b.isTriviallyIdentity()) { *this = a; } else if (only_scale_and_translate(aType | bType)) { this->setScaleTranslate(a.fMat[kMScaleX] * b.fMat[kMScaleX], a.fMat[kMScaleY] * b.fMat[kMScaleY], a.fMat[kMScaleX] * b.fMat[kMTransX] + a.fMat[kMTransX], a.fMat[kMScaleY] * b.fMat[kMTransY] + a.fMat[kMTransY]); } else { SkMatrix tmp; if ((aType | bType) & kPerspective_Mask) { tmp.fMat[kMScaleX] = rowcol3(&a.fMat[0], &b.fMat[0]); tmp.fMat[kMSkewX] = rowcol3(&a.fMat[0], &b.fMat[1]); tmp.fMat[kMTransX] = rowcol3(&a.fMat[0], &b.fMat[2]); tmp.fMat[kMSkewY] = rowcol3(&a.fMat[3], &b.fMat[0]); tmp.fMat[kMScaleY] = rowcol3(&a.fMat[3], &b.fMat[1]); tmp.fMat[kMTransY] = rowcol3(&a.fMat[3], &b.fMat[2]); tmp.fMat[kMPersp0] = rowcol3(&a.fMat[6], &b.fMat[0]); tmp.fMat[kMPersp1] = rowcol3(&a.fMat[6], &b.fMat[1]); tmp.fMat[kMPersp2] = rowcol3(&a.fMat[6], &b.fMat[2]); normalize_perspective(tmp.fMat); tmp.setTypeMask(kUnknown_Mask); } else { tmp.fMat[kMScaleX] = muladdmul(a.fMat[kMScaleX], b.fMat[kMScaleX], a.fMat[kMSkewX], b.fMat[kMSkewY]); tmp.fMat[kMSkewX] = muladdmul(a.fMat[kMScaleX], b.fMat[kMSkewX], a.fMat[kMSkewX], b.fMat[kMScaleY]); tmp.fMat[kMTransX] = muladdmul(a.fMat[kMScaleX], b.fMat[kMTransX], a.fMat[kMSkewX], b.fMat[kMTransY]) + a.fMat[kMTransX]; tmp.fMat[kMSkewY] = muladdmul(a.fMat[kMSkewY], b.fMat[kMScaleX], a.fMat[kMScaleY], b.fMat[kMSkewY]); tmp.fMat[kMScaleY] = muladdmul(a.fMat[kMSkewY], b.fMat[kMSkewX], a.fMat[kMScaleY], b.fMat[kMScaleY]); tmp.fMat[kMTransY] = muladdmul(a.fMat[kMSkewY], b.fMat[kMTransX], a.fMat[kMScaleY], b.fMat[kMTransY]) + a.fMat[kMTransY]; tmp.fMat[kMPersp0] = 0; tmp.fMat[kMPersp1] = 0; tmp.fMat[kMPersp2] = 1; //SkDebugf("Concat mat non-persp type: %d\n", tmp.getType()); //SkASSERT(!(tmp.getType() & kPerspective_Mask)); tmp.setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); } *this = tmp; } } void SkMatrix::preConcat(const SkMatrix& mat) { // check for identity first, so we don't do a needless copy of ourselves // to ourselves inside setConcat() if(!mat.isIdentity()) { this->setConcat(*this, mat); } } void SkMatrix::postConcat(const SkMatrix& mat) { // check for identity first, so we don't do a needless copy of ourselves // to ourselves inside setConcat() if (!mat.isIdentity()) { this->setConcat(mat, *this); } } /////////////////////////////////////////////////////////////////////////////// /* Matrix inversion is very expensive, but also the place where keeping precision may be most important (here and matrix concat). Hence to avoid bitmap blitting artifacts when walking the inverse, we use doubles for the intermediate math, even though we know that is more expensive. */ static inline SkScalar scross_dscale(SkScalar a, SkScalar b, SkScalar c, SkScalar d, double scale) { return SkDoubleToScalar(scross(a, b, c, d) * scale); } static inline double dcross(double a, double b, double c, double d) { return a * b - c * d; } static inline SkScalar dcross_dscale(double a, double b, double c, double d, double scale) { return SkDoubleToScalar(dcross(a, b, c, d) * scale); } static double sk_inv_determinant(const float mat[9], int isPerspective) { double det; if (isPerspective) { det = mat[SkMatrix::kMScaleX] * dcross(mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp2], mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp1]) + mat[SkMatrix::kMSkewX] * dcross(mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp0], mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp2]) + mat[SkMatrix::kMTransX] * dcross(mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp1], mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp0]); } else { det = dcross(mat[SkMatrix::kMScaleX], mat[SkMatrix::kMScaleY], mat[SkMatrix::kMSkewX], mat[SkMatrix::kMSkewY]); } // Since the determinant is on the order of the cube of the matrix members, // compare to the cube of the default nearly-zero constant (although an // estimate of the condition number would be better if it wasn't so expensive). if (SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero * SK_ScalarNearlyZero)) { return 0; } return 1.0 / det; } void SkMatrix::SetAffineIdentity(SkScalar affine[6]) { affine[kAScaleX] = 1; affine[kASkewY] = 0; affine[kASkewX] = 0; affine[kAScaleY] = 1; affine[kATransX] = 0; affine[kATransY] = 0; } bool SkMatrix::asAffine(SkScalar affine[6]) const { if (this->hasPerspective()) { return false; } if (affine) { affine[kAScaleX] = this->fMat[kMScaleX]; affine[kASkewY] = this->fMat[kMSkewY]; affine[kASkewX] = this->fMat[kMSkewX]; affine[kAScaleY] = this->fMat[kMScaleY]; affine[kATransX] = this->fMat[kMTransX]; affine[kATransY] = this->fMat[kMTransY]; } return true; } void SkMatrix::ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp) { SkASSERT(src != dst); SkASSERT(src && dst); if (isPersp) { dst[kMScaleX] = scross_dscale(src[kMScaleY], src[kMPersp2], src[kMTransY], src[kMPersp1], invDet); dst[kMSkewX] = scross_dscale(src[kMTransX], src[kMPersp1], src[kMSkewX], src[kMPersp2], invDet); dst[kMTransX] = scross_dscale(src[kMSkewX], src[kMTransY], src[kMTransX], src[kMScaleY], invDet); dst[kMSkewY] = scross_dscale(src[kMTransY], src[kMPersp0], src[kMSkewY], src[kMPersp2], invDet); dst[kMScaleY] = scross_dscale(src[kMScaleX], src[kMPersp2], src[kMTransX], src[kMPersp0], invDet); dst[kMTransY] = scross_dscale(src[kMTransX], src[kMSkewY], src[kMScaleX], src[kMTransY], invDet); dst[kMPersp0] = scross_dscale(src[kMSkewY], src[kMPersp1], src[kMScaleY], src[kMPersp0], invDet); dst[kMPersp1] = scross_dscale(src[kMSkewX], src[kMPersp0], src[kMScaleX], src[kMPersp1], invDet); dst[kMPersp2] = scross_dscale(src[kMScaleX], src[kMScaleY], src[kMSkewX], src[kMSkewY], invDet); } else { // not perspective dst[kMScaleX] = SkDoubleToScalar(src[kMScaleY] * invDet); dst[kMSkewX] = SkDoubleToScalar(-src[kMSkewX] * invDet); dst[kMTransX] = dcross_dscale(src[kMSkewX], src[kMTransY], src[kMScaleY], src[kMTransX], invDet); dst[kMSkewY] = SkDoubleToScalar(-src[kMSkewY] * invDet); dst[kMScaleY] = SkDoubleToScalar(src[kMScaleX] * invDet); dst[kMTransY] = dcross_dscale(src[kMSkewY], src[kMTransX], src[kMScaleX], src[kMTransY], invDet); dst[kMPersp0] = 0; dst[kMPersp1] = 0; dst[kMPersp2] = 1; } } bool SkMatrix::invertNonIdentity(SkMatrix* inv) const { SkASSERT(!this->isIdentity()); TypeMask mask = this->getType(); if (0 == (mask & ~(kScale_Mask | kTranslate_Mask))) { bool invertible = true; if (inv) { if (mask & kScale_Mask) { SkScalar invX = fMat[kMScaleX]; SkScalar invY = fMat[kMScaleY]; if (0 == invX || 0 == invY) { return false; } invX = SkScalarInvert(invX); invY = SkScalarInvert(invY); // Must be careful when writing to inv, since it may be the // same memory as this. inv->fMat[kMSkewX] = inv->fMat[kMSkewY] = inv->fMat[kMPersp0] = inv->fMat[kMPersp1] = 0; inv->fMat[kMScaleX] = invX; inv->fMat[kMScaleY] = invY; inv->fMat[kMPersp2] = 1; inv->fMat[kMTransX] = -fMat[kMTransX] * invX; inv->fMat[kMTransY] = -fMat[kMTransY] * invY; inv->setTypeMask(mask | kRectStaysRect_Mask); } else { // translate only inv->setTranslate(-fMat[kMTransX], -fMat[kMTransY]); } } else { // inv is nullptr, just check if we're invertible if (!fMat[kMScaleX] || !fMat[kMScaleY]) { invertible = false; } } return invertible; } int isPersp = mask & kPerspective_Mask; double invDet = sk_inv_determinant(fMat, isPersp); if (invDet == 0) { // underflow return false; } bool applyingInPlace = (inv == this); SkMatrix* tmp = inv; SkMatrix storage; if (applyingInPlace || nullptr == tmp) { tmp = &storage; // we either need to avoid trampling memory or have no memory } ComputeInv(tmp->fMat, fMat, invDet, isPersp); if (!tmp->isFinite()) { return false; } tmp->setTypeMask(fTypeMask); if (applyingInPlace) { *inv = storage; // need to copy answer back } return true; } /////////////////////////////////////////////////////////////////////////////// void SkMatrix::Identity_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { SkASSERT(m.getType() == 0); if (dst != src && count > 0) { memcpy(dst, src, count * sizeof(SkPoint)); } } void SkMatrix::Trans_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { return SkOpts::matrix_translate(m,dst,src,count); } void SkMatrix::Scale_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { return SkOpts::matrix_scale_translate(m,dst,src,count); } void SkMatrix::Persp_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { SkASSERT(m.hasPerspective()); if (count > 0) { do { SkScalar sy = src->fY; SkScalar sx = src->fX; src += 1; SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; SkScalar y = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; #ifdef SK_LEGACY_MATRIX_MATH_ORDER SkScalar z = sx * m.fMat[kMPersp0] + (sy * m.fMat[kMPersp1] + m.fMat[kMPersp2]); #else SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2]; #endif if (z) { z = SkScalarFastInvert(z); } dst->fY = y * z; dst->fX = x * z; dst += 1; } while (--count); } } void SkMatrix::Affine_vpts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { return SkOpts::matrix_affine(m,dst,src,count); } const SkMatrix::MapPtsProc SkMatrix::gMapPtsProcs[] = { SkMatrix::Identity_pts, SkMatrix::Trans_pts, SkMatrix::Scale_pts, SkMatrix::Scale_pts, SkMatrix::Affine_vpts, SkMatrix::Affine_vpts, SkMatrix::Affine_vpts, SkMatrix::Affine_vpts, // repeat the persp proc 8 times SkMatrix::Persp_pts, SkMatrix::Persp_pts, SkMatrix::Persp_pts, SkMatrix::Persp_pts, SkMatrix::Persp_pts, SkMatrix::Persp_pts, SkMatrix::Persp_pts, SkMatrix::Persp_pts }; /////////////////////////////////////////////////////////////////////////////// void SkMatrix::mapHomogeneousPoints(SkScalar dst[], const SkScalar src[], int count) const { SkASSERT((dst && src && count > 0) || 0 == count); // no partial overlap SkASSERT(src == dst || &dst[3*count] <= &src[0] || &src[3*count] <= &dst[0]); if (count > 0) { if (this->isIdentity()) { memcpy(dst, src, 3*count*sizeof(SkScalar)); return; } do { SkScalar sx = src[0]; SkScalar sy = src[1]; SkScalar sw = src[2]; src += 3; SkScalar x = sdot(sx, fMat[kMScaleX], sy, fMat[kMSkewX], sw, fMat[kMTransX]); SkScalar y = sdot(sx, fMat[kMSkewY], sy, fMat[kMScaleY], sw, fMat[kMTransY]); SkScalar w = sdot(sx, fMat[kMPersp0], sy, fMat[kMPersp1], sw, fMat[kMPersp2]); dst[0] = x; dst[1] = y; dst[2] = w; dst += 3; } while (--count); } } /////////////////////////////////////////////////////////////////////////////// void SkMatrix::mapVectors(SkPoint dst[], const SkPoint src[], int count) const { if (this->hasPerspective()) { SkPoint origin; MapXYProc proc = this->getMapXYProc(); proc(*this, 0, 0, &origin); for (int i = count - 1; i >= 0; --i) { SkPoint tmp; proc(*this, src[i].fX, src[i].fY, &tmp); dst[i].set(tmp.fX - origin.fX, tmp.fY - origin.fY); } } else { SkMatrix tmp = *this; tmp.fMat[kMTransX] = tmp.fMat[kMTransY] = 0; tmp.clearTypeMask(kTranslate_Mask); tmp.mapPoints(dst, src, count); } } bool SkMatrix::mapRect(SkRect* dst, const SkRect& src) const { SkASSERT(dst); if (this->rectStaysRect()) { this->mapPoints((SkPoint*)dst, (const SkPoint*)&src, 2); dst->sort(); return true; } else { SkPoint quad[4]; src.toQuad(quad); this->mapPoints(quad, quad, 4); dst->set(quad, 4); return false; } } SkScalar SkMatrix::mapRadius(SkScalar radius) const { SkVector vec[2]; vec[0].set(radius, 0); vec[1].set(0, radius); this->mapVectors(vec, 2); SkScalar d0 = vec[0].length(); SkScalar d1 = vec[1].length(); // return geometric mean return SkScalarSqrt(d0 * d1); } /////////////////////////////////////////////////////////////////////////////// void SkMatrix::Persp_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, SkPoint* pt) { SkASSERT(m.hasPerspective()); SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; SkScalar y = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2]; if (z) { z = SkScalarFastInvert(z); } pt->fX = x * z; pt->fY = y * z; } void SkMatrix::RotTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, SkPoint* pt) { SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask)) == kAffine_Mask); #ifdef SK_LEGACY_MATRIX_MATH_ORDER pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX] + m.fMat[kMTransX]); pt->fY = sx * m.fMat[kMSkewY] + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]); #else pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; pt->fY = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; #endif } void SkMatrix::Rot_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, SkPoint* pt) { SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask))== kAffine_Mask); SkASSERT(0 == m.fMat[kMTransX]); SkASSERT(0 == m.fMat[kMTransY]); #ifdef SK_LEGACY_MATRIX_MATH_ORDER pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX] + m.fMat[kMTransX]); pt->fY = sx * m.fMat[kMSkewY] + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]); #else pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; pt->fY = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; #endif } void SkMatrix::ScaleTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, SkPoint* pt) { SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask)) == kScale_Mask); pt->fX = sx * m.fMat[kMScaleX] + m.fMat[kMTransX]; pt->fY = sy * m.fMat[kMScaleY] + m.fMat[kMTransY]; } void SkMatrix::Scale_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, SkPoint* pt) { SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask)) == kScale_Mask); SkASSERT(0 == m.fMat[kMTransX]); SkASSERT(0 == m.fMat[kMTransY]); pt->fX = sx * m.fMat[kMScaleX]; pt->fY = sy * m.fMat[kMScaleY]; } void SkMatrix::Trans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, SkPoint* pt) { SkASSERT(m.getType() == kTranslate_Mask); pt->fX = sx + m.fMat[kMTransX]; pt->fY = sy + m.fMat[kMTransY]; } void SkMatrix::Identity_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, SkPoint* pt) { SkASSERT(0 == m.getType()); pt->fX = sx; pt->fY = sy; } const SkMatrix::MapXYProc SkMatrix::gMapXYProcs[] = { SkMatrix::Identity_xy, SkMatrix::Trans_xy, SkMatrix::Scale_xy, SkMatrix::ScaleTrans_xy, SkMatrix::Rot_xy, SkMatrix::RotTrans_xy, SkMatrix::Rot_xy, SkMatrix::RotTrans_xy, // repeat the persp proc 8 times SkMatrix::Persp_xy, SkMatrix::Persp_xy, SkMatrix::Persp_xy, SkMatrix::Persp_xy, SkMatrix::Persp_xy, SkMatrix::Persp_xy, SkMatrix::Persp_xy, SkMatrix::Persp_xy }; /////////////////////////////////////////////////////////////////////////////// // if its nearly zero (just made up 26, perhaps it should be bigger or smaller) #define PerspNearlyZero(x) SkScalarNearlyZero(x, (1.0f / (1 << 26))) bool SkMatrix::isFixedStepInX() const { return PerspNearlyZero(fMat[kMPersp0]); } SkVector SkMatrix::fixedStepInX(SkScalar y) const { SkASSERT(PerspNearlyZero(fMat[kMPersp0])); if (PerspNearlyZero(fMat[kMPersp1]) && PerspNearlyZero(fMat[kMPersp2] - 1)) { return SkVector::Make(fMat[kMScaleX], fMat[kMSkewY]); } else { SkScalar z = y * fMat[kMPersp1] + fMat[kMPersp2]; return SkVector::Make(fMat[kMScaleX] / z, fMat[kMSkewY] / z); } } /////////////////////////////////////////////////////////////////////////////// #include "SkPerspIter.h" SkPerspIter::SkPerspIter(const SkMatrix& m, SkScalar x0, SkScalar y0, int count) : fMatrix(m), fSX(x0), fSY(y0), fCount(count) { SkPoint pt; SkMatrix::Persp_xy(m, x0, y0, &pt); fX = SkScalarToFixed(pt.fX); fY = SkScalarToFixed(pt.fY); } int SkPerspIter::next() { int n = fCount; if (0 == n) { return 0; } SkPoint pt; SkFixed x = fX; SkFixed y = fY; SkFixed dx, dy; if (n >= kCount) { n = kCount; fSX += SkIntToScalar(kCount); SkMatrix::Persp_xy(fMatrix, fSX, fSY, &pt); fX = SkScalarToFixed(pt.fX); fY = SkScalarToFixed(pt.fY); dx = (fX - x) >> kShift; dy = (fY - y) >> kShift; } else { fSX += SkIntToScalar(n); SkMatrix::Persp_xy(fMatrix, fSX, fSY, &pt); fX = SkScalarToFixed(pt.fX); fY = SkScalarToFixed(pt.fY); dx = (fX - x) / n; dy = (fY - y) / n; } SkFixed* p = fStorage; for (int i = 0; i < n; i++) { *p++ = x; x += dx; *p++ = y; y += dy; } fCount -= n; return n; } /////////////////////////////////////////////////////////////////////////////// static inline bool checkForZero(float x) { return x*x == 0; } static inline bool poly_to_point(SkPoint* pt, const SkPoint poly[], int count) { float x = 1, y = 1; SkPoint pt1, pt2; if (count > 1) { pt1.fX = poly[1].fX - poly[0].fX; pt1.fY = poly[1].fY - poly[0].fY; y = SkPoint::Length(pt1.fX, pt1.fY); if (checkForZero(y)) { return false; } switch (count) { case 2: break; case 3: pt2.fX = poly[0].fY - poly[2].fY; pt2.fY = poly[2].fX - poly[0].fX; goto CALC_X; default: pt2.fX = poly[0].fY - poly[3].fY; pt2.fY = poly[3].fX - poly[0].fX; CALC_X: x = sdot(pt1.fX, pt2.fX, pt1.fY, pt2.fY) / y; break; } } pt->set(x, y); return true; } bool SkMatrix::Poly2Proc(const SkPoint srcPt[], SkMatrix* dst, const SkPoint& scale) { float invScale = 1 / scale.fY; dst->fMat[kMScaleX] = (srcPt[1].fY - srcPt[0].fY) * invScale; dst->fMat[kMSkewY] = (srcPt[0].fX - srcPt[1].fX) * invScale; dst->fMat[kMPersp0] = 0; dst->fMat[kMSkewX] = (srcPt[1].fX - srcPt[0].fX) * invScale; dst->fMat[kMScaleY] = (srcPt[1].fY - srcPt[0].fY) * invScale; dst->fMat[kMPersp1] = 0; dst->fMat[kMTransX] = srcPt[0].fX; dst->fMat[kMTransY] = srcPt[0].fY; dst->fMat[kMPersp2] = 1; dst->setTypeMask(kUnknown_Mask); return true; } bool SkMatrix::Poly3Proc(const SkPoint srcPt[], SkMatrix* dst, const SkPoint& scale) { float invScale = 1 / scale.fX; dst->fMat[kMScaleX] = (srcPt[2].fX - srcPt[0].fX) * invScale; dst->fMat[kMSkewY] = (srcPt[2].fY - srcPt[0].fY) * invScale; dst->fMat[kMPersp0] = 0; invScale = 1 / scale.fY; dst->fMat[kMSkewX] = (srcPt[1].fX - srcPt[0].fX) * invScale; dst->fMat[kMScaleY] = (srcPt[1].fY - srcPt[0].fY) * invScale; dst->fMat[kMPersp1] = 0; dst->fMat[kMTransX] = srcPt[0].fX; dst->fMat[kMTransY] = srcPt[0].fY; dst->fMat[kMPersp2] = 1; dst->setTypeMask(kUnknown_Mask); return true; } bool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst, const SkPoint& scale) { float a1, a2; float x0, y0, x1, y1, x2, y2; x0 = srcPt[2].fX - srcPt[0].fX; y0 = srcPt[2].fY - srcPt[0].fY; x1 = srcPt[2].fX - srcPt[1].fX; y1 = srcPt[2].fY - srcPt[1].fY; x2 = srcPt[2].fX - srcPt[3].fX; y2 = srcPt[2].fY - srcPt[3].fY; /* check if abs(x2) > abs(y2) */ if ( x2 > 0 ? y2 > 0 ? x2 > y2 : x2 > -y2 : y2 > 0 ? -x2 > y2 : x2 < y2) { float denom = SkScalarMulDiv(x1, y2, x2) - y1; if (checkForZero(denom)) { return false; } a1 = (SkScalarMulDiv(x0 - x1, y2, x2) - y0 + y1) / denom; } else { float denom = x1 - SkScalarMulDiv(y1, x2, y2); if (checkForZero(denom)) { return false; } a1 = (x0 - x1 - SkScalarMulDiv(y0 - y1, x2, y2)) / denom; } /* check if abs(x1) > abs(y1) */ if ( x1 > 0 ? y1 > 0 ? x1 > y1 : x1 > -y1 : y1 > 0 ? -x1 > y1 : x1 < y1) { float denom = y2 - SkScalarMulDiv(x2, y1, x1); if (checkForZero(denom)) { return false; } a2 = (y0 - y2 - SkScalarMulDiv(x0 - x2, y1, x1)) / denom; } else { float denom = SkScalarMulDiv(y2, x1, y1) - x2; if (checkForZero(denom)) { return false; } a2 = (SkScalarMulDiv(y0 - y2, x1, y1) - x0 + x2) / denom; } float invScale = SkScalarInvert(scale.fX); dst->fMat[kMScaleX] = (a2 * srcPt[3].fX + srcPt[3].fX - srcPt[0].fX) * invScale; dst->fMat[kMSkewY] = (a2 * srcPt[3].fY + srcPt[3].fY - srcPt[0].fY) * invScale; dst->fMat[kMPersp0] = a2 * invScale; invScale = SkScalarInvert(scale.fY); dst->fMat[kMSkewX] = (a1 * srcPt[1].fX + srcPt[1].fX - srcPt[0].fX) * invScale; dst->fMat[kMScaleY] = (a1 * srcPt[1].fY + srcPt[1].fY - srcPt[0].fY) * invScale; dst->fMat[kMPersp1] = a1 * invScale; dst->fMat[kMTransX] = srcPt[0].fX; dst->fMat[kMTransY] = srcPt[0].fY; dst->fMat[kMPersp2] = 1; dst->setTypeMask(kUnknown_Mask); return true; } typedef bool (*PolyMapProc)(const SkPoint[], SkMatrix*, const SkPoint&); /* Taken from Rob Johnson's original sample code in QuickDraw GX */ bool SkMatrix::setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count) { if ((unsigned)count > 4) { SkDebugf("--- SkMatrix::setPolyToPoly count out of range %d\n", count); return false; } if (0 == count) { this->reset(); return true; } if (1 == count) { this->setTranslate(dst[0].fX - src[0].fX, dst[0].fY - src[0].fY); return true; } SkPoint scale; if (!poly_to_point(&scale, src, count) || SkScalarNearlyZero(scale.fX) || SkScalarNearlyZero(scale.fY)) { return false; } static const PolyMapProc gPolyMapProcs[] = { SkMatrix::Poly2Proc, SkMatrix::Poly3Proc, SkMatrix::Poly4Proc }; PolyMapProc proc = gPolyMapProcs[count - 2]; SkMatrix tempMap, result; tempMap.setTypeMask(kUnknown_Mask); if (!proc(src, &tempMap, scale)) { return false; } if (!tempMap.invert(&result)) { return false; } if (!proc(dst, &tempMap, scale)) { return false; } this->setConcat(tempMap, result); return true; } /////////////////////////////////////////////////////////////////////////////// enum MinMaxOrBoth { kMin_MinMaxOrBoth, kMax_MinMaxOrBoth, kBoth_MinMaxOrBoth }; template <MinMaxOrBoth MIN_MAX_OR_BOTH> bool get_scale_factor(SkMatrix::TypeMask typeMask, const SkScalar m[9], SkScalar results[/*1 or 2*/]) { if (typeMask & SkMatrix::kPerspective_Mask) { return false; } if (SkMatrix::kIdentity_Mask == typeMask) { results[0] = SK_Scalar1; if (kBoth_MinMaxOrBoth == MIN_MAX_OR_BOTH) { results[1] = SK_Scalar1; } return true; } if (!(typeMask & SkMatrix::kAffine_Mask)) { if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) { results[0] = SkMinScalar(SkScalarAbs(m[SkMatrix::kMScaleX]), SkScalarAbs(m[SkMatrix::kMScaleY])); } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) { results[0] = SkMaxScalar(SkScalarAbs(m[SkMatrix::kMScaleX]), SkScalarAbs(m[SkMatrix::kMScaleY])); } else { results[0] = SkScalarAbs(m[SkMatrix::kMScaleX]); results[1] = SkScalarAbs(m[SkMatrix::kMScaleY]); if (results[0] > results[1]) { SkTSwap(results[0], results[1]); } } return true; } // ignore the translation part of the matrix, just look at 2x2 portion. // compute singular values, take largest or smallest abs value. // [a b; b c] = A^T*A SkScalar a = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMScaleX], m[SkMatrix::kMSkewY], m[SkMatrix::kMSkewY]); SkScalar b = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMSkewX], m[SkMatrix::kMScaleY], m[SkMatrix::kMSkewY]); SkScalar c = sdot(m[SkMatrix::kMSkewX], m[SkMatrix::kMSkewX], m[SkMatrix::kMScaleY], m[SkMatrix::kMScaleY]); // eigenvalues of A^T*A are the squared singular values of A. // characteristic equation is det((A^T*A) - l*I) = 0 // l^2 - (a + c)l + (ac-b^2) // solve using quadratic equation (divisor is non-zero since l^2 has 1 coeff // and roots are guaranteed to be pos and real). SkScalar bSqd = b * b; // if upper left 2x2 is orthogonal save some math if (bSqd <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) { if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) { results[0] = SkMinScalar(a, c); } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) { results[0] = SkMaxScalar(a, c); } else { results[0] = a; results[1] = c; if (results[0] > results[1]) { SkTSwap(results[0], results[1]); } } } else { SkScalar aminusc = a - c; SkScalar apluscdiv2 = SkScalarHalf(a + c); SkScalar x = SkScalarHalf(SkScalarSqrt(aminusc * aminusc + 4 * bSqd)); if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) { results[0] = apluscdiv2 - x; } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) { results[0] = apluscdiv2 + x; } else { results[0] = apluscdiv2 - x; results[1] = apluscdiv2 + x; } } if (SkScalarIsNaN(results[0])) { return false; } SkASSERT(results[0] >= 0); results[0] = SkScalarSqrt(results[0]); if (kBoth_MinMaxOrBoth == MIN_MAX_OR_BOTH) { if (SkScalarIsNaN(results[1])) { return false; } SkASSERT(results[1] >= 0); results[1] = SkScalarSqrt(results[1]); } return true; } SkScalar SkMatrix::getMinScale() const { SkScalar factor; if (get_scale_factor<kMin_MinMaxOrBoth>(this->getType(), fMat, &factor)) { return factor; } else { return -1; } } SkScalar SkMatrix::getMaxScale() const { SkScalar factor; if (get_scale_factor<kMax_MinMaxOrBoth>(this->getType(), fMat, &factor)) { return factor; } else { return -1; } } bool SkMatrix::getMinMaxScales(SkScalar scaleFactors[2]) const { return get_scale_factor<kBoth_MinMaxOrBoth>(this->getType(), fMat, scaleFactors); } namespace { // SkMatrix is C++11 POD (trivial and standard-layout), but not aggregate (it has private fields). struct AggregateMatrix { SkScalar matrix[9]; uint32_t typemask; const SkMatrix& asSkMatrix() const { return *reinterpret_cast<const SkMatrix*>(this); } }; static_assert(sizeof(AggregateMatrix) == sizeof(SkMatrix), "AggregateMatrix size mismatch."); } // namespace const SkMatrix& SkMatrix::I() { static_assert(offsetof(SkMatrix,fMat) == offsetof(AggregateMatrix,matrix), "fMat"); static_assert(offsetof(SkMatrix,fTypeMask) == offsetof(AggregateMatrix,typemask), "fTypeMask"); static const AggregateMatrix identity = { {SK_Scalar1, 0, 0, 0, SK_Scalar1, 0, 0, 0, SK_Scalar1 }, kIdentity_Mask | kRectStaysRect_Mask}; SkASSERT(identity.asSkMatrix().isIdentity()); return identity.asSkMatrix(); } const SkMatrix& SkMatrix::InvalidMatrix() { static_assert(offsetof(SkMatrix,fMat) == offsetof(AggregateMatrix,matrix), "fMat"); static_assert(offsetof(SkMatrix,fTypeMask) == offsetof(AggregateMatrix,typemask), "fTypeMask"); static const AggregateMatrix invalid = { {SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax }, kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask }; return invalid.asSkMatrix(); } bool SkMatrix::decomposeScale(SkSize* scale, SkMatrix* remaining) const { if (this->hasPerspective()) { return false; } const SkScalar sx = SkVector::Length(this->getScaleX(), this->getSkewY()); const SkScalar sy = SkVector::Length(this->getSkewX(), this->getScaleY()); if (!SkScalarIsFinite(sx) || !SkScalarIsFinite(sy) || SkScalarNearlyZero(sx) || SkScalarNearlyZero(sy)) { return false; } if (scale) { scale->set(sx, sy); } if (remaining) { *remaining = *this; remaining->postScale(SkScalarInvert(sx), SkScalarInvert(sy)); } return true; } /////////////////////////////////////////////////////////////////////////////// size_t SkMatrix::writeToMemory(void* buffer) const { // TODO write less for simple matrices static const size_t sizeInMemory = 9 * sizeof(SkScalar); if (buffer) { memcpy(buffer, fMat, sizeInMemory); } return sizeInMemory; } size_t SkMatrix::readFromMemory(const void* buffer, size_t length) { static const size_t sizeInMemory = 9 * sizeof(SkScalar); if (length < sizeInMemory) { return 0; } if (buffer) { memcpy(fMat, buffer, sizeInMemory); this->setTypeMask(kUnknown_Mask); } return sizeInMemory; } void SkMatrix::dump() const { SkString str; this->toString(&str); SkDebugf("%s\n", str.c_str()); } void SkMatrix::toString(SkString* str) const { str->appendf("[%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f]", fMat[0], fMat[1], fMat[2], fMat[3], fMat[4], fMat[5], fMat[6], fMat[7], fMat[8]); } /////////////////////////////////////////////////////////////////////////////// #include "SkMatrixUtils.h" bool SkTreatAsSprite(const SkMatrix& mat, const SkISize& size, const SkPaint& paint) { // Our path aa is 2-bits, and our rect aa is 8, so we could use 8, // but in practice 4 seems enough (still looks smooth) and allows // more slightly fractional cases to fall into the fast (sprite) case. static const unsigned kAntiAliasSubpixelBits = 4; const unsigned subpixelBits = paint.isAntiAlias() ? kAntiAliasSubpixelBits : 0; // quick reject on affine or perspective if (mat.getType() & ~(SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)) { return false; } // quick success check if (!subpixelBits && !(mat.getType() & ~SkMatrix::kTranslate_Mask)) { return true; } // mapRect supports negative scales, so we eliminate those first if (mat.getScaleX() < 0 || mat.getScaleY() < 0) { return false; } SkRect dst; SkIRect isrc = SkIRect::MakeSize(size); { SkRect src; src.set(isrc); mat.mapRect(&dst, src); } // just apply the translate to isrc isrc.offset(SkScalarRoundToInt(mat.getTranslateX()), SkScalarRoundToInt(mat.getTranslateY())); if (subpixelBits) { isrc.fLeft = SkLeftShift(isrc.fLeft, subpixelBits); isrc.fTop = SkLeftShift(isrc.fTop, subpixelBits); isrc.fRight = SkLeftShift(isrc.fRight, subpixelBits); isrc.fBottom = SkLeftShift(isrc.fBottom, subpixelBits); const float scale = 1 << subpixelBits; dst.fLeft *= scale; dst.fTop *= scale; dst.fRight *= scale; dst.fBottom *= scale; } SkIRect idst; dst.round(&idst); return isrc == idst; } // A square matrix M can be decomposed (via polar decomposition) into two matrices -- // an orthogonal matrix Q and a symmetric matrix S. In turn we can decompose S into U*W*U^T, // where U is another orthogonal matrix and W is a scale matrix. These can be recombined // to give M = (Q*U)*W*U^T, i.e., the product of two orthogonal matrices and a scale matrix. // // The one wrinkle is that traditionally Q may contain a reflection -- the // calculation has been rejiggered to put that reflection into W. bool SkDecomposeUpper2x2(const SkMatrix& matrix, SkPoint* rotation1, SkPoint* scale, SkPoint* rotation2) { SkScalar A = matrix[SkMatrix::kMScaleX]; SkScalar B = matrix[SkMatrix::kMSkewX]; SkScalar C = matrix[SkMatrix::kMSkewY]; SkScalar D = matrix[SkMatrix::kMScaleY]; if (is_degenerate_2x2(A, B, C, D)) { return false; } double w1, w2; SkScalar cos1, sin1; SkScalar cos2, sin2; // do polar decomposition (M = Q*S) SkScalar cosQ, sinQ; double Sa, Sb, Sd; // if M is already symmetric (i.e., M = I*S) if (SkScalarNearlyEqual(B, C)) { cosQ = 1; sinQ = 0; Sa = A; Sb = B; Sd = D; } else { cosQ = A + D; sinQ = C - B; SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cosQ*cosQ + sinQ*sinQ)); cosQ *= reciplen; sinQ *= reciplen; // S = Q^-1*M // we don't calc Sc since it's symmetric Sa = A*cosQ + C*sinQ; Sb = B*cosQ + D*sinQ; Sd = -B*sinQ + D*cosQ; } // Now we need to compute eigenvalues of S (our scale factors) // and eigenvectors (bases for our rotation) // From this, should be able to reconstruct S as U*W*U^T if (SkScalarNearlyZero(SkDoubleToScalar(Sb))) { // already diagonalized cos1 = 1; sin1 = 0; w1 = Sa; w2 = Sd; cos2 = cosQ; sin2 = sinQ; } else { double diff = Sa - Sd; double discriminant = sqrt(diff*diff + 4.0*Sb*Sb); double trace = Sa + Sd; if (diff > 0) { w1 = 0.5*(trace + discriminant); w2 = 0.5*(trace - discriminant); } else { w1 = 0.5*(trace - discriminant); w2 = 0.5*(trace + discriminant); } cos1 = SkDoubleToScalar(Sb); sin1 = SkDoubleToScalar(w1 - Sa); SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cos1*cos1 + sin1*sin1)); cos1 *= reciplen; sin1 *= reciplen; // rotation 2 is composition of Q and U cos2 = cos1*cosQ - sin1*sinQ; sin2 = sin1*cosQ + cos1*sinQ; // rotation 1 is U^T sin1 = -sin1; } if (scale) { scale->fX = SkDoubleToScalar(w1); scale->fY = SkDoubleToScalar(w2); } if (rotation1) { rotation1->fX = cos1; rotation1->fY = sin1; } if (rotation2) { rotation2->fX = cos2; rotation2->fY = sin2; } return true; } ////////////////////////////////////////////////////////////////////////////////////////////////// void SkRSXform::toQuad(SkScalar width, SkScalar height, SkPoint quad[4]) const { #if 0 // This is the slow way, but it documents what we're doing quad[0].set(0, 0); quad[1].set(width, 0); quad[2].set(width, height); quad[3].set(0, height); SkMatrix m; m.setRSXform(*this).mapPoints(quad, quad, 4); #else const SkScalar m00 = fSCos; const SkScalar m01 = -fSSin; const SkScalar m02 = fTx; const SkScalar m10 = -m01; const SkScalar m11 = m00; const SkScalar m12 = fTy; quad[0].set(m02, m12); quad[1].set(m00 * width + m02, m10 * width + m12); quad[2].set(m00 * width + m01 * height + m02, m10 * width + m11 * height + m12); quad[3].set(m01 * height + m02, m11 * height + m12); #endif }