// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef SK_CONVOLVER_H #define SK_CONVOLVER_H #include "SkSize.h" #include "SkTDArray.h" // avoid confusion with Mac OS X's math library (Carbon) #if defined(__APPLE__) #undef FloatToConvolutionFixed #undef ConvolutionFixedToFloat #undef FloatToFixed #undef FixedToFloat #endif // Represents a filter in one dimension. Each output pixel has one entry in this // object for the filter values contributing to it. You build up the filter // list by calling AddFilter for each output pixel (in order). // // We do 2-dimensional convolution by first convolving each row by one // SkConvolutionFilter1D, then convolving each column by another one. // // Entries are stored in ConvolutionFixed point, shifted left by kShiftBits. class SkConvolutionFilter1D { public: typedef short ConvolutionFixed; // The number of bits that ConvolutionFixed point values are shifted by. enum { kShiftBits = 14 }; SK_API SkConvolutionFilter1D(); SK_API ~SkConvolutionFilter1D(); // Convert between floating point and our ConvolutionFixed point representation. static ConvolutionFixed FloatToFixed(float f) { return static_cast<ConvolutionFixed>(f * (1 << kShiftBits)); } static unsigned char FixedToChar(ConvolutionFixed x) { return static_cast<unsigned char>(x >> kShiftBits); } static float FixedToFloat(ConvolutionFixed x) { // The cast relies on ConvolutionFixed being a short, implying that on // the platforms we care about all (16) bits will fit into // the mantissa of a (32-bit) float. static_assert(sizeof(ConvolutionFixed) == 2, "ConvolutionFixed_type_should_fit_in_float_mantissa"); float raw = static_cast<float>(x); return ldexpf(raw, -kShiftBits); } // Returns the maximum pixel span of a filter. int maxFilter() const { return fMaxFilter; } // Returns the number of filters in this filter. This is the dimension of the // output image. int numValues() const { return static_cast<int>(fFilters.count()); } void reserveAdditional(int filterCount, int filterValueCount) { fFilters.setReserve(fFilters.count() + filterCount); fFilterValues.setReserve(fFilterValues.count() + filterValueCount); } // Appends the given list of scaling values for generating a given output // pixel. |filterOffset| is the distance from the edge of the image to where // the scaling factors start. The scaling factors apply to the source pixels // starting from this position, and going for the next |filterLength| pixels. // // You will probably want to make sure your input is normalized (that is, // all entries in |filterValuesg| sub to one) to prevent affecting the overall // brighness of the image. // // The filterLength must be > 0. void AddFilter(int filterOffset, const ConvolutionFixed* filterValues, int filterLength); // Retrieves a filter for the given |valueOffset|, a position in the output // image in the direction we're convolving. The offset and length of the // filter values are put into the corresponding out arguments (see AddFilter // above for what these mean), and a pointer to the first scaling factor is // returned. There will be |filterLength| values in this array. inline const ConvolutionFixed* FilterForValue(int valueOffset, int* filterOffset, int* filterLength) const { const FilterInstance& filter = fFilters[valueOffset]; *filterOffset = filter.fOffset; *filterLength = filter.fTrimmedLength; if (filter.fTrimmedLength == 0) { return nullptr; } return &fFilterValues[filter.fDataLocation]; } // Retrieves the filter for the offset 0, presumed to be the one and only. // The offset and length of the filter values are put into the corresponding // out arguments (see AddFilter). Note that |filterLegth| and // |specifiedFilterLength| may be different if leading/trailing zeros of the // original floating point form were clipped. // There will be |filterLength| values in the return array. // Returns nullptr if the filter is 0-length (for instance when all floating // point values passed to AddFilter were clipped to 0). SK_API const ConvolutionFixed* GetSingleFilter(int* specifiedFilterLength, int* filterOffset, int* filterLength) const; // Add another value to the fFilterValues array -- useful for // SIMD padding which happens outside of this class. void addFilterValue( ConvolutionFixed val ) { fFilterValues.push( val ); } private: struct FilterInstance { // Offset within filterValues for this instance of the filter. int fDataLocation; // Distance from the left of the filter to the center. IN PIXELS int fOffset; // Number of values in this filter instance. int fTrimmedLength; // Filter length as specified. Note that this may be different from // 'trimmed_length' if leading/trailing zeros of the original floating // point form were clipped differently on each tail. int fLength; }; // Stores the information for each filter added to this class. SkTDArray<FilterInstance> fFilters; // We store all the filter values in this flat list, indexed by // |FilterInstance.data_location| to avoid the mallocs required for storing // each one separately. SkTDArray<ConvolutionFixed> fFilterValues; // The maximum size of any filter we've added. int fMaxFilter; }; typedef void (*SkConvolveVertically_pointer)( const SkConvolutionFilter1D::ConvolutionFixed* filterValues, int filterLength, unsigned char* const* sourceDataRows, int pixelWidth, unsigned char* outRow, bool hasAlpha); typedef void (*SkConvolve4RowsHorizontally_pointer)( const unsigned char* srcData[4], const SkConvolutionFilter1D& filter, unsigned char* outRow[4], size_t outRowBytes); typedef void (*SkConvolveHorizontally_pointer)( const unsigned char* srcData, const SkConvolutionFilter1D& filter, unsigned char* outRow, bool hasAlpha); typedef void (*SkConvolveFilterPadding_pointer)( SkConvolutionFilter1D* filter); struct SkConvolutionProcs { // This is how many extra pixels may be read by the // conolve*horizontally functions. int fExtraHorizontalReads; SkConvolveVertically_pointer fConvolveVertically; SkConvolve4RowsHorizontally_pointer fConvolve4RowsHorizontally; SkConvolveHorizontally_pointer fConvolveHorizontally; SkConvolveFilterPadding_pointer fApplySIMDPadding; }; // Does a two-dimensional convolution on the given source image. // // It is assumed the source pixel offsets referenced in the input filters // reference only valid pixels, so the source image size is not required. Each // row of the source image starts |sourceByteRowStride| after the previous // one (this allows you to have rows with some padding at the end). // // The result will be put into the given output buffer. The destination image // size will be xfilter.numValues() * yfilter.numValues() pixels. It will be // in rows of exactly xfilter.numValues() * 4 bytes. // // |sourceHasAlpha| is a hint that allows us to avoid doing computations on // the alpha channel if the image is opaque. If you don't know, set this to // true and it will work properly, but setting this to false will be a few // percent faster if you know the image is opaque. // // The layout in memory is assumed to be 4-bytes per pixel in B-G-R-A order // (this is ARGB when loaded into 32-bit words on a little-endian machine). /** * Returns false if it was unable to perform the convolution/rescale. in which case the output * buffer is assumed to be undefined. */ SK_API bool BGRAConvolve2D(const unsigned char* sourceData, int sourceByteRowStride, bool sourceHasAlpha, const SkConvolutionFilter1D& xfilter, const SkConvolutionFilter1D& yfilter, int outputByteRowStride, unsigned char* output, const SkConvolutionProcs&, bool useSimdIfPossible); #endif // SK_CONVOLVER_H