/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlitter.h" #include "SkAntiRun.h" #include "SkColor.h" #include "SkColorFilter.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkMask.h" #include "SkMaskFilter.h" #include "SkString.h" #include "SkTLazy.h" #include "SkUtils.h" #include "SkXfermode.h" #include "SkXfermodeInterpretation.h" // define this for testing srgb blits //#define SK_FORCE_PM4f_FOR_L32_BLITS SkBlitter::~SkBlitter() {} bool SkBlitter::isNullBlitter() const { return false; } bool SkBlitter::resetShaderContext(const SkShader::ContextRec&) { return true; } SkShader::Context* SkBlitter::getShaderContext() const { return nullptr; } const SkPixmap* SkBlitter::justAnOpaqueColor(uint32_t* value) { return nullptr; } void SkBlitter::blitH(int x, int y, int width) { SkDEBUGFAIL("unimplemented"); } void SkBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { SkDEBUGFAIL("unimplemented"); } void SkBlitter::blitV(int x, int y, int height, SkAlpha alpha) { if (alpha == 255) { this->blitRect(x, y, 1, height); } else { int16_t runs[2]; runs[0] = 1; runs[1] = 0; while (--height >= 0) { this->blitAntiH(x, y++, &alpha, runs); } } } void SkBlitter::blitRect(int x, int y, int width, int height) { SkASSERT(width > 0); while (--height >= 0) { this->blitH(x, y++, width); } } /// Default implementation doesn't check for any easy optimizations /// such as alpha == 0 or 255; also uses blitV(), which some subclasses /// may not support. void SkBlitter::blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) { this->blitV(x++, y, height, leftAlpha); if (width > 0) { this->blitRect(x, y, width, height); x += width; } this->blitV(x, y, height, rightAlpha); } ////////////////////////////////////////////////////////////////////////////// static inline void bits_to_runs(SkBlitter* blitter, int x, int y, const uint8_t bits[], uint8_t left_mask, ptrdiff_t rowBytes, uint8_t right_mask) { int inFill = 0; int pos = 0; while (--rowBytes >= 0) { uint8_t b = *bits++ & left_mask; if (rowBytes == 0) { b &= right_mask; } for (uint8_t test = 0x80U; test != 0; test >>= 1) { if (b & test) { if (!inFill) { pos = x; inFill = true; } } else { if (inFill) { blitter->blitH(pos, y, x - pos); inFill = false; } } x += 1; } left_mask = 0xFFU; } // final cleanup if (inFill) { blitter->blitH(pos, y, x - pos); } } // maskBitCount is the number of 1's to place in the mask. It must be in the range between 1 and 8. static uint8_t generate_right_mask(int maskBitCount) { return static_cast<uint8_t>(0xFF00U >> maskBitCount); } void SkBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); if (mask.fFormat == SkMask::kLCD16_Format) { return; // needs to be handled by subclass } if (mask.fFormat == SkMask::kBW_Format) { int cx = clip.fLeft; int cy = clip.fTop; int maskLeft = mask.fBounds.fLeft; int maskRowBytes = mask.fRowBytes; int height = clip.height(); const uint8_t* bits = mask.getAddr1(cx, cy); SkDEBUGCODE(const uint8_t* endOfImage = mask.fImage + (mask.fBounds.height() - 1) * maskRowBytes + ((mask.fBounds.width() + 7) >> 3)); if (cx == maskLeft && clip.fRight == mask.fBounds.fRight) { while (--height >= 0) { int affectedRightBit = mask.fBounds.width() - 1; ptrdiff_t rowBytes = (affectedRightBit >> 3) + 1; SkASSERT(bits + rowBytes <= endOfImage); U8CPU rightMask = generate_right_mask((affectedRightBit & 7) + 1); bits_to_runs(this, cx, cy, bits, 0xFF, rowBytes, rightMask); bits += maskRowBytes; cy += 1; } } else { // Bits is calculated as the offset into the mask at the point {cx, cy} therfore, all // addressing into the bit mask is relative to that point. Since this is an address // calculated from a arbitrary bit in that byte, calculate the left most bit. int bitsLeft = cx - ((cx - maskLeft) & 7); // Everything is relative to the bitsLeft. int leftEdge = cx - bitsLeft; SkASSERT(leftEdge >= 0); int rightEdge = clip.fRight - bitsLeft; SkASSERT(rightEdge > leftEdge); // Calculate left byte and mask const uint8_t* leftByte = bits; U8CPU leftMask = 0xFFU >> (leftEdge & 7); // Calculate right byte and mask int affectedRightBit = rightEdge - 1; const uint8_t* rightByte = bits + (affectedRightBit >> 3); U8CPU rightMask = generate_right_mask((affectedRightBit & 7) + 1); // leftByte and rightByte are byte locations therefore, to get a count of bytes the // code must add one. ptrdiff_t rowBytes = rightByte - leftByte + 1; while (--height >= 0) { SkASSERT(bits + rowBytes <= endOfImage); bits_to_runs(this, bitsLeft, cy, bits, leftMask, rowBytes, rightMask); bits += maskRowBytes; cy += 1; } } } else { int width = clip.width(); SkAutoSTMalloc<64, int16_t> runStorage(width + 1); int16_t* runs = runStorage.get(); const uint8_t* aa = mask.getAddr8(clip.fLeft, clip.fTop); sk_memset16((uint16_t*)runs, 1, width); runs[width] = 0; int height = clip.height(); int y = clip.fTop; while (--height >= 0) { this->blitAntiH(clip.fLeft, y, aa, runs); aa += mask.fRowBytes; y += 1; } } } /////////////////////// these guys are not virtual, just a helpers void SkBlitter::blitMaskRegion(const SkMask& mask, const SkRegion& clip) { if (clip.quickReject(mask.fBounds)) { return; } SkRegion::Cliperator clipper(clip, mask.fBounds); while (!clipper.done()) { const SkIRect& cr = clipper.rect(); this->blitMask(mask, cr); clipper.next(); } } void SkBlitter::blitRectRegion(const SkIRect& rect, const SkRegion& clip) { SkRegion::Cliperator clipper(clip, rect); while (!clipper.done()) { const SkIRect& cr = clipper.rect(); this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); clipper.next(); } } void SkBlitter::blitRegion(const SkRegion& clip) { SkRegion::Iterator iter(clip); while (!iter.done()) { const SkIRect& cr = iter.rect(); this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); iter.next(); } } /////////////////////////////////////////////////////////////////////////////// void SkNullBlitter::blitH(int x, int y, int width) {} void SkNullBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) {} void SkNullBlitter::blitV(int x, int y, int height, SkAlpha alpha) {} void SkNullBlitter::blitRect(int x, int y, int width, int height) {} void SkNullBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {} const SkPixmap* SkNullBlitter::justAnOpaqueColor(uint32_t* value) { return nullptr; } bool SkNullBlitter::isNullBlitter() const { return true; } /////////////////////////////////////////////////////////////////////////////// static int compute_anti_width(const int16_t runs[]) { int width = 0; for (;;) { int count = runs[0]; SkASSERT(count >= 0); if (count == 0) { break; } width += count; runs += count; } return width; } static inline bool y_in_rect(int y, const SkIRect& rect) { return (unsigned)(y - rect.fTop) < (unsigned)rect.height(); } static inline bool x_in_rect(int x, const SkIRect& rect) { return (unsigned)(x - rect.fLeft) < (unsigned)rect.width(); } void SkRectClipBlitter::blitH(int left, int y, int width) { SkASSERT(width > 0); if (!y_in_rect(y, fClipRect)) { return; } int right = left + width; if (left < fClipRect.fLeft) { left = fClipRect.fLeft; } if (right > fClipRect.fRight) { right = fClipRect.fRight; } width = right - left; if (width > 0) { fBlitter->blitH(left, y, width); } } void SkRectClipBlitter::blitAntiH(int left, int y, const SkAlpha aa[], const int16_t runs[]) { if (!y_in_rect(y, fClipRect) || left >= fClipRect.fRight) { return; } int x0 = left; int x1 = left + compute_anti_width(runs); if (x1 <= fClipRect.fLeft) { return; } SkASSERT(x0 < x1); if (x0 < fClipRect.fLeft) { int dx = fClipRect.fLeft - x0; SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, dx); runs += dx; aa += dx; x0 = fClipRect.fLeft; } SkASSERT(x0 < x1 && runs[x1 - x0] == 0); if (x1 > fClipRect.fRight) { x1 = fClipRect.fRight; SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, x1 - x0); ((int16_t*)runs)[x1 - x0] = 0; } SkASSERT(x0 < x1 && runs[x1 - x0] == 0); SkASSERT(compute_anti_width(runs) == x1 - x0); fBlitter->blitAntiH(x0, y, aa, runs); } void SkRectClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { SkASSERT(height > 0); if (!x_in_rect(x, fClipRect)) { return; } int y0 = y; int y1 = y + height; if (y0 < fClipRect.fTop) { y0 = fClipRect.fTop; } if (y1 > fClipRect.fBottom) { y1 = fClipRect.fBottom; } if (y0 < y1) { fBlitter->blitV(x, y0, y1 - y0, alpha); } } void SkRectClipBlitter::blitRect(int left, int y, int width, int height) { SkIRect r; r.set(left, y, left + width, y + height); if (r.intersect(fClipRect)) { fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); } } void SkRectClipBlitter::blitAntiRect(int left, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) { SkIRect r; // The *true* width of the rectangle blitted is width+2: r.set(left, y, left + width + 2, y + height); if (r.intersect(fClipRect)) { if (r.fLeft != left) { SkASSERT(r.fLeft > left); leftAlpha = 255; } if (r.fRight != left + width + 2) { SkASSERT(r.fRight < left + width + 2); rightAlpha = 255; } if (255 == leftAlpha && 255 == rightAlpha) { fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); } else if (1 == r.width()) { if (r.fLeft == left) { fBlitter->blitV(r.fLeft, r.fTop, r.height(), leftAlpha); } else { SkASSERT(r.fLeft == left + width + 1); fBlitter->blitV(r.fLeft, r.fTop, r.height(), rightAlpha); } } else { fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), leftAlpha, rightAlpha); } } } void SkRectClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkIRect r = clip; if (r.intersect(fClipRect)) { fBlitter->blitMask(mask, r); } } const SkPixmap* SkRectClipBlitter::justAnOpaqueColor(uint32_t* value) { return fBlitter->justAnOpaqueColor(value); } /////////////////////////////////////////////////////////////////////////////// void SkRgnClipBlitter::blitH(int x, int y, int width) { SkRegion::Spanerator span(*fRgn, y, x, x + width); int left, right; while (span.next(&left, &right)) { SkASSERT(left < right); fBlitter->blitH(left, y, right - left); } } void SkRgnClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) { int width = compute_anti_width(runs); SkRegion::Spanerator span(*fRgn, y, x, x + width); int left, right; SkDEBUGCODE(const SkIRect& bounds = fRgn->getBounds();) int prevRite = x; while (span.next(&left, &right)) { SkASSERT(x <= left); SkASSERT(left < right); SkASSERT(left >= bounds.fLeft && right <= bounds.fRight); SkAlphaRuns::Break((int16_t*)runs, (uint8_t*)aa, left - x, right - left); // now zero before left if (left > prevRite) { int index = prevRite - x; ((uint8_t*)aa)[index] = 0; // skip runs after right ((int16_t*)runs)[index] = SkToS16(left - prevRite); } prevRite = right; } if (prevRite > x) { ((int16_t*)runs)[prevRite - x] = 0; if (x < 0) { int skip = runs[0]; SkASSERT(skip >= -x); aa += skip; runs += skip; x += skip; } fBlitter->blitAntiH(x, y, aa, runs); } } void SkRgnClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { SkIRect bounds; bounds.set(x, y, x + 1, y + height); SkRegion::Cliperator iter(*fRgn, bounds); while (!iter.done()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); fBlitter->blitV(x, r.fTop, r.height(), alpha); iter.next(); } } void SkRgnClipBlitter::blitRect(int x, int y, int width, int height) { SkIRect bounds; bounds.set(x, y, x + width, y + height); SkRegion::Cliperator iter(*fRgn, bounds); while (!iter.done()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); iter.next(); } } void SkRgnClipBlitter::blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) { // The *true* width of the rectangle to blit is width + 2 SkIRect bounds; bounds.set(x, y, x + width + 2, y + height); SkRegion::Cliperator iter(*fRgn, bounds); while (!iter.done()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); SkASSERT(r.fLeft >= x); SkASSERT(r.fRight <= x + width + 2); SkAlpha effectiveLeftAlpha = (r.fLeft == x) ? leftAlpha : 255; SkAlpha effectiveRightAlpha = (r.fRight == x + width + 2) ? rightAlpha : 255; if (255 == effectiveLeftAlpha && 255 == effectiveRightAlpha) { fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); } else if (1 == r.width()) { if (r.fLeft == x) { fBlitter->blitV(r.fLeft, r.fTop, r.height(), effectiveLeftAlpha); } else { SkASSERT(r.fLeft == x + width + 1); fBlitter->blitV(r.fLeft, r.fTop, r.height(), effectiveRightAlpha); } } else { fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), effectiveLeftAlpha, effectiveRightAlpha); } iter.next(); } } void SkRgnClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkRegion::Cliperator iter(*fRgn, clip); const SkIRect& r = iter.rect(); SkBlitter* blitter = fBlitter; while (!iter.done()) { blitter->blitMask(mask, r); iter.next(); } } const SkPixmap* SkRgnClipBlitter::justAnOpaqueColor(uint32_t* value) { return fBlitter->justAnOpaqueColor(value); } /////////////////////////////////////////////////////////////////////////////// SkBlitter* SkBlitterClipper::apply(SkBlitter* blitter, const SkRegion* clip, const SkIRect* ir) { if (clip) { const SkIRect& clipR = clip->getBounds(); if (clip->isEmpty() || (ir && !SkIRect::Intersects(clipR, *ir))) { blitter = &fNullBlitter; } else if (clip->isRect()) { if (ir == nullptr || !clipR.contains(*ir)) { fRectBlitter.init(blitter, clipR); blitter = &fRectBlitter; } } else { fRgnBlitter.init(blitter, clip); blitter = &fRgnBlitter; } } return blitter; } /////////////////////////////////////////////////////////////////////////////// #include "SkColorShader.h" #include "SkColorPriv.h" class Sk3DShader : public SkShader { public: Sk3DShader(SkShader* proxy) : fProxy(proxy) { SkSafeRef(proxy); } virtual ~Sk3DShader() { SkSafeUnref(fProxy); } size_t contextSize(const ContextRec& rec) const override { size_t size = sizeof(Sk3DShaderContext); if (fProxy) { size += fProxy->contextSize(rec); } return size; } Context* onCreateContext(const ContextRec& rec, void* storage) const override { SkShader::Context* proxyContext = nullptr; if (fProxy) { char* proxyContextStorage = (char*) storage + sizeof(Sk3DShaderContext); proxyContext = fProxy->createContext(rec, proxyContextStorage); if (!proxyContext) { return nullptr; } } return new (storage) Sk3DShaderContext(*this, rec, proxyContext); } class Sk3DShaderContext : public SkShader::Context { public: // Calls proxyContext's destructor but will NOT free its memory. Sk3DShaderContext(const Sk3DShader& shader, const ContextRec& rec, SkShader::Context* proxyContext) : INHERITED(shader, rec) , fMask(nullptr) , fProxyContext(proxyContext) { if (!fProxyContext) { fPMColor = SkPreMultiplyColor(rec.fPaint->getColor()); } } virtual ~Sk3DShaderContext() { if (fProxyContext) { fProxyContext->~Context(); } } void set3DMask(const SkMask* mask) override { fMask = mask; } void shadeSpan(int x, int y, SkPMColor span[], int count) override { if (fProxyContext) { fProxyContext->shadeSpan(x, y, span, count); } if (fMask == nullptr) { if (fProxyContext == nullptr) { sk_memset32(span, fPMColor, count); } return; } SkASSERT(fMask->fBounds.contains(x, y)); SkASSERT(fMask->fBounds.contains(x + count - 1, y)); size_t size = fMask->computeImageSize(); const uint8_t* alpha = fMask->getAddr8(x, y); const uint8_t* mulp = alpha + size; const uint8_t* addp = mulp + size; if (fProxyContext) { for (int i = 0; i < count; i++) { if (alpha[i]) { SkPMColor c = span[i]; if (c) { unsigned a = SkGetPackedA32(c); unsigned r = SkGetPackedR32(c); unsigned g = SkGetPackedG32(c); unsigned b = SkGetPackedB32(c); unsigned mul = SkAlpha255To256(mulp[i]); unsigned add = addp[i]; r = SkFastMin32(SkAlphaMul(r, mul) + add, a); g = SkFastMin32(SkAlphaMul(g, mul) + add, a); b = SkFastMin32(SkAlphaMul(b, mul) + add, a); span[i] = SkPackARGB32(a, r, g, b); } } else { span[i] = 0; } } } else { // color unsigned a = SkGetPackedA32(fPMColor); unsigned r = SkGetPackedR32(fPMColor); unsigned g = SkGetPackedG32(fPMColor); unsigned b = SkGetPackedB32(fPMColor); for (int i = 0; i < count; i++) { if (alpha[i]) { unsigned mul = SkAlpha255To256(mulp[i]); unsigned add = addp[i]; span[i] = SkPackARGB32( a, SkFastMin32(SkAlphaMul(r, mul) + add, a), SkFastMin32(SkAlphaMul(g, mul) + add, a), SkFastMin32(SkAlphaMul(b, mul) + add, a)); } else { span[i] = 0; } } } } private: // Unowned. const SkMask* fMask; // Memory is unowned, but we need to call the destructor. SkShader::Context* fProxyContext; SkPMColor fPMColor; typedef SkShader::Context INHERITED; }; #ifndef SK_IGNORE_TO_STRING void toString(SkString* str) const override { str->append("Sk3DShader: ("); if (fProxy) { str->append("Proxy: "); fProxy->toString(str); } this->INHERITED::toString(str); str->append(")"); } #endif SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(Sk3DShader) protected: void flatten(SkWriteBuffer& buffer) const override { buffer.writeFlattenable(fProxy); } private: SkShader* fProxy; typedef SkShader INHERITED; }; SkFlattenable* Sk3DShader::CreateProc(SkReadBuffer& buffer) { SkAutoTUnref<SkShader> shader(buffer.readShader()); return new Sk3DShader(shader); } class Sk3DBlitter : public SkBlitter { public: Sk3DBlitter(SkBlitter* proxy, SkShader::Context* shaderContext) : fProxy(proxy) , fShaderContext(shaderContext) {} void blitH(int x, int y, int width) override { fProxy->blitH(x, y, width); } virtual void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override { fProxy->blitAntiH(x, y, antialias, runs); } void blitV(int x, int y, int height, SkAlpha alpha) override { fProxy->blitV(x, y, height, alpha); } void blitRect(int x, int y, int width, int height) override { fProxy->blitRect(x, y, width, height); } void blitMask(const SkMask& mask, const SkIRect& clip) override { if (mask.fFormat == SkMask::k3D_Format) { fShaderContext->set3DMask(&mask); ((SkMask*)&mask)->fFormat = SkMask::kA8_Format; fProxy->blitMask(mask, clip); ((SkMask*)&mask)->fFormat = SkMask::k3D_Format; fShaderContext->set3DMask(nullptr); } else { fProxy->blitMask(mask, clip); } } private: // Both pointers are unowned. They will be deleted by SkSmallAllocator. SkBlitter* fProxy; SkShader::Context* fShaderContext; }; /////////////////////////////////////////////////////////////////////////////// #include "SkCoreBlitters.h" SkShader::ContextRec::DstType SkBlitter::PreferredShaderDest(const SkImageInfo& dstInfo) { #ifdef SK_FORCE_PM4f_FOR_L32_BLITS return SkShader::ContextRec::kPM4f_DstType; #else return (dstInfo.isSRGB() || dstInfo.colorType() == kRGBA_F16_SkColorType) ? SkShader::ContextRec::kPM4f_DstType : SkShader::ContextRec::kPMColor_DstType; #endif } SkBlitter* SkBlitter::Choose(const SkPixmap& device, const SkMatrix& matrix, const SkPaint& origPaint, SkTBlitterAllocator* allocator, bool drawCoverage) { SkASSERT(allocator != nullptr); // which check, in case we're being called by a client with a dummy device // (e.g. they have a bounder that always aborts the draw) if (kUnknown_SkColorType == device.colorType() || (drawCoverage && (kAlpha_8_SkColorType != device.colorType()))) { return allocator->createT<SkNullBlitter>(); } SkShader* shader = origPaint.getShader(); SkColorFilter* cf = origPaint.getColorFilter(); SkXfermode* mode = origPaint.getXfermode(); Sk3DShader* shader3D = nullptr; SkTCopyOnFirstWrite<SkPaint> paint(origPaint); if (origPaint.getMaskFilter() != nullptr && origPaint.getMaskFilter()->getFormat() == SkMask::k3D_Format) { shader3D = new Sk3DShader(shader); // we know we haven't initialized lazyPaint yet, so just do it paint.writable()->setShader(shader3D)->unref(); shader = shader3D; } if (mode) { bool deviceIsOpaque = kRGB_565_SkColorType == device.colorType(); switch (SkInterpretXfermode(*paint, deviceIsOpaque)) { case kSrcOver_SkXfermodeInterpretation: mode = nullptr; paint.writable()->setXfermode(nullptr); break; case kSkipDrawing_SkXfermodeInterpretation:{ return allocator->createT<SkNullBlitter>(); } default: break; } } /* * If the xfermode is CLEAR, then we can completely ignore the installed * color/shader/colorfilter, and just pretend we're SRC + color==0. This * will fall into our optimizations for SRC mode. */ if (SkXfermode::IsMode(mode, SkXfermode::kClear_Mode)) { SkPaint* p = paint.writable(); shader = p->setShader(nullptr); cf = p->setColorFilter(nullptr); mode = p->setXfermodeMode(SkXfermode::kSrc_Mode); p->setColor(0); } if (nullptr == shader) { if (mode) { // xfermodes (and filters) require shaders for our current blitters shader = new SkColorShader(paint->getColor()); paint.writable()->setShader(shader)->unref(); paint.writable()->setAlpha(0xFF); } else if (cf) { // if no shader && no xfermode, we just apply the colorfilter to // our color and move on. SkPaint* writablePaint = paint.writable(); writablePaint->setColor(cf->filterColor(paint->getColor())); writablePaint->setColorFilter(nullptr); cf = nullptr; } } if (cf) { SkASSERT(shader); shader = shader->newWithColorFilter(cf); paint.writable()->setShader(shader)->unref(); // blitters should ignore the presence/absence of a filter, since // if there is one, the shader will take care of it. } /* * We create a SkShader::Context object, and store it on the blitter. */ SkShader::Context* shaderContext = nullptr; if (shader) { const SkShader::ContextRec rec(*paint, matrix, nullptr, PreferredShaderDest(device.info())); size_t contextSize = shader->contextSize(rec); if (contextSize) { // Try to create the ShaderContext void* storage = allocator->reserveT<SkShader::Context>(contextSize); shaderContext = shader->createContext(rec, storage); if (!shaderContext) { allocator->freeLast(); return allocator->createT<SkNullBlitter>(); } SkASSERT(shaderContext); SkASSERT((void*) shaderContext == storage); } else { return allocator->createT<SkNullBlitter>(); } } SkBlitter* blitter = nullptr; switch (device.colorType()) { case kAlpha_8_SkColorType: if (drawCoverage) { SkASSERT(nullptr == shader); SkASSERT(nullptr == paint->getXfermode()); blitter = allocator->createT<SkA8_Coverage_Blitter>(device, *paint); } else if (shader) { blitter = allocator->createT<SkA8_Shader_Blitter>(device, *paint, shaderContext); } else { blitter = allocator->createT<SkA8_Blitter>(device, *paint); } break; case kRGB_565_SkColorType: blitter = SkBlitter_ChooseD565(device, *paint, shaderContext, allocator); break; case kN32_SkColorType: #ifdef SK_FORCE_PM4f_FOR_L32_BLITS if (true) #else if (device.info().isSRGB()) #endif { blitter = SkBlitter_ARGB32_Create(device, *paint, shaderContext, allocator); } else { if (shader) { blitter = allocator->createT<SkARGB32_Shader_Blitter>( device, *paint, shaderContext); } else if (paint->getColor() == SK_ColorBLACK) { blitter = allocator->createT<SkARGB32_Black_Blitter>(device, *paint); } else if (paint->getAlpha() == 0xFF) { blitter = allocator->createT<SkARGB32_Opaque_Blitter>(device, *paint); } else { blitter = allocator->createT<SkARGB32_Blitter>(device, *paint); } } break; case kRGBA_F16_SkColorType: // kU16_SkColorType: blitter = SkBlitter_ARGB64_Create(device, *paint, shaderContext, allocator); break; default: break; } if (!blitter) { blitter = allocator->createT<SkNullBlitter>(); } if (shader3D) { SkBlitter* innerBlitter = blitter; // innerBlitter was allocated by allocator, which will delete it. // We know shaderContext or its proxies is of type Sk3DShaderContext, so we need to // wrapper the blitter to notify it when we see an emboss mask. blitter = allocator->createT<Sk3DBlitter>(innerBlitter, shaderContext); } return blitter; } /////////////////////////////////////////////////////////////////////////////// class SkZeroShaderContext : public SkShader::Context { public: SkZeroShaderContext(const SkShader& shader, const SkShader::ContextRec& rec) // Override rec with the identity matrix, so it is guaranteed to be invertible. : INHERITED(shader, SkShader::ContextRec(*rec.fPaint, SkMatrix::I(), nullptr, rec.fPreferredDstType)) {} void shadeSpan(int x, int y, SkPMColor colors[], int count) override { sk_bzero(colors, count * sizeof(SkPMColor)); } private: typedef SkShader::Context INHERITED; }; SkShaderBlitter::SkShaderBlitter(const SkPixmap& device, const SkPaint& paint, SkShader::Context* shaderContext) : INHERITED(device) , fShader(paint.getShader()) , fShaderContext(shaderContext) { SkASSERT(fShader); SkASSERT(fShaderContext); fShader->ref(); fShaderFlags = fShaderContext->getFlags(); fConstInY = SkToBool(fShaderFlags & SkShader::kConstInY32_Flag); } SkShaderBlitter::~SkShaderBlitter() { fShader->unref(); } bool SkShaderBlitter::resetShaderContext(const SkShader::ContextRec& rec) { // Only destroy the old context if we have a new one. We need to ensure to have a // live context in fShaderContext because the storage is owned by an SkSmallAllocator // outside of this class. // The new context will be of the same size as the old one because we use the same // shader to create it. It is therefore safe to re-use the storage. fShaderContext->~Context(); SkShader::Context* ctx = fShader->createContext(rec, (void*)fShaderContext); if (nullptr == ctx) { // Need a valid context in fShaderContext's storage, so we can later (or our caller) call // the in-place destructor. new (fShaderContext) SkZeroShaderContext(*fShader, rec); return false; } return true; }