#!/usr/bin/env python ''' Lucas-Kanade homography tracker =============================== Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack for track initialization and back-tracking for match verification between frames. Finds homography between reference and current views. Usage ----- lk_homography.py [<video_source>] Keys ---- ESC - exit SPACE - start tracking r - toggle RANSAC ''' import numpy as np import cv2 import video from common import draw_str lk_params = dict( winSize = (19, 19), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) feature_params = dict( maxCorners = 1000, qualityLevel = 0.01, minDistance = 8, blockSize = 19 ) def checkedTrace(img0, img1, p0, back_threshold = 1.0): p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params) p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params) d = abs(p0-p0r).reshape(-1, 2).max(-1) status = d < back_threshold return p1, status green = (0, 255, 0) red = (0, 0, 255) class App: def __init__(self, video_src): self.cam = video.create_capture(video_src) self.p0 = None self.use_ransac = True def run(self): while True: ret, frame = self.cam.read() frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) vis = frame.copy() if self.p0 is not None: p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1) self.p1 = p2[trace_status].copy() self.p0 = self.p0[trace_status].copy() self.gray1 = frame_gray if len(self.p0) < 4: self.p0 = None continue H, status = cv2.findHomography(self.p0, self.p1, (0, cv2.RANSAC)[self.use_ransac], 10.0) h, w = frame.shape[:2] overlay = cv2.warpPerspective(self.frame0, H, (w, h)) vis = cv2.addWeighted(vis, 0.5, overlay, 0.5, 0.0) for (x0, y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]): if good: cv2.line(vis, (x0, y0), (x1, y1), (0, 128, 0)) cv2.circle(vis, (x1, y1), 2, (red, green)[good], -1) draw_str(vis, (20, 20), 'track count: %d' % len(self.p1)) if self.use_ransac: draw_str(vis, (20, 40), 'RANSAC') else: p = cv2.goodFeaturesToTrack(frame_gray, **feature_params) if p is not None: for x, y in p[:,0]: cv2.circle(vis, (x, y), 2, green, -1) draw_str(vis, (20, 20), 'feature count: %d' % len(p)) cv2.imshow('lk_homography', vis) ch = 0xFF & cv2.waitKey(1) if ch == 27: break if ch == ord(' '): self.frame0 = frame.copy() self.p0 = cv2.goodFeaturesToTrack(frame_gray, **feature_params) if self.p0 is not None: self.p1 = self.p0 self.gray0 = frame_gray self.gray1 = frame_gray if ch == ord('r'): self.use_ransac = not self.use_ransac def main(): import sys try: video_src = sys.argv[1] except: video_src = 0 print __doc__ App(video_src).run() cv2.destroyAllWindows() if __name__ == '__main__': main()