/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include <functional> #include <limits> using namespace cv; // common namespace { double toRad(double a) { return a * CV_PI / 180.0; } bool notNull(float v) { return fabs(v) > std::numeric_limits<float>::epsilon(); } class GeneralizedHoughBase { protected: GeneralizedHoughBase(); virtual ~GeneralizedHoughBase() {} void setTemplateImpl(InputArray templ, Point templCenter); void setTemplateImpl(InputArray edges, InputArray dx, InputArray dy, Point templCenter); void detectImpl(InputArray image, OutputArray positions, OutputArray votes); void detectImpl(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes); virtual void processTempl() = 0; virtual void processImage() = 0; int cannyLowThresh_; int cannyHighThresh_; double minDist_; double dp_; Size templSize_; Point templCenter_; Mat templEdges_; Mat templDx_; Mat templDy_; Size imageSize_; Mat imageEdges_; Mat imageDx_; Mat imageDy_; std::vector<Vec4f> posOutBuf_; std::vector<Vec3i> voteOutBuf_; private: void calcEdges(InputArray src, Mat& edges, Mat& dx, Mat& dy); void filterMinDist(); void convertTo(OutputArray positions, OutputArray votes); }; GeneralizedHoughBase::GeneralizedHoughBase() { cannyLowThresh_ = 50; cannyHighThresh_ = 100; minDist_ = 1.0; dp_ = 1.0; } void GeneralizedHoughBase::calcEdges(InputArray _src, Mat& edges, Mat& dx, Mat& dy) { Mat src = _src.getMat(); CV_Assert( src.type() == CV_8UC1 ); CV_Assert( cannyLowThresh_ > 0 && cannyLowThresh_ < cannyHighThresh_ ); Canny(src, edges, cannyLowThresh_, cannyHighThresh_); Sobel(src, dx, CV_32F, 1, 0); Sobel(src, dy, CV_32F, 0, 1); } void GeneralizedHoughBase::setTemplateImpl(InputArray templ, Point templCenter) { calcEdges(templ, templEdges_, templDx_, templDy_); if (templCenter == Point(-1, -1)) templCenter = Point(templEdges_.cols / 2, templEdges_.rows / 2); templSize_ = templEdges_.size(); templCenter_ = templCenter; processTempl(); } void GeneralizedHoughBase::setTemplateImpl(InputArray edges, InputArray dx, InputArray dy, Point templCenter) { edges.getMat().copyTo(templEdges_); dx.getMat().copyTo(templDx_); dy.getMat().copyTo(templDy_); CV_Assert( templEdges_.type() == CV_8UC1 ); CV_Assert( templDx_.type() == CV_32FC1 && templDx_.size() == templEdges_.size() ); CV_Assert( templDy_.type() == templDx_.type() && templDy_.size() == templEdges_.size() ); if (templCenter == Point(-1, -1)) templCenter = Point(templEdges_.cols / 2, templEdges_.rows / 2); templSize_ = templEdges_.size(); templCenter_ = templCenter; processTempl(); } void GeneralizedHoughBase::detectImpl(InputArray image, OutputArray positions, OutputArray votes) { calcEdges(image, imageEdges_, imageDx_, imageDy_); imageSize_ = imageEdges_.size(); posOutBuf_.clear(); voteOutBuf_.clear(); processImage(); if (!posOutBuf_.empty()) { if (minDist_ > 1) filterMinDist(); convertTo(positions, votes); } else { positions.release(); if (votes.needed()) votes.release(); } } void GeneralizedHoughBase::detectImpl(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes) { edges.getMat().copyTo(imageEdges_); dx.getMat().copyTo(imageDx_); dy.getMat().copyTo(imageDy_); CV_Assert( imageEdges_.type() == CV_8UC1 ); CV_Assert( imageDx_.type() == CV_32FC1 && imageDx_.size() == imageEdges_.size() ); CV_Assert( imageDy_.type() == imageDx_.type() && imageDy_.size() == imageEdges_.size() ); imageSize_ = imageEdges_.size(); posOutBuf_.clear(); voteOutBuf_.clear(); processImage(); if (!posOutBuf_.empty()) { if (minDist_ > 1) filterMinDist(); convertTo(positions, votes); } else { positions.release(); if (votes.needed()) votes.release(); } } class Vec3iGreaterThanIdx { public: Vec3iGreaterThanIdx( const Vec3i* _arr ) : arr(_arr) {} bool operator()(size_t a, size_t b) const { return arr[a][0] > arr[b][0]; } const Vec3i* arr; }; void GeneralizedHoughBase::filterMinDist() { size_t oldSize = posOutBuf_.size(); const bool hasVotes = !voteOutBuf_.empty(); CV_Assert( !hasVotes || voteOutBuf_.size() == oldSize ); std::vector<Vec4f> oldPosBuf(posOutBuf_); std::vector<Vec3i> oldVoteBuf(voteOutBuf_); std::vector<size_t> indexies(oldSize); for (size_t i = 0; i < oldSize; ++i) indexies[i] = i; std::sort(indexies.begin(), indexies.end(), Vec3iGreaterThanIdx(&oldVoteBuf[0])); posOutBuf_.clear(); voteOutBuf_.clear(); const int cellSize = cvRound(minDist_); const int gridWidth = (imageSize_.width + cellSize - 1) / cellSize; const int gridHeight = (imageSize_.height + cellSize - 1) / cellSize; std::vector< std::vector<Point2f> > grid(gridWidth * gridHeight); const double minDist2 = minDist_ * minDist_; for (size_t i = 0; i < oldSize; ++i) { const size_t ind = indexies[i]; Point2f p(oldPosBuf[ind][0], oldPosBuf[ind][1]); bool good = true; const int xCell = static_cast<int>(p.x / cellSize); const int yCell = static_cast<int>(p.y / cellSize); int x1 = xCell - 1; int y1 = yCell - 1; int x2 = xCell + 1; int y2 = yCell + 1; // boundary check x1 = std::max(0, x1); y1 = std::max(0, y1); x2 = std::min(gridWidth - 1, x2); y2 = std::min(gridHeight - 1, y2); for (int yy = y1; yy <= y2; ++yy) { for (int xx = x1; xx <= x2; ++xx) { const std::vector<Point2f>& m = grid[yy * gridWidth + xx]; for(size_t j = 0; j < m.size(); ++j) { const Point2f d = p - m[j]; if (d.ddot(d) < minDist2) { good = false; goto break_out; } } } } break_out: if(good) { grid[yCell * gridWidth + xCell].push_back(p); posOutBuf_.push_back(oldPosBuf[ind]); if (hasVotes) voteOutBuf_.push_back(oldVoteBuf[ind]); } } } void GeneralizedHoughBase::convertTo(OutputArray _positions, OutputArray _votes) { const int total = static_cast<int>(posOutBuf_.size()); const bool hasVotes = !voteOutBuf_.empty(); CV_Assert( !hasVotes || voteOutBuf_.size() == posOutBuf_.size() ); _positions.create(1, total, CV_32FC4); Mat positions = _positions.getMat(); Mat(1, total, CV_32FC4, &posOutBuf_[0]).copyTo(positions); if (_votes.needed()) { if (!hasVotes) { _votes.release(); } else { _votes.create(1, total, CV_32SC3); Mat votes = _votes.getMat(); Mat(1, total, CV_32SC3, &voteOutBuf_[0]).copyTo(votes); } } } } // GeneralizedHoughBallard namespace { class GeneralizedHoughBallardImpl : public GeneralizedHoughBallard, private GeneralizedHoughBase { public: GeneralizedHoughBallardImpl(); void setTemplate(InputArray templ, Point templCenter) { setTemplateImpl(templ, templCenter); } void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter) { setTemplateImpl(edges, dx, dy, templCenter); } void detect(InputArray image, OutputArray positions, OutputArray votes) { detectImpl(image, positions, votes); } void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes) { detectImpl(edges, dx, dy, positions, votes); } void setCannyLowThresh(int cannyLowThresh) { cannyLowThresh_ = cannyLowThresh; } int getCannyLowThresh() const { return cannyLowThresh_; } void setCannyHighThresh(int cannyHighThresh) { cannyHighThresh_ = cannyHighThresh; } int getCannyHighThresh() const { return cannyHighThresh_; } void setMinDist(double minDist) { minDist_ = minDist; } double getMinDist() const { return minDist_; } void setDp(double dp) { dp_ = dp; } double getDp() const { return dp_; } void setMaxBufferSize(int) { } int getMaxBufferSize() const { return 0; } void setLevels(int levels) { levels_ = levels; } int getLevels() const { return levels_; } void setVotesThreshold(int votesThreshold) { votesThreshold_ = votesThreshold; } int getVotesThreshold() const { return votesThreshold_; } private: void processTempl(); void processImage(); void calcHist(); void findPosInHist(); int levels_; int votesThreshold_; std::vector< std::vector<Point> > r_table_; Mat hist_; }; GeneralizedHoughBallardImpl::GeneralizedHoughBallardImpl() { levels_ = 360; votesThreshold_ = 100; } void GeneralizedHoughBallardImpl::processTempl() { CV_Assert( levels_ > 0 ); const double thetaScale = levels_ / 360.0; r_table_.resize(levels_ + 1); std::for_each(r_table_.begin(), r_table_.end(), std::mem_fun_ref(&std::vector<Point>::clear)); for (int y = 0; y < templSize_.height; ++y) { const uchar* edgesRow = templEdges_.ptr(y); const float* dxRow = templDx_.ptr<float>(y); const float* dyRow = templDy_.ptr<float>(y); for (int x = 0; x < templSize_.width; ++x) { const Point p(x, y); if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) { const float theta = fastAtan2(dyRow[x], dxRow[x]); const int n = cvRound(theta * thetaScale); r_table_[n].push_back(p - templCenter_); } } } } void GeneralizedHoughBallardImpl::processImage() { calcHist(); findPosInHist(); } void GeneralizedHoughBallardImpl::calcHist() { CV_Assert( imageEdges_.type() == CV_8UC1 ); CV_Assert( imageDx_.type() == CV_32FC1 && imageDx_.size() == imageSize_); CV_Assert( imageDy_.type() == imageDx_.type() && imageDy_.size() == imageSize_); CV_Assert( levels_ > 0 && r_table_.size() == static_cast<size_t>(levels_ + 1) ); CV_Assert( dp_ > 0.0 ); const double thetaScale = levels_ / 360.0; const double idp = 1.0 / dp_; hist_.create(cvCeil(imageSize_.height * idp) + 2, cvCeil(imageSize_.width * idp) + 2, CV_32SC1); hist_.setTo(0); const int rows = hist_.rows - 2; const int cols = hist_.cols - 2; for (int y = 0; y < imageSize_.height; ++y) { const uchar* edgesRow = imageEdges_.ptr(y); const float* dxRow = imageDx_.ptr<float>(y); const float* dyRow = imageDy_.ptr<float>(y); for (int x = 0; x < imageSize_.width; ++x) { const Point p(x, y); if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) { const float theta = fastAtan2(dyRow[x], dxRow[x]); const int n = cvRound(theta * thetaScale); const std::vector<Point>& r_row = r_table_[n]; for (size_t j = 0; j < r_row.size(); ++j) { Point c = p - r_row[j]; c.x = cvRound(c.x * idp); c.y = cvRound(c.y * idp); if (c.x >= 0 && c.x < cols && c.y >= 0 && c.y < rows) ++hist_.at<int>(c.y + 1, c.x + 1); } } } } } void GeneralizedHoughBallardImpl::findPosInHist() { CV_Assert( votesThreshold_ > 0 ); const int histRows = hist_.rows - 2; const int histCols = hist_.cols - 2; for(int y = 0; y < histRows; ++y) { const int* prevRow = hist_.ptr<int>(y); const int* curRow = hist_.ptr<int>(y + 1); const int* nextRow = hist_.ptr<int>(y + 2); for(int x = 0; x < histCols; ++x) { const int votes = curRow[x + 1]; if (votes > votesThreshold_ && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1]) { posOutBuf_.push_back(Vec4f(static_cast<float>(x * dp_), static_cast<float>(y * dp_), 1.0f, 0.0f)); voteOutBuf_.push_back(Vec3i(votes, 0, 0)); } } } } } Ptr<GeneralizedHoughBallard> cv::createGeneralizedHoughBallard() { return makePtr<GeneralizedHoughBallardImpl>(); } // GeneralizedHoughGuil namespace { class GeneralizedHoughGuilImpl : public GeneralizedHoughGuil, private GeneralizedHoughBase { public: GeneralizedHoughGuilImpl(); void setTemplate(InputArray templ, Point templCenter) { setTemplateImpl(templ, templCenter); } void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter) { setTemplateImpl(edges, dx, dy, templCenter); } void detect(InputArray image, OutputArray positions, OutputArray votes) { detectImpl(image, positions, votes); } void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes) { detectImpl(edges, dx, dy, positions, votes); } void setCannyLowThresh(int cannyLowThresh) { cannyLowThresh_ = cannyLowThresh; } int getCannyLowThresh() const { return cannyLowThresh_; } void setCannyHighThresh(int cannyHighThresh) { cannyHighThresh_ = cannyHighThresh; } int getCannyHighThresh() const { return cannyHighThresh_; } void setMinDist(double minDist) { minDist_ = minDist; } double getMinDist() const { return minDist_; } void setDp(double dp) { dp_ = dp; } double getDp() const { return dp_; } void setMaxBufferSize(int maxBufferSize) { maxBufferSize_ = maxBufferSize; } int getMaxBufferSize() const { return maxBufferSize_; } void setXi(double xi) { xi_ = xi; } double getXi() const { return xi_; } void setLevels(int levels) { levels_ = levels; } int getLevels() const { return levels_; } void setAngleEpsilon(double angleEpsilon) { angleEpsilon_ = angleEpsilon; } double getAngleEpsilon() const { return angleEpsilon_; } void setMinAngle(double minAngle) { minAngle_ = minAngle; } double getMinAngle() const { return minAngle_; } void setMaxAngle(double maxAngle) { maxAngle_ = maxAngle; } double getMaxAngle() const { return maxAngle_; } void setAngleStep(double angleStep) { angleStep_ = angleStep; } double getAngleStep() const { return angleStep_; } void setAngleThresh(int angleThresh) { angleThresh_ = angleThresh; } int getAngleThresh() const { return angleThresh_; } void setMinScale(double minScale) { minScale_ = minScale; } double getMinScale() const { return minScale_; } void setMaxScale(double maxScale) { maxScale_ = maxScale; } double getMaxScale() const { return maxScale_; } void setScaleStep(double scaleStep) { scaleStep_ = scaleStep; } double getScaleStep() const { return scaleStep_; } void setScaleThresh(int scaleThresh) { scaleThresh_ = scaleThresh; } int getScaleThresh() const { return scaleThresh_; } void setPosThresh(int posThresh) { posThresh_ = posThresh; } int getPosThresh() const { return posThresh_; } private: void processTempl(); void processImage(); int maxBufferSize_; double xi_; int levels_; double angleEpsilon_; double minAngle_; double maxAngle_; double angleStep_; int angleThresh_; double minScale_; double maxScale_; double scaleStep_; int scaleThresh_; int posThresh_; struct ContourPoint { Point2d pos; double theta; }; struct Feature { ContourPoint p1; ContourPoint p2; double alpha12; double d12; Point2d r1; Point2d r2; }; void buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, std::vector< std::vector<Feature> >& features, Point2d center = Point2d()); void getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, std::vector<ContourPoint>& points); void calcOrientation(); void calcScale(double angle); void calcPosition(double angle, int angleVotes, double scale, int scaleVotes); std::vector< std::vector<Feature> > templFeatures_; std::vector< std::vector<Feature> > imageFeatures_; std::vector< std::pair<double, int> > angles_; std::vector< std::pair<double, int> > scales_; }; double clampAngle(double a) { double res = a; while (res > 360.0) res -= 360.0; while (res < 0) res += 360.0; return res; } bool angleEq(double a, double b, double eps = 1.0) { return (fabs(clampAngle(a - b)) <= eps); } GeneralizedHoughGuilImpl::GeneralizedHoughGuilImpl() { maxBufferSize_ = 1000; xi_ = 90.0; levels_ = 360; angleEpsilon_ = 1.0; minAngle_ = 0.0; maxAngle_ = 360.0; angleStep_ = 1.0; angleThresh_ = 15000; minScale_ = 0.5; maxScale_ = 2.0; scaleStep_ = 0.05; scaleThresh_ = 1000; posThresh_ = 100; } void GeneralizedHoughGuilImpl::processTempl() { buildFeatureList(templEdges_, templDx_, templDy_, templFeatures_, templCenter_); } void GeneralizedHoughGuilImpl::processImage() { buildFeatureList(imageEdges_, imageDx_, imageDy_, imageFeatures_); calcOrientation(); for (size_t i = 0; i < angles_.size(); ++i) { const double angle = angles_[i].first; const int angleVotes = angles_[i].second; calcScale(angle); for (size_t j = 0; j < scales_.size(); ++j) { const double scale = scales_[j].first; const int scaleVotes = scales_[j].second; calcPosition(angle, angleVotes, scale, scaleVotes); } } } void GeneralizedHoughGuilImpl::buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, std::vector< std::vector<Feature> >& features, Point2d center) { CV_Assert( levels_ > 0 ); const double maxDist = sqrt((double) templSize_.width * templSize_.width + templSize_.height * templSize_.height) * maxScale_; const double alphaScale = levels_ / 360.0; std::vector<ContourPoint> points; getContourPoints(edges, dx, dy, points); features.resize(levels_ + 1); std::for_each(features.begin(), features.end(), std::mem_fun_ref(&std::vector<Feature>::clear)); std::for_each(features.begin(), features.end(), std::bind2nd(std::mem_fun_ref(&std::vector<Feature>::reserve), maxBufferSize_)); for (size_t i = 0; i < points.size(); ++i) { ContourPoint p1 = points[i]; for (size_t j = 0; j < points.size(); ++j) { ContourPoint p2 = points[j]; if (angleEq(p1.theta - p2.theta, xi_, angleEpsilon_)) { const Point2d d = p1.pos - p2.pos; Feature f; f.p1 = p1; f.p2 = p2; f.alpha12 = clampAngle(fastAtan2((float)d.y, (float)d.x) - p1.theta); f.d12 = norm(d); if (f.d12 > maxDist) continue; f.r1 = p1.pos - center; f.r2 = p2.pos - center; const int n = cvRound(f.alpha12 * alphaScale); if (features[n].size() < static_cast<size_t>(maxBufferSize_)) features[n].push_back(f); } } } } void GeneralizedHoughGuilImpl::getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, std::vector<ContourPoint>& points) { CV_Assert( edges.type() == CV_8UC1 ); CV_Assert( dx.type() == CV_32FC1 && dx.size == edges.size ); CV_Assert( dy.type() == dx.type() && dy.size == edges.size ); points.clear(); points.reserve(edges.size().area()); for (int y = 0; y < edges.rows; ++y) { const uchar* edgesRow = edges.ptr(y); const float* dxRow = dx.ptr<float>(y); const float* dyRow = dy.ptr<float>(y); for (int x = 0; x < edges.cols; ++x) { if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) { ContourPoint p; p.pos = Point2d(x, y); p.theta = fastAtan2(dyRow[x], dxRow[x]); points.push_back(p); } } } } void GeneralizedHoughGuilImpl::calcOrientation() { CV_Assert( levels_ > 0 ); CV_Assert( templFeatures_.size() == static_cast<size_t>(levels_ + 1) ); CV_Assert( imageFeatures_.size() == templFeatures_.size() ); CV_Assert( minAngle_ >= 0.0 && minAngle_ < maxAngle_ && maxAngle_ <= 360.0 ); CV_Assert( angleStep_ > 0.0 && angleStep_ < 360.0 ); CV_Assert( angleThresh_ > 0 ); const double iAngleStep = 1.0 / angleStep_; const int angleRange = cvCeil((maxAngle_ - minAngle_) * iAngleStep); std::vector<int> OHist(angleRange + 1, 0); for (int i = 0; i <= levels_; ++i) { const std::vector<Feature>& templRow = templFeatures_[i]; const std::vector<Feature>& imageRow = imageFeatures_[i]; for (size_t j = 0; j < templRow.size(); ++j) { Feature templF = templRow[j]; for (size_t k = 0; k < imageRow.size(); ++k) { Feature imF = imageRow[k]; const double angle = clampAngle(imF.p1.theta - templF.p1.theta); if (angle >= minAngle_ && angle <= maxAngle_) { const int n = cvRound((angle - minAngle_) * iAngleStep); ++OHist[n]; } } } } angles_.clear(); for (int n = 0; n < angleRange; ++n) { if (OHist[n] >= angleThresh_) { const double angle = minAngle_ + n * angleStep_; angles_.push_back(std::make_pair(angle, OHist[n])); } } } void GeneralizedHoughGuilImpl::calcScale(double angle) { CV_Assert( levels_ > 0 ); CV_Assert( templFeatures_.size() == static_cast<size_t>(levels_ + 1) ); CV_Assert( imageFeatures_.size() == templFeatures_.size() ); CV_Assert( minScale_ > 0.0 && minScale_ < maxScale_ ); CV_Assert( scaleStep_ > 0.0 ); CV_Assert( scaleThresh_ > 0 ); const double iScaleStep = 1.0 / scaleStep_; const int scaleRange = cvCeil((maxScale_ - minScale_) * iScaleStep); std::vector<int> SHist(scaleRange + 1, 0); for (int i = 0; i <= levels_; ++i) { const std::vector<Feature>& templRow = templFeatures_[i]; const std::vector<Feature>& imageRow = imageFeatures_[i]; for (size_t j = 0; j < templRow.size(); ++j) { Feature templF = templRow[j]; templF.p1.theta += angle; for (size_t k = 0; k < imageRow.size(); ++k) { Feature imF = imageRow[k]; if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon_)) { const double scale = imF.d12 / templF.d12; if (scale >= minScale_ && scale <= maxScale_) { const int s = cvRound((scale - minScale_) * iScaleStep); ++SHist[s]; } } } } } scales_.clear(); for (int s = 0; s < scaleRange; ++s) { if (SHist[s] >= scaleThresh_) { const double scale = minScale_ + s * scaleStep_; scales_.push_back(std::make_pair(scale, SHist[s])); } } } void GeneralizedHoughGuilImpl::calcPosition(double angle, int angleVotes, double scale, int scaleVotes) { CV_Assert( levels_ > 0 ); CV_Assert( templFeatures_.size() == static_cast<size_t>(levels_ + 1) ); CV_Assert( imageFeatures_.size() == templFeatures_.size() ); CV_Assert( dp_ > 0.0 ); CV_Assert( posThresh_ > 0 ); const double sinVal = sin(toRad(angle)); const double cosVal = cos(toRad(angle)); const double idp = 1.0 / dp_; const int histRows = cvCeil(imageSize_.height * idp); const int histCols = cvCeil(imageSize_.width * idp); Mat DHist(histRows + 2, histCols + 2, CV_32SC1, Scalar::all(0)); for (int i = 0; i <= levels_; ++i) { const std::vector<Feature>& templRow = templFeatures_[i]; const std::vector<Feature>& imageRow = imageFeatures_[i]; for (size_t j = 0; j < templRow.size(); ++j) { Feature templF = templRow[j]; templF.p1.theta += angle; templF.r1 *= scale; templF.r2 *= scale; templF.r1 = Point2d(cosVal * templF.r1.x - sinVal * templF.r1.y, sinVal * templF.r1.x + cosVal * templF.r1.y); templF.r2 = Point2d(cosVal * templF.r2.x - sinVal * templF.r2.y, sinVal * templF.r2.x + cosVal * templF.r2.y); for (size_t k = 0; k < imageRow.size(); ++k) { Feature imF = imageRow[k]; if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon_)) { Point2d c1, c2; c1 = imF.p1.pos - templF.r1; c1 *= idp; c2 = imF.p2.pos - templF.r2; c2 *= idp; if (fabs(c1.x - c2.x) > 1 || fabs(c1.y - c2.y) > 1) continue; if (c1.y >= 0 && c1.y < histRows && c1.x >= 0 && c1.x < histCols) ++DHist.at<int>(cvRound(c1.y) + 1, cvRound(c1.x) + 1); } } } } for(int y = 0; y < histRows; ++y) { const int* prevRow = DHist.ptr<int>(y); const int* curRow = DHist.ptr<int>(y + 1); const int* nextRow = DHist.ptr<int>(y + 2); for(int x = 0; x < histCols; ++x) { const int votes = curRow[x + 1]; if (votes > posThresh_ && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1]) { posOutBuf_.push_back(Vec4f(static_cast<float>(x * dp_), static_cast<float>(y * dp_), static_cast<float>(scale), static_cast<float>(angle))); voteOutBuf_.push_back(Vec3i(votes, scaleVotes, angleVotes)); } } } } } Ptr<GeneralizedHoughGuil> cv::createGeneralizedHoughGuil() { return makePtr<GeneralizedHoughGuilImpl>(); }