/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 8) # pragma GCC diagnostic ignored "-Warray-bounds" #endif namespace cv { struct FFillSegment { ushort y; ushort l; ushort r; ushort prevl; ushort prevr; short dir; }; enum { UP = 1, DOWN = -1 }; #define ICV_PUSH( Y, L, R, PREV_L, PREV_R, DIR ) \ { \ tail->y = (ushort)(Y); \ tail->l = (ushort)(L); \ tail->r = (ushort)(R); \ tail->prevl = (ushort)(PREV_L); \ tail->prevr = (ushort)(PREV_R); \ tail->dir = (short)(DIR); \ if( ++tail == buffer_end ) \ { \ buffer->resize(buffer->size() * 3/2); \ tail = &buffer->front() + (tail - head); \ head = &buffer->front(); \ buffer_end = head + buffer->size(); \ } \ } #define ICV_POP( Y, L, R, PREV_L, PREV_R, DIR ) \ { \ --tail; \ Y = tail->y; \ L = tail->l; \ R = tail->r; \ PREV_L = tail->prevl; \ PREV_R = tail->prevr; \ DIR = tail->dir; \ } struct ConnectedComp { ConnectedComp(); Rect rect; Point pt; int threshold; int label; int area; int harea; int carea; int perimeter; int nholes; int ninflections; double mx; double my; Scalar avg; Scalar sdv; }; ConnectedComp::ConnectedComp() { rect = Rect(0, 0, 0, 0); pt = Point(-1, -1); threshold = -1; label = -1; area = harea = carea = perimeter = nholes = ninflections = 0; mx = my = 0; avg = sdv = Scalar::all(0); } // Simple Floodfill (repainting single-color connected component) template<typename _Tp> static void floodFill_CnIR( Mat& image, Point seed, _Tp newVal, ConnectedComp* region, int flags, std::vector<FFillSegment>* buffer ) { _Tp* img = image.ptr<_Tp>(seed.y); Size roi = image.size(); int i, L, R; int area = 0; int XMin, XMax, YMin = seed.y, YMax = seed.y; int _8_connectivity = (flags & 255) == 8; FFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front(); L = R = XMin = XMax = seed.x; _Tp val0 = img[L]; img[L] = newVal; while( ++R < roi.width && img[R] == val0 ) img[R] = newVal; while( --L >= 0 && img[L] == val0 ) img[L] = newVal; XMax = --R; XMin = ++L; ICV_PUSH( seed.y, L, R, R + 1, R, UP ); while( head != tail ) { int k, YC, PL, PR, dir; ICV_POP( YC, L, R, PL, PR, dir ); int data[][3] = { {-dir, L - _8_connectivity, R + _8_connectivity}, {dir, L - _8_connectivity, PL - 1}, {dir, PR + 1, R + _8_connectivity} }; if( region ) { area += R - L + 1; if( XMax < R ) XMax = R; if( XMin > L ) XMin = L; if( YMax < YC ) YMax = YC; if( YMin > YC ) YMin = YC; } for( k = 0; k < 3; k++ ) { dir = data[k][0]; if( (unsigned)(YC + dir) >= (unsigned)roi.height ) continue; img = image.ptr<_Tp>(YC + dir); int left = data[k][1]; int right = data[k][2]; for( i = left; i <= right; i++ ) { if( (unsigned)i < (unsigned)roi.width && img[i] == val0 ) { int j = i; img[i] = newVal; while( --j >= 0 && img[j] == val0 ) img[j] = newVal; while( ++i < roi.width && img[i] == val0 ) img[i] = newVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } } } if( region ) { region->pt = seed; region->area = area; region->rect.x = XMin; region->rect.y = YMin; region->rect.width = XMax - XMin + 1; region->rect.height = YMax - YMin + 1; } } /****************************************************************************************\ * Gradient Floodfill * \****************************************************************************************/ struct Diff8uC1 { Diff8uC1(uchar _lo, uchar _up) : lo(_lo), interval(_lo + _up) {} bool operator()(const uchar* a, const uchar* b) const { return (unsigned)(a[0] - b[0] + lo) <= interval; } unsigned lo, interval; }; struct Diff8uC3 { Diff8uC3(Vec3b _lo, Vec3b _up) { for( int k = 0; k < 3; k++ ) lo[k] = _lo[k], interval[k] = _lo[k] + _up[k]; } bool operator()(const Vec3b* a, const Vec3b* b) const { return (unsigned)(a[0][0] - b[0][0] + lo[0]) <= interval[0] && (unsigned)(a[0][1] - b[0][1] + lo[1]) <= interval[1] && (unsigned)(a[0][2] - b[0][2] + lo[2]) <= interval[2]; } unsigned lo[3], interval[3]; }; template<typename _Tp> struct DiffC1 { DiffC1(_Tp _lo, _Tp _up) : lo(-_lo), up(_up) {} bool operator()(const _Tp* a, const _Tp* b) const { _Tp d = a[0] - b[0]; return lo <= d && d <= up; } _Tp lo, up; }; template<typename _Tp> struct DiffC3 { DiffC3(_Tp _lo, _Tp _up) : lo(-_lo), up(_up) {} bool operator()(const _Tp* a, const _Tp* b) const { _Tp d = *a - *b; return lo[0] <= d[0] && d[0] <= up[0] && lo[1] <= d[1] && d[1] <= up[1] && lo[2] <= d[2] && d[2] <= up[2]; } _Tp lo, up; }; typedef DiffC1<int> Diff32sC1; typedef DiffC3<Vec3i> Diff32sC3; typedef DiffC1<float> Diff32fC1; typedef DiffC3<Vec3f> Diff32fC3; template<typename _Tp, typename _MTp, typename _WTp, class Diff> static void floodFillGrad_CnIR( Mat& image, Mat& msk, Point seed, _Tp newVal, _MTp newMaskVal, Diff diff, ConnectedComp* region, int flags, std::vector<FFillSegment>* buffer ) { int step = (int)image.step, maskStep = (int)msk.step; uchar* pImage = image.ptr(); _Tp* img = (_Tp*)(pImage + step*seed.y); uchar* pMask = msk.ptr() + maskStep + sizeof(_MTp); _MTp* mask = (_MTp*)(pMask + maskStep*seed.y); int i, L, R; int area = 0; int XMin, XMax, YMin = seed.y, YMax = seed.y; int _8_connectivity = (flags & 255) == 8; int fixedRange = flags & FLOODFILL_FIXED_RANGE; int fillImage = (flags & FLOODFILL_MASK_ONLY) == 0; FFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front(); L = R = seed.x; if( mask[L] ) return; mask[L] = newMaskVal; _Tp val0 = img[L]; if( fixedRange ) { while( !mask[R + 1] && diff( img + (R+1), &val0 )) mask[++R] = newMaskVal; while( !mask[L - 1] && diff( img + (L-1), &val0 )) mask[--L] = newMaskVal; } else { while( !mask[R + 1] && diff( img + (R+1), img + R )) mask[++R] = newMaskVal; while( !mask[L - 1] && diff( img + (L-1), img + L )) mask[--L] = newMaskVal; } XMax = R; XMin = L; ICV_PUSH( seed.y, L, R, R + 1, R, UP ); while( head != tail ) { int k, YC, PL, PR, dir; ICV_POP( YC, L, R, PL, PR, dir ); int data[][3] = { {-dir, L - _8_connectivity, R + _8_connectivity}, {dir, L - _8_connectivity, PL - 1}, {dir, PR + 1, R + _8_connectivity} }; unsigned length = (unsigned)(R-L); if( region ) { area += (int)length + 1; if( XMax < R ) XMax = R; if( XMin > L ) XMin = L; if( YMax < YC ) YMax = YC; if( YMin > YC ) YMin = YC; } for( k = 0; k < 3; k++ ) { dir = data[k][0]; img = (_Tp*)(pImage + (YC + dir) * step); _Tp* img1 = (_Tp*)(pImage + YC * step); mask = (_MTp*)(pMask + (YC + dir) * maskStep); int left = data[k][1]; int right = data[k][2]; if( fixedRange ) for( i = left; i <= right; i++ ) { if( !mask[i] && diff( img + i, &val0 )) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && diff( img + j, &val0 )) mask[j] = newMaskVal; while( !mask[++i] && diff( img + i, &val0 )) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else if( !_8_connectivity ) for( i = left; i <= right; i++ ) { if( !mask[i] && diff( img + i, img1 + i )) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && diff( img + j, img + (j+1) )) mask[j] = newMaskVal; while( !mask[++i] && (diff( img + i, img + (i-1) ) || (diff( img + i, img1 + i) && i <= R))) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else for( i = left; i <= right; i++ ) { int idx; _Tp val; if( !mask[i] && (((val = img[i], (unsigned)(idx = i-L-1) <= length) && diff( &val, img1 + (i-1))) || ((unsigned)(++idx) <= length && diff( &val, img1 + i )) || ((unsigned)(++idx) <= length && diff( &val, img1 + (i+1) )))) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && diff( img + j, img + (j+1) )) mask[j] = newMaskVal; while( !mask[++i] && ((val = img[i], diff( &val, img + (i-1) )) || (((unsigned)(idx = i-L-1) <= length && diff( &val, img1 + (i-1) ))) || ((unsigned)(++idx) <= length && diff( &val, img1 + i )) || ((unsigned)(++idx) <= length && diff( &val, img1 + (i+1) )))) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } } img = (_Tp*)(pImage + YC * step); if( fillImage ) for( i = L; i <= R; i++ ) img[i] = newVal; /*else if( region ) for( i = L; i <= R; i++ ) sum += img[i];*/ } if( region ) { region->pt = seed; region->label = saturate_cast<int>(newMaskVal); region->area = area; region->rect.x = XMin; region->rect.y = YMin; region->rect.width = XMax - XMin + 1; region->rect.height = YMax - YMin + 1; } } } /****************************************************************************************\ * External Functions * \****************************************************************************************/ int cv::floodFill( InputOutputArray _image, InputOutputArray _mask, Point seedPoint, Scalar newVal, Rect* rect, Scalar loDiff, Scalar upDiff, int flags ) { ConnectedComp comp; std::vector<FFillSegment> buffer; if( rect ) *rect = Rect(); int i, connectivity = flags & 255; union { uchar b[4]; int i[4]; float f[4]; double _[4]; } nv_buf; nv_buf._[0] = nv_buf._[1] = nv_buf._[2] = nv_buf._[3] = 0; struct { Vec3b b; Vec3i i; Vec3f f; } ld_buf, ud_buf; Mat img = _image.getMat(), mask; if( !_mask.empty() ) mask = _mask.getMat(); Size size = img.size(); int type = img.type(); int depth = img.depth(); int cn = img.channels(); if ( (cn != 1) && (cn != 3) ) { CV_Error( CV_StsBadArg, "Number of channels in input image must be 1 or 3" ); } if( connectivity == 0 ) connectivity = 4; else if( connectivity != 4 && connectivity != 8 ) CV_Error( CV_StsBadFlag, "Connectivity must be 4, 0(=4) or 8" ); bool is_simple = mask.empty() && (flags & FLOODFILL_MASK_ONLY) == 0; for( i = 0; i < cn; i++ ) { if( loDiff[i] < 0 || upDiff[i] < 0 ) CV_Error( CV_StsBadArg, "lo_diff and up_diff must be non-negative" ); is_simple = is_simple && fabs(loDiff[i]) < DBL_EPSILON && fabs(upDiff[i]) < DBL_EPSILON; } if( (unsigned)seedPoint.x >= (unsigned)size.width || (unsigned)seedPoint.y >= (unsigned)size.height ) CV_Error( CV_StsOutOfRange, "Seed point is outside of image" ); scalarToRawData( newVal, &nv_buf, type, 0); size_t buffer_size = MAX( size.width, size.height ) * 2; buffer.resize( buffer_size ); if( is_simple ) { size_t elem_size = img.elemSize(); const uchar* seed_ptr = img.ptr(seedPoint.y) + elem_size*seedPoint.x; size_t k = 0; for(; k < elem_size; k++) if (seed_ptr[k] != nv_buf.b[k]) break; if( k != elem_size ) { if( type == CV_8UC1 ) floodFill_CnIR(img, seedPoint, nv_buf.b[0], &comp, flags, &buffer); else if( type == CV_8UC3 ) floodFill_CnIR(img, seedPoint, Vec3b(nv_buf.b), &comp, flags, &buffer); else if( type == CV_32SC1 ) floodFill_CnIR(img, seedPoint, nv_buf.i[0], &comp, flags, &buffer); else if( type == CV_32FC1 ) floodFill_CnIR(img, seedPoint, nv_buf.f[0], &comp, flags, &buffer); else if( type == CV_32SC3 ) floodFill_CnIR(img, seedPoint, Vec3i(nv_buf.i), &comp, flags, &buffer); else if( type == CV_32FC3 ) floodFill_CnIR(img, seedPoint, Vec3f(nv_buf.f), &comp, flags, &buffer); else CV_Error( CV_StsUnsupportedFormat, "" ); if( rect ) *rect = comp.rect; return comp.area; } } if( mask.empty() ) { Mat tempMask( size.height + 2, size.width + 2, CV_8UC1 ); tempMask.setTo(Scalar::all(0)); mask = tempMask; } else { CV_Assert( mask.rows == size.height+2 && mask.cols == size.width+2 ); CV_Assert( mask.type() == CV_8U ); } memset( mask.ptr(), 1, mask.cols ); memset( mask.ptr(mask.rows-1), 1, mask.cols ); for( i = 1; i <= size.height; i++ ) { mask.at<uchar>(i, 0) = mask.at<uchar>(i, mask.cols-1) = (uchar)1; } if( depth == CV_8U ) for( i = 0; i < cn; i++ ) { ld_buf.b[i] = saturate_cast<uchar>(cvFloor(loDiff[i])); ud_buf.b[i] = saturate_cast<uchar>(cvFloor(upDiff[i])); } else if( depth == CV_32S ) for( i = 0; i < cn; i++ ) { ld_buf.i[i] = cvFloor(loDiff[i]); ud_buf.i[i] = cvFloor(upDiff[i]); } else if( depth == CV_32F ) for( i = 0; i < cn; i++ ) { ld_buf.f[i] = (float)loDiff[i]; ud_buf.f[i] = (float)upDiff[i]; } else CV_Error( CV_StsUnsupportedFormat, "" ); uchar newMaskVal = (uchar)((flags & ~0xff) == 0 ? 1 : ((flags >> 8) & 255)); if( type == CV_8UC1 ) floodFillGrad_CnIR<uchar, uchar, int, Diff8uC1>( img, mask, seedPoint, nv_buf.b[0], newMaskVal, Diff8uC1(ld_buf.b[0], ud_buf.b[0]), &comp, flags, &buffer); else if( type == CV_8UC3 ) floodFillGrad_CnIR<Vec3b, uchar, Vec3i, Diff8uC3>( img, mask, seedPoint, Vec3b(nv_buf.b), newMaskVal, Diff8uC3(ld_buf.b, ud_buf.b), &comp, flags, &buffer); else if( type == CV_32SC1 ) floodFillGrad_CnIR<int, uchar, int, Diff32sC1>( img, mask, seedPoint, nv_buf.i[0], newMaskVal, Diff32sC1(ld_buf.i[0], ud_buf.i[0]), &comp, flags, &buffer); else if( type == CV_32SC3 ) floodFillGrad_CnIR<Vec3i, uchar, Vec3i, Diff32sC3>( img, mask, seedPoint, Vec3i(nv_buf.i), newMaskVal, Diff32sC3(ld_buf.i, ud_buf.i), &comp, flags, &buffer); else if( type == CV_32FC1 ) floodFillGrad_CnIR<float, uchar, float, Diff32fC1>( img, mask, seedPoint, nv_buf.f[0], newMaskVal, Diff32fC1(ld_buf.f[0], ud_buf.f[0]), &comp, flags, &buffer); else if( type == CV_32FC3 ) floodFillGrad_CnIR<Vec3f, uchar, Vec3f, Diff32fC3>( img, mask, seedPoint, Vec3f(nv_buf.f), newMaskVal, Diff32fC3(ld_buf.f, ud_buf.f), &comp, flags, &buffer); else CV_Error(CV_StsUnsupportedFormat, ""); if( rect ) *rect = comp.rect; return comp.area; } int cv::floodFill( InputOutputArray _image, Point seedPoint, Scalar newVal, Rect* rect, Scalar loDiff, Scalar upDiff, int flags ) { return floodFill(_image, Mat(), seedPoint, newVal, rect, loDiff, upDiff, flags); } CV_IMPL void cvFloodFill( CvArr* arr, CvPoint seed_point, CvScalar newVal, CvScalar lo_diff, CvScalar up_diff, CvConnectedComp* comp, int flags, CvArr* maskarr ) { if( comp ) memset( comp, 0, sizeof(*comp) ); cv::Mat img = cv::cvarrToMat(arr), mask = cv::cvarrToMat(maskarr); int area = cv::floodFill(img, mask, seed_point, newVal, comp ? (cv::Rect*)&comp->rect : 0, lo_diff, up_diff, flags ); if( comp ) { comp->area = area; comp->value = newVal; } } /* End of file. */