package org.opencv.test.features2d; import java.util.Arrays; import org.opencv.core.Core; import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.MatOfKeyPoint; import org.opencv.core.Point; import org.opencv.core.Scalar; import org.opencv.features2d.FeatureDetector; import org.opencv.core.KeyPoint; import org.opencv.test.OpenCVTestCase; import org.opencv.test.OpenCVTestRunner; import org.opencv.imgproc.Imgproc; public class STARFeatureDetectorTest extends OpenCVTestCase { FeatureDetector detector; int matSize; KeyPoint[] truth; private Mat getMaskImg() { Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255)); Mat right = mask.submat(0, matSize, matSize / 2, matSize); right.setTo(new Scalar(0)); return mask; } private Mat getTestImg() { Scalar color = new Scalar(0); int center = matSize / 2; int radius = 6; int offset = 40; Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255)); Imgproc.circle(img, new Point(center - offset, center), radius, color, -1); Imgproc.circle(img, new Point(center + offset, center), radius, color, -1); Imgproc.circle(img, new Point(center, center - offset), radius, color, -1); Imgproc.circle(img, new Point(center, center + offset), radius, color, -1); Imgproc.circle(img, new Point(center, center), radius, color, -1); return img; } protected void setUp() throws Exception { super.setUp(); detector = FeatureDetector.create(FeatureDetector.STAR); matSize = 200; truth = new KeyPoint[] { new KeyPoint( 95, 80, 22, -1, 31.5957f, 0, -1), new KeyPoint(105, 80, 22, -1, 31.5957f, 0, -1), new KeyPoint( 80, 95, 22, -1, 31.5957f, 0, -1), new KeyPoint(120, 95, 22, -1, 31.5957f, 0, -1), new KeyPoint(100, 100, 8, -1, 30.f, 0, -1), new KeyPoint( 80, 105, 22, -1, 31.5957f, 0, -1), new KeyPoint(120, 105, 22, -1, 31.5957f, 0, -1), new KeyPoint( 95, 120, 22, -1, 31.5957f, 0, -1), new KeyPoint(105, 120, 22, -1, 31.5957f, 0, -1) }; } public void testCreate() { assertNotNull(detector); } public void testDetectListOfMatListOfListOfKeyPoint() { fail("Not yet implemented"); } public void testDetectListOfMatListOfListOfKeyPointListOfMat() { fail("Not yet implemented"); } public void testDetectMatListOfKeyPoint() { Mat img = getTestImg(); MatOfKeyPoint keypoints = new MatOfKeyPoint(); detector.detect(img, keypoints); assertListKeyPointEquals(Arrays.asList(truth), keypoints.toList(), EPS); } public void testDetectMatListOfKeyPointMat() { Mat img = getTestImg(); Mat mask = getMaskImg(); MatOfKeyPoint keypoints = new MatOfKeyPoint(); detector.detect(img, keypoints, mask); assertListKeyPointEquals(Arrays.asList(truth[0], truth[2], truth[5], truth[7]), keypoints.toList(), EPS); } public void testEmpty() { assertFalse(detector.empty()); } public void testRead() { Mat img = getTestImg(); MatOfKeyPoint keypoints1 = new MatOfKeyPoint(); detector.detect(img, keypoints1); String filename = OpenCVTestRunner.getTempFileName("yml"); writeFile(filename, "%YAML:1.0\nmaxSize: 45\nresponseThreshold: 150\nlineThresholdProjected: 10\nlineThresholdBinarized: 8\nsuppressNonmaxSize: 5\n"); detector.read(filename); MatOfKeyPoint keypoints2 = new MatOfKeyPoint(); detector.detect(img, keypoints2); assertTrue(keypoints2.total() <= keypoints1.total()); } public void testWrite() { String filename = OpenCVTestRunner.getTempFileName("xml"); detector.write(filename); String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.STAR</name>\n<lineThresholdBinarized>8</lineThresholdBinarized>\n<lineThresholdProjected>10</lineThresholdProjected>\n<maxSize>45</maxSize>\n<responseThreshold>30</responseThreshold>\n<suppressNonmaxSize>5</suppressNonmaxSize>\n</opencv_storage>\n"; assertEquals(truth, readFile(filename)); } public void testWriteYml() { String filename = OpenCVTestRunner.getTempFileName("yml"); detector.write(filename); String truth = "%YAML:1.0\nname: \"Feature2D.STAR\"\nlineThresholdBinarized: 8\nlineThresholdProjected: 10\nmaxSize: 45\nresponseThreshold: 30\nsuppressNonmaxSize: 5\n"; assertEquals(truth, readFile(filename)); } }