/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if !defined CUDA_DISABLER #include "opencv2/core/cuda/common.hpp" #include "opencv2/core/cuda/border_interpolate.hpp" #include "opencv2/core/cuda/limits.hpp" using namespace cv::cuda; using namespace cv::cuda::device; //////////////////////////////////////////////////////////// // centeredGradient namespace tvl1flow { __global__ void centeredGradientKernel(const PtrStepSzf src, PtrStepf dx, PtrStepf dy) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (x >= src.cols || y >= src.rows) return; dx(y, x) = 0.5f * (src(y, ::min(x + 1, src.cols - 1)) - src(y, ::max(x - 1, 0))); dy(y, x) = 0.5f * (src(::min(y + 1, src.rows - 1), x) - src(::max(y - 1, 0), x)); } void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy, cudaStream_t stream) { const dim3 block(32, 8); const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y)); centeredGradientKernel<<<grid, block, 0, stream>>>(src, dx, dy); cudaSafeCall( cudaGetLastError() ); if (!stream) cudaSafeCall( cudaDeviceSynchronize() ); } } //////////////////////////////////////////////////////////// // warpBackward namespace tvl1flow { static __device__ __forceinline__ float bicubicCoeff(float x_) { float x = fabsf(x_); if (x <= 1.0f) { return x * x * (1.5f * x - 2.5f) + 1.0f; } else if (x < 2.0f) { return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f; } else { return 0.0f; } } texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1 (false, cudaFilterModePoint, cudaAddressModeClamp); texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1x(false, cudaFilterModePoint, cudaAddressModeClamp); texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1y(false, cudaFilterModePoint, cudaAddressModeClamp); __global__ void warpBackwardKernel(const PtrStepSzf I0, const PtrStepf u1, const PtrStepf u2, PtrStepf I1w, PtrStepf I1wx, PtrStepf I1wy, PtrStepf grad, PtrStepf rho) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (x >= I0.cols || y >= I0.rows) return; const float u1Val = u1(y, x); const float u2Val = u2(y, x); const float wx = x + u1Val; const float wy = y + u2Val; const int xmin = ::ceilf(wx - 2.0f); const int xmax = ::floorf(wx + 2.0f); const int ymin = ::ceilf(wy - 2.0f); const int ymax = ::floorf(wy + 2.0f); float sum = 0.0f; float sumx = 0.0f; float sumy = 0.0f; float wsum = 0.0f; for (int cy = ymin; cy <= ymax; ++cy) { for (int cx = xmin; cx <= xmax; ++cx) { const float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy); sum += w * tex2D(tex_I1 , cx, cy); sumx += w * tex2D(tex_I1x, cx, cy); sumy += w * tex2D(tex_I1y, cx, cy); wsum += w; } } const float coeff = 1.0f / wsum; const float I1wVal = sum * coeff; const float I1wxVal = sumx * coeff; const float I1wyVal = sumy * coeff; I1w(y, x) = I1wVal; I1wx(y, x) = I1wxVal; I1wy(y, x) = I1wyVal; const float Ix2 = I1wxVal * I1wxVal; const float Iy2 = I1wyVal * I1wyVal; // store the |Grad(I1)|^2 grad(y, x) = Ix2 + Iy2; // compute the constant part of the rho function const float I0Val = I0(y, x); rho(y, x) = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val; } void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho, cudaStream_t stream) { const dim3 block(32, 8); const dim3 grid(divUp(I0.cols, block.x), divUp(I0.rows, block.y)); bindTexture(&tex_I1 , I1); bindTexture(&tex_I1x, I1x); bindTexture(&tex_I1y, I1y); warpBackwardKernel<<<grid, block, 0, stream>>>(I0, u1, u2, I1w, I1wx, I1wy, grad, rho); cudaSafeCall( cudaGetLastError() ); if (!stream) cudaSafeCall( cudaDeviceSynchronize() ); } } //////////////////////////////////////////////////////////// // estimateU namespace tvl1flow { __device__ float divergence(const PtrStepf& v1, const PtrStepf& v2, int y, int x) { if (x > 0 && y > 0) { const float v1x = v1(y, x) - v1(y, x - 1); const float v2y = v2(y, x) - v2(y - 1, x); return v1x + v2y; } else { if (y > 0) return v1(y, 0) + v2(y, 0) - v2(y - 1, 0); else { if (x > 0) return v1(0, x) - v1(0, x - 1) + v2(0, x); else return v1(0, 0) + v2(0, 0); } } } __global__ void estimateUKernel(const PtrStepSzf I1wx, const PtrStepf I1wy, const PtrStepf grad, const PtrStepf rho_c, const PtrStepf p11, const PtrStepf p12, const PtrStepf p21, const PtrStepf p22, const PtrStepf p31, const PtrStepf p32, PtrStepf u1, PtrStepf u2, PtrStepf u3, PtrStepf error, const float l_t, const float theta, const float gamma, const bool calcError) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (x >= I1wx.cols || y >= I1wx.rows) return; const float I1wxVal = I1wx(y, x); const float I1wyVal = I1wy(y, x); const float gradVal = grad(y, x); const float u1OldVal = u1(y, x); const float u2OldVal = u2(y, x); const float u3OldVal = gamma ? u3(y, x) : 0; const float rho = rho_c(y, x) + (I1wxVal * u1OldVal + I1wyVal * u2OldVal + gamma * u3OldVal); // estimate the values of the variable (v1, v2) (thresholding operator TH) float d1 = 0.0f; float d2 = 0.0f; float d3 = 0.0f; if (rho < -l_t * gradVal) { d1 = l_t * I1wxVal; d2 = l_t * I1wyVal; if (gamma) d3 = l_t * gamma; } else if (rho > l_t * gradVal) { d1 = -l_t * I1wxVal; d2 = -l_t * I1wyVal; if (gamma) d3 = -l_t * gamma; } else if (gradVal > numeric_limits<float>::epsilon()) { const float fi = -rho / gradVal; d1 = fi * I1wxVal; d2 = fi * I1wyVal; if (gamma) d3 = fi * gamma; } const float v1 = u1OldVal + d1; const float v2 = u2OldVal + d2; const float v3 = u3OldVal + d3; // compute the divergence of the dual variable (p1, p2) const float div_p1 = divergence(p11, p12, y, x); const float div_p2 = divergence(p21, p22, y, x); const float div_p3 = gamma ? divergence(p31, p32, y, x) : 0; // estimate the values of the optical flow (u1, u2) const float u1NewVal = v1 + theta * div_p1; const float u2NewVal = v2 + theta * div_p2; const float u3NewVal = gamma ? v3 + theta * div_p3 : 0; u1(y, x) = u1NewVal; u2(y, x) = u2NewVal; if (gamma) u3(y, x) = u3NewVal; if (calcError) { const float n1 = (u1OldVal - u1NewVal) * (u1OldVal - u1NewVal); const float n2 = (u2OldVal - u2NewVal) * (u2OldVal - u2NewVal); error(y, x) = n1 + n2; } } void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho_c, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3, PtrStepSzf error, float l_t, float theta, float gamma, bool calcError, cudaStream_t stream) { const dim3 block(32, 8); const dim3 grid(divUp(I1wx.cols, block.x), divUp(I1wx.rows, block.y)); estimateUKernel<<<grid, block, 0, stream>>>(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, p31, p32, u1, u2, u3, error, l_t, theta, gamma, calcError); cudaSafeCall( cudaGetLastError() ); if (!stream) cudaSafeCall( cudaDeviceSynchronize() ); } } //////////////////////////////////////////////////////////// // estimateDualVariables namespace tvl1flow { __global__ void estimateDualVariablesKernel(const PtrStepSzf u1, const PtrStepf u2, const PtrStepSzf u3, PtrStepf p11, PtrStepf p12, PtrStepf p21, PtrStepf p22, PtrStepf p31, PtrStepf p32, const float taut, const float gamma) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (x >= u1.cols || y >= u1.rows) return; const float u1x = u1(y, ::min(x + 1, u1.cols - 1)) - u1(y, x); const float u1y = u1(::min(y + 1, u1.rows - 1), x) - u1(y, x); const float u2x = u2(y, ::min(x + 1, u1.cols - 1)) - u2(y, x); const float u2y = u2(::min(y + 1, u1.rows - 1), x) - u2(y, x); const float u3x = gamma ? u3(y, ::min(x + 1, u1.cols - 1)) - u3(y, x) : 0; const float u3y = gamma ? u3(::min(y + 1, u1.rows - 1), x) - u3(y, x) : 0; const float g1 = ::hypotf(u1x, u1y); const float g2 = ::hypotf(u2x, u2y); const float g3 = gamma ? ::hypotf(u3x, u3y) : 0; const float ng1 = 1.0f + taut * g1; const float ng2 = 1.0f + taut * g2; const float ng3 = gamma ? 1.0f + taut * g3 : 0; p11(y, x) = (p11(y, x) + taut * u1x) / ng1; p12(y, x) = (p12(y, x) + taut * u1y) / ng1; p21(y, x) = (p21(y, x) + taut * u2x) / ng2; p22(y, x) = (p22(y, x) + taut * u2y) / ng2; if (gamma) { p31(y, x) = (p31(y, x) + taut * u3x) / ng3; p32(y, x) = (p32(y, x) + taut * u3y) / ng3; } } void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32, float taut, float gamma, cudaStream_t stream) { const dim3 block(32, 8); const dim3 grid(divUp(u1.cols, block.x), divUp(u1.rows, block.y)); estimateDualVariablesKernel<<<grid, block, 0, stream>>>(u1, u2, u3, p11, p12, p21, p22, p31, p32, taut, gamma); cudaSafeCall( cudaGetLastError() ); if (!stream) cudaSafeCall( cudaDeviceSynchronize() ); } } #endif // !defined CUDA_DISABLER