/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" TestRectStdDev::TestRectStdDev(std::string testName_, NCVTestSourceProvider<Ncv8u> &src_, Ncv32u width_, Ncv32u height_, NcvRect32u rect_, Ncv32f scaleFactor_, NcvBool bTextureCache_) : NCVTestProvider(testName_), src(src_), width(width_), height(height_), rect(rect_), scaleFactor(scaleFactor_), bTextureCache(bTextureCache_) { } bool TestRectStdDev::toString(std::ofstream &strOut) { strOut << "width=" << width << std::endl; strOut << "height=" << height << std::endl; strOut << "rect=[" << rect.x << ", " << rect.y << ", " << rect.width << ", " << rect.height << "]\n"; strOut << "scaleFactor=" << scaleFactor << std::endl; strOut << "bTextureCache=" << bTextureCache << std::endl; return true; } bool TestRectStdDev::init() { return true; } bool TestRectStdDev::process() { NCVStatus ncvStat; bool rcode = false; Ncv32s _normWidth = (Ncv32s)this->width - this->rect.x - this->rect.width + 1; Ncv32s _normHeight = (Ncv32s)this->height - this->rect.y - this->rect.height + 1; if (_normWidth <= 0 || _normHeight <= 0) { return true; } Ncv32u normWidth = (Ncv32u)_normWidth; Ncv32u normHeight = (Ncv32u)_normHeight; NcvSize32u szNormRoi(normWidth, normHeight); Ncv32u widthII = this->width + 1; Ncv32u heightII = this->height + 1; Ncv32u widthSII = this->width + 1; Ncv32u heightSII = this->height + 1; NCVMatrixAlloc<Ncv8u> d_img(*this->allocatorGPU.get(), this->width, this->height); ncvAssertReturn(d_img.isMemAllocated(), false); NCVMatrixAlloc<Ncv8u> h_img(*this->allocatorCPU.get(), this->width, this->height); ncvAssertReturn(h_img.isMemAllocated(), false); NCVMatrixAlloc<Ncv32u> d_imgII(*this->allocatorGPU.get(), widthII, heightII); ncvAssertReturn(d_imgII.isMemAllocated(), false); NCVMatrixAlloc<Ncv32u> h_imgII(*this->allocatorCPU.get(), widthII, heightII); ncvAssertReturn(h_imgII.isMemAllocated(), false); NCVMatrixAlloc<Ncv64u> d_imgSII(*this->allocatorGPU.get(), widthSII, heightSII); ncvAssertReturn(d_imgSII.isMemAllocated(), false); NCVMatrixAlloc<Ncv64u> h_imgSII(*this->allocatorCPU.get(), widthSII, heightSII); ncvAssertReturn(h_imgSII.isMemAllocated(), false); NCVMatrixAlloc<Ncv32f> d_norm(*this->allocatorGPU.get(), normWidth, normHeight); ncvAssertReturn(d_norm.isMemAllocated(), false); NCVMatrixAlloc<Ncv32f> h_norm(*this->allocatorCPU.get(), normWidth, normHeight); ncvAssertReturn(h_norm.isMemAllocated(), false); NCVMatrixAlloc<Ncv32f> h_norm_d(*this->allocatorCPU.get(), normWidth, normHeight); ncvAssertReturn(h_norm_d.isMemAllocated(), false); Ncv32u bufSizeII, bufSizeSII; ncvStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &bufSizeII, this->devProp); ncvAssertReturn(NPPST_SUCCESS == ncvStat, false); ncvStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(this->width, this->height), &bufSizeSII, this->devProp); ncvAssertReturn(NPPST_SUCCESS == ncvStat, false); Ncv32u bufSize = bufSizeII > bufSizeSII ? bufSizeII : bufSizeSII; NCVVectorAlloc<Ncv8u> d_tmpBuf(*this->allocatorGPU.get(), bufSize); ncvAssertReturn(d_tmpBuf.isMemAllocated(), false); NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting()); NCV_SKIP_COND_BEGIN ncvAssertReturn(this->src.fill(h_img), false); ncvStat = h_img.copySolid(d_img, 0); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStIntegral_8u32u_C1R(d_img.ptr(), d_img.pitch(), d_imgII.ptr(), d_imgII.pitch(), NcvSize32u(this->width, this->height), d_tmpBuf.ptr(), bufSize, this->devProp); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStSqrIntegral_8u64u_C1R(d_img.ptr(), d_img.pitch(), d_imgSII.ptr(), d_imgSII.pitch(), NcvSize32u(this->width, this->height), d_tmpBuf.ptr(), bufSize, this->devProp); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStRectStdDev_32f_C1R(d_imgII.ptr(), d_imgII.pitch(), d_imgSII.ptr(), d_imgSII.pitch(), d_norm.ptr(), d_norm.pitch(), szNormRoi, this->rect, this->scaleFactor, this->bTextureCache); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = d_norm.copySolid(h_norm_d, 0); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStIntegral_8u32u_C1R_host(h_img.ptr(), h_img.pitch(), h_imgII.ptr(), h_imgII.pitch(), NcvSize32u(this->width, this->height)); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStSqrIntegral_8u64u_C1R_host(h_img.ptr(), h_img.pitch(), h_imgSII.ptr(), h_imgSII.pitch(), NcvSize32u(this->width, this->height)); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); ncvStat = nppiStRectStdDev_32f_C1R_host(h_imgII.ptr(), h_imgII.pitch(), h_imgSII.ptr(), h_imgSII.pitch(), h_norm.ptr(), h_norm.pitch(), szNormRoi, this->rect, this->scaleFactor); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); NCV_SKIP_COND_END //bit-to-bit check bool bLoopVirgin = true; NCV_SKIP_COND_BEGIN const Ncv64f relEPS = 0.005; for (Ncv32u i=0; bLoopVirgin && i < h_norm.height(); i++) { for (Ncv32u j=0; bLoopVirgin && j < h_norm.width(); j++) { Ncv64f absErr = fabs(h_norm.ptr()[h_norm.stride()*i+j] - h_norm_d.ptr()[h_norm_d.stride()*i+j]); Ncv64f relErr = absErr / h_norm.ptr()[h_norm.stride()*i+j]; if (relErr > relEPS) { bLoopVirgin = false; } } } NCV_SKIP_COND_END if (bLoopVirgin) { rcode = true; } return rcode; } bool TestRectStdDev::deinit() { return true; }