/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" TestHaarCascadeLoader::TestHaarCascadeLoader(std::string testName_, std::string cascadeName_) : NCVTestProvider(testName_), cascadeName(cascadeName_) { } bool TestHaarCascadeLoader::toString(std::ofstream &strOut) { strOut << "cascadeName=" << cascadeName << std::endl; return true; } bool TestHaarCascadeLoader::init() { return true; } bool TestHaarCascadeLoader::process() { NCVStatus ncvStat; bool rcode = false; Ncv32u numStages, numNodes, numFeatures; Ncv32u numStages_2 = 0, numNodes_2 = 0, numFeatures_2 = 0; ncvStat = ncvHaarGetClassifierSize(this->cascadeName, numStages, numNodes, numFeatures); ncvAssertReturn(ncvStat == NCV_SUCCESS, false); NCVVectorAlloc<HaarStage64> h_HaarStages(*this->allocatorCPU.get(), numStages); ncvAssertReturn(h_HaarStages.isMemAllocated(), false); NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(*this->allocatorCPU.get(), numNodes); ncvAssertReturn(h_HaarNodes.isMemAllocated(), false); NCVVectorAlloc<HaarFeature64> h_HaarFeatures(*this->allocatorCPU.get(), numFeatures); ncvAssertReturn(h_HaarFeatures.isMemAllocated(), false); NCVVectorAlloc<HaarStage64> h_HaarStages_2(*this->allocatorCPU.get(), numStages); ncvAssertReturn(h_HaarStages_2.isMemAllocated(), false); NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes_2(*this->allocatorCPU.get(), numNodes); ncvAssertReturn(h_HaarNodes_2.isMemAllocated(), false); NCVVectorAlloc<HaarFeature64> h_HaarFeatures_2(*this->allocatorCPU.get(), numFeatures); ncvAssertReturn(h_HaarFeatures_2.isMemAllocated(), false); HaarClassifierCascadeDescriptor haar; HaarClassifierCascadeDescriptor haar_2; NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting()); NCV_SKIP_COND_BEGIN const std::string testNvbinName = cv::tempfile("test.nvbin"); ncvStat = ncvHaarLoadFromFile_host(this->cascadeName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures); ncvAssertReturn(ncvStat == NCV_SUCCESS, false); ncvStat = ncvHaarStoreNVBIN_host(testNvbinName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures); ncvAssertReturn(ncvStat == NCV_SUCCESS, false); ncvStat = ncvHaarGetClassifierSize(testNvbinName, numStages_2, numNodes_2, numFeatures_2); ncvAssertReturn(ncvStat == NCV_SUCCESS, false); ncvStat = ncvHaarLoadFromFile_host(testNvbinName, haar_2, h_HaarStages_2, h_HaarNodes_2, h_HaarFeatures_2); ncvAssertReturn(ncvStat == NCV_SUCCESS, false); NCV_SKIP_COND_END //bit-to-bit check bool bLoopVirgin = true; NCV_SKIP_COND_BEGIN if ( numStages_2 != numStages || numNodes_2 != numNodes || numFeatures_2 != numFeatures || haar.NumStages != haar_2.NumStages || haar.NumClassifierRootNodes != haar_2.NumClassifierRootNodes || haar.NumClassifierTotalNodes != haar_2.NumClassifierTotalNodes || haar.NumFeatures != haar_2.NumFeatures || haar.ClassifierSize.width != haar_2.ClassifierSize.width || haar.ClassifierSize.height != haar_2.ClassifierSize.height || haar.bNeedsTiltedII != haar_2.bNeedsTiltedII || haar.bHasStumpsOnly != haar_2.bHasStumpsOnly ) { bLoopVirgin = false; } if (memcmp(h_HaarStages.ptr(), h_HaarStages_2.ptr(), haar.NumStages * sizeof(HaarStage64)) || memcmp(h_HaarNodes.ptr(), h_HaarNodes_2.ptr(), haar.NumClassifierTotalNodes * sizeof(HaarClassifierNode128)) || memcmp(h_HaarFeatures.ptr(), h_HaarFeatures_2.ptr(), haar.NumFeatures * sizeof(HaarFeature64)) ) { bLoopVirgin = false; } NCV_SKIP_COND_END if (bLoopVirgin) { rcode = true; } return rcode; } bool TestHaarCascadeLoader::deinit() { return true; }