/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) void cv::cuda::graphcut(GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); } void cv::cuda::graphcut(GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); } void cv::cuda::connectivityMask(const GpuMat&, GpuMat&, const cv::Scalar&, const cv::Scalar&, Stream&) { throw_no_cuda(); } void cv::cuda::labelComponents(const GpuMat&, GpuMat&, int, Stream&) { throw_no_cuda(); } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace cuda { namespace device { namespace ccl { void labelComponents(const PtrStepSzb& edges, PtrStepSzi comps, int flags, cudaStream_t stream); template<typename T> void computeEdges(const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream); } }}} static float4 scalarToCudaType(const cv::Scalar& in) { return make_float4((float)in[0], (float)in[1], (float)in[2], (float)in[3]); } void cv::cuda::connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& s) { CV_Assert(!image.empty()); int ch = image.channels(); CV_Assert(ch <= 4); int depth = image.depth(); typedef void (*func_t)(const PtrStepSzb& image, PtrStepSzb edges, const float4& lo, const float4& hi, cudaStream_t stream); static const func_t suppotLookup[8][4] = { // 1, 2, 3, 4 { device::ccl::computeEdges<uchar>, 0, device::ccl::computeEdges<uchar3>, device::ccl::computeEdges<uchar4> },// CV_8U { 0, 0, 0, 0 },// CV_16U { device::ccl::computeEdges<ushort>, 0, device::ccl::computeEdges<ushort3>, device::ccl::computeEdges<ushort4> },// CV_8S { 0, 0, 0, 0 },// CV_16S { device::ccl::computeEdges<int>, 0, 0, 0 },// CV_32S { device::ccl::computeEdges<float>, 0, 0, 0 },// CV_32F { 0, 0, 0, 0 },// CV_64F { 0, 0, 0, 0 } // CV_USRTYPE1 }; func_t f = suppotLookup[depth][ch - 1]; CV_Assert(f); if (image.size() != mask.size() || mask.type() != CV_8UC1) mask.create(image.size(), CV_8UC1); cudaStream_t stream = StreamAccessor::getStream(s); float4 culo = scalarToCudaType(lo), cuhi = scalarToCudaType(hi); f(image, mask, culo, cuhi, stream); } void cv::cuda::labelComponents(const GpuMat& mask, GpuMat& components, int flags, Stream& s) { CV_Assert(!mask.empty() && mask.type() == CV_8U); if (!deviceSupports(SHARED_ATOMICS)) CV_Error(cv::Error::StsNotImplemented, "The device doesn't support shared atomics and communicative synchronization!"); components.create(mask.size(), CV_32SC1); cudaStream_t stream = StreamAccessor::getStream(s); device::ccl::labelComponents(mask, components, flags, stream); } namespace { typedef NppStatus (*init_func_t)(NppiSize oSize, NppiGraphcutState** ppState, Npp8u* pDeviceMem); class NppiGraphcutStateHandler { public: NppiGraphcutStateHandler(NppiSize sznpp, Npp8u* pDeviceMem, const init_func_t func) { nppSafeCall( func(sznpp, &pState, pDeviceMem) ); } ~NppiGraphcutStateHandler() { nppSafeCall( nppiGraphcutFree(pState) ); } operator NppiGraphcutState*() { return pState; } private: NppiGraphcutState* pState; }; } void cv::cuda::graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels, GpuMat& buf, Stream& s) { #if (CUDA_VERSION < 5000) CV_Assert(terminals.type() == CV_32S); #else CV_Assert(terminals.type() == CV_32S || terminals.type() == CV_32F); #endif Size src_size = terminals.size(); CV_Assert(leftTransp.size() == Size(src_size.height, src_size.width)); CV_Assert(leftTransp.type() == terminals.type()); CV_Assert(rightTransp.size() == Size(src_size.height, src_size.width)); CV_Assert(rightTransp.type() == terminals.type()); CV_Assert(top.size() == src_size); CV_Assert(top.type() == terminals.type()); CV_Assert(bottom.size() == src_size); CV_Assert(bottom.type() == terminals.type()); labels.create(src_size, CV_8U); NppiSize sznpp; sznpp.width = src_size.width; sznpp.height = src_size.height; int bufsz; nppSafeCall( nppiGraphcutGetSize(sznpp, &bufsz) ); ensureSizeIsEnough(1, bufsz, CV_8U, buf); cudaStream_t stream = StreamAccessor::getStream(s); NppStreamHandler h(stream); NppiGraphcutStateHandler state(sznpp, buf.ptr<Npp8u>(), nppiGraphcutInitAlloc); #if (CUDA_VERSION < 5000) nppSafeCall( nppiGraphcut_32s8u(terminals.ptr<Npp32s>(), leftTransp.ptr<Npp32s>(), rightTransp.ptr<Npp32s>(), top.ptr<Npp32s>(), bottom.ptr<Npp32s>(), static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) ); #else if (terminals.type() == CV_32S) { nppSafeCall( nppiGraphcut_32s8u(terminals.ptr<Npp32s>(), leftTransp.ptr<Npp32s>(), rightTransp.ptr<Npp32s>(), top.ptr<Npp32s>(), bottom.ptr<Npp32s>(), static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) ); } else { nppSafeCall( nppiGraphcut_32f8u(terminals.ptr<Npp32f>(), leftTransp.ptr<Npp32f>(), rightTransp.ptr<Npp32f>(), top.ptr<Npp32f>(), bottom.ptr<Npp32f>(), static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) ); } #endif if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } void cv::cuda::graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight, GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight, GpuMat& labels, GpuMat& buf, Stream& s) { #if (CUDA_VERSION < 5000) CV_Assert(terminals.type() == CV_32S); #else CV_Assert(terminals.type() == CV_32S || terminals.type() == CV_32F); #endif Size src_size = terminals.size(); CV_Assert(leftTransp.size() == Size(src_size.height, src_size.width)); CV_Assert(leftTransp.type() == terminals.type()); CV_Assert(rightTransp.size() == Size(src_size.height, src_size.width)); CV_Assert(rightTransp.type() == terminals.type()); CV_Assert(top.size() == src_size); CV_Assert(top.type() == terminals.type()); CV_Assert(topLeft.size() == src_size); CV_Assert(topLeft.type() == terminals.type()); CV_Assert(topRight.size() == src_size); CV_Assert(topRight.type() == terminals.type()); CV_Assert(bottom.size() == src_size); CV_Assert(bottom.type() == terminals.type()); CV_Assert(bottomLeft.size() == src_size); CV_Assert(bottomLeft.type() == terminals.type()); CV_Assert(bottomRight.size() == src_size); CV_Assert(bottomRight.type() == terminals.type()); labels.create(src_size, CV_8U); NppiSize sznpp; sznpp.width = src_size.width; sznpp.height = src_size.height; int bufsz; nppSafeCall( nppiGraphcut8GetSize(sznpp, &bufsz) ); ensureSizeIsEnough(1, bufsz, CV_8U, buf); cudaStream_t stream = StreamAccessor::getStream(s); NppStreamHandler h(stream); NppiGraphcutStateHandler state(sznpp, buf.ptr<Npp8u>(), nppiGraphcut8InitAlloc); #if (CUDA_VERSION < 5000) nppSafeCall( nppiGraphcut8_32s8u(terminals.ptr<Npp32s>(), leftTransp.ptr<Npp32s>(), rightTransp.ptr<Npp32s>(), top.ptr<Npp32s>(), topLeft.ptr<Npp32s>(), topRight.ptr<Npp32s>(), bottom.ptr<Npp32s>(), bottomLeft.ptr<Npp32s>(), bottomRight.ptr<Npp32s>(), static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) ); #else if (terminals.type() == CV_32S) { nppSafeCall( nppiGraphcut8_32s8u(terminals.ptr<Npp32s>(), leftTransp.ptr<Npp32s>(), rightTransp.ptr<Npp32s>(), top.ptr<Npp32s>(), topLeft.ptr<Npp32s>(), topRight.ptr<Npp32s>(), bottom.ptr<Npp32s>(), bottomLeft.ptr<Npp32s>(), bottomRight.ptr<Npp32s>(), static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) ); } else { nppSafeCall( nppiGraphcut8_32f8u(terminals.ptr<Npp32f>(), leftTransp.ptr<Npp32f>(), rightTransp.ptr<Npp32f>(), top.ptr<Npp32f>(), topLeft.ptr<Npp32f>(), topRight.ptr<Npp32f>(), bottom.ptr<Npp32f>(), bottomLeft.ptr<Npp32f>(), bottomRight.ptr<Npp32f>(), static_cast<int>(terminals.step), static_cast<int>(leftTransp.step), sznpp, labels.ptr<Npp8u>(), static_cast<int>(labels.step), state) ); } #endif if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } #endif /* !defined (HAVE_CUDA) */