/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include <stdio.h> #include <cuda_runtime.h> #include "opencv2/core/cuda/common.hpp" #include "opencv2/cudalegacy/NCV.hpp" #include "opencv2/cudalegacy/NCVPyramid.hpp" #include "NCVAlg.hpp" #include "NCVPixelOperations.hpp" template<typename T, Ncv32u CN> struct __average4_CN {static __host__ __device__ T _average4_CN(const T &p00, const T &p01, const T &p10, const T &p11);}; template<typename T> struct __average4_CN<T, 1> { static __host__ __device__ T _average4_CN(const T &p00, const T &p01, const T &p10, const T &p11) { T out; out.x = ((Ncv32s)p00.x + p01.x + p10.x + p11.x + 2) / 4; return out; }}; template<> struct __average4_CN<float1, 1> { static __host__ __device__ float1 _average4_CN(const float1 &p00, const float1 &p01, const float1 &p10, const float1 &p11) { float1 out; out.x = (p00.x + p01.x + p10.x + p11.x) / 4; return out; }}; template<> struct __average4_CN<double1, 1> { static __host__ __device__ double1 _average4_CN(const double1 &p00, const double1 &p01, const double1 &p10, const double1 &p11) { double1 out; out.x = (p00.x + p01.x + p10.x + p11.x) / 4; return out; }}; template<typename T> struct __average4_CN<T, 3> { static __host__ __device__ T _average4_CN(const T &p00, const T &p01, const T &p10, const T &p11) { T out; out.x = ((Ncv32s)p00.x + p01.x + p10.x + p11.x + 2) / 4; out.y = ((Ncv32s)p00.y + p01.y + p10.y + p11.y + 2) / 4; out.z = ((Ncv32s)p00.z + p01.z + p10.z + p11.z + 2) / 4; return out; }}; template<> struct __average4_CN<float3, 3> { static __host__ __device__ float3 _average4_CN(const float3 &p00, const float3 &p01, const float3 &p10, const float3 &p11) { float3 out; out.x = (p00.x + p01.x + p10.x + p11.x) / 4; out.y = (p00.y + p01.y + p10.y + p11.y) / 4; out.z = (p00.z + p01.z + p10.z + p11.z) / 4; return out; }}; template<> struct __average4_CN<double3, 3> { static __host__ __device__ double3 _average4_CN(const double3 &p00, const double3 &p01, const double3 &p10, const double3 &p11) { double3 out; out.x = (p00.x + p01.x + p10.x + p11.x) / 4; out.y = (p00.y + p01.y + p10.y + p11.y) / 4; out.z = (p00.z + p01.z + p10.z + p11.z) / 4; return out; }}; template<typename T> struct __average4_CN<T, 4> { static __host__ __device__ T _average4_CN(const T &p00, const T &p01, const T &p10, const T &p11) { T out; out.x = ((Ncv32s)p00.x + p01.x + p10.x + p11.x + 2) / 4; out.y = ((Ncv32s)p00.y + p01.y + p10.y + p11.y + 2) / 4; out.z = ((Ncv32s)p00.z + p01.z + p10.z + p11.z + 2) / 4; out.w = ((Ncv32s)p00.w + p01.w + p10.w + p11.w + 2) / 4; return out; }}; template<> struct __average4_CN<float4, 4> { static __host__ __device__ float4 _average4_CN(const float4 &p00, const float4 &p01, const float4 &p10, const float4 &p11) { float4 out; out.x = (p00.x + p01.x + p10.x + p11.x) / 4; out.y = (p00.y + p01.y + p10.y + p11.y) / 4; out.z = (p00.z + p01.z + p10.z + p11.z) / 4; out.w = (p00.w + p01.w + p10.w + p11.w) / 4; return out; }}; template<> struct __average4_CN<double4, 4> { static __host__ __device__ double4 _average4_CN(const double4 &p00, const double4 &p01, const double4 &p10, const double4 &p11) { double4 out; out.x = (p00.x + p01.x + p10.x + p11.x) / 4; out.y = (p00.y + p01.y + p10.y + p11.y) / 4; out.z = (p00.z + p01.z + p10.z + p11.z) / 4; out.w = (p00.w + p01.w + p10.w + p11.w) / 4; return out; }}; template<typename T> static __host__ __device__ T _average4(const T &p00, const T &p01, const T &p10, const T &p11) { return __average4_CN<T, NC(T)>::_average4_CN(p00, p01, p10, p11); } template<typename Tin, typename Tout, Ncv32u CN> struct __lerp_CN {static __host__ __device__ Tout _lerp_CN(const Tin &a, const Tin &b, Ncv32f d);}; template<typename Tin, typename Tout> struct __lerp_CN<Tin, Tout, 1> { static __host__ __device__ Tout _lerp_CN(const Tin &a, const Tin &b, Ncv32f d) { typedef typename TConvVec2Base<Tout>::TBase TB; return _pixMake(TB(b.x * d + a.x * (1 - d))); }}; template<typename Tin, typename Tout> struct __lerp_CN<Tin, Tout, 3> { static __host__ __device__ Tout _lerp_CN(const Tin &a, const Tin &b, Ncv32f d) { typedef typename TConvVec2Base<Tout>::TBase TB; return _pixMake(TB(b.x * d + a.x * (1 - d)), TB(b.y * d + a.y * (1 - d)), TB(b.z * d + a.z * (1 - d))); }}; template<typename Tin, typename Tout> struct __lerp_CN<Tin, Tout, 4> { static __host__ __device__ Tout _lerp_CN(const Tin &a, const Tin &b, Ncv32f d) { typedef typename TConvVec2Base<Tout>::TBase TB; return _pixMake(TB(b.x * d + a.x * (1 - d)), TB(b.y * d + a.y * (1 - d)), TB(b.z * d + a.z * (1 - d)), TB(b.w * d + a.w * (1 - d))); }}; template<typename Tin, typename Tout> static __host__ __device__ Tout _lerp(const Tin &a, const Tin &b, Ncv32f d) { return __lerp_CN<Tin, Tout, NC(Tin)>::_lerp_CN(a, b, d); } template<typename T> __global__ void kernelDownsampleX2(T *d_src, Ncv32u srcPitch, T *d_dst, Ncv32u dstPitch, NcvSize32u dstRoi) { Ncv32u i = blockIdx.y * blockDim.y + threadIdx.y; Ncv32u j = blockIdx.x * blockDim.x + threadIdx.x; if (i < dstRoi.height && j < dstRoi.width) { T *d_src_line1 = (T *)((Ncv8u *)d_src + (2 * i + 0) * srcPitch); T *d_src_line2 = (T *)((Ncv8u *)d_src + (2 * i + 1) * srcPitch); T *d_dst_line = (T *)((Ncv8u *)d_dst + i * dstPitch); T p00 = d_src_line1[2*j+0]; T p01 = d_src_line1[2*j+1]; T p10 = d_src_line2[2*j+0]; T p11 = d_src_line2[2*j+1]; d_dst_line[j] = _average4(p00, p01, p10, p11); } } namespace cv { namespace cuda { namespace device { namespace pyramid { template <typename T> void kernelDownsampleX2_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream) { dim3 bDim(16, 8); dim3 gDim(divUp(src.cols, bDim.x), divUp(src.rows, bDim.y)); kernelDownsampleX2<<<gDim, bDim, 0, stream>>>((T*)src.data, static_cast<Ncv32u>(src.step), (T*)dst.data, static_cast<Ncv32u>(dst.step), NcvSize32u(dst.cols, dst.rows)); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } void downsampleX2(PtrStepSzb src, PtrStepSzb dst, int depth, int cn, cudaStream_t stream) { typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream); static const func_t funcs[6][4] = { {kernelDownsampleX2_gpu<uchar1> , 0 /*kernelDownsampleX2_gpu<uchar2>*/ , kernelDownsampleX2_gpu<uchar3> , kernelDownsampleX2_gpu<uchar4> }, {0 /*kernelDownsampleX2_gpu<char1>*/ , 0 /*kernelDownsampleX2_gpu<char2>*/ , 0 /*kernelDownsampleX2_gpu<char3>*/ , 0 /*kernelDownsampleX2_gpu<char4>*/ }, {kernelDownsampleX2_gpu<ushort1> , 0 /*kernelDownsampleX2_gpu<ushort2>*/, kernelDownsampleX2_gpu<ushort3> , kernelDownsampleX2_gpu<ushort4> }, {0 /*kernelDownsampleX2_gpu<short1>*/ , 0 /*kernelDownsampleX2_gpu<short2>*/ , 0 /*kernelDownsampleX2_gpu<short3>*/, 0 /*kernelDownsampleX2_gpu<short4>*/}, {0 /*kernelDownsampleX2_gpu<int1>*/ , 0 /*kernelDownsampleX2_gpu<int2>*/ , 0 /*kernelDownsampleX2_gpu<int3>*/ , 0 /*kernelDownsampleX2_gpu<int4>*/ }, {kernelDownsampleX2_gpu<float1> , 0 /*kernelDownsampleX2_gpu<float2>*/ , kernelDownsampleX2_gpu<float3> , kernelDownsampleX2_gpu<float4> } }; const func_t func = funcs[depth][cn - 1]; CV_Assert(func != 0); func(src, dst, stream); } } }}} template<typename T> __global__ void kernelInterpolateFrom1(T *d_srcTop, Ncv32u srcTopPitch, NcvSize32u szTopRoi, T *d_dst, Ncv32u dstPitch, NcvSize32u dstRoi) { Ncv32u i = blockIdx.y * blockDim.y + threadIdx.y; Ncv32u j = blockIdx.x * blockDim.x + threadIdx.x; if (i < dstRoi.height && j < dstRoi.width) { Ncv32f ptTopX = 1.0f * (szTopRoi.width - 1) * j / (dstRoi.width - 1); Ncv32f ptTopY = 1.0f * (szTopRoi.height - 1) * i / (dstRoi.height - 1); Ncv32u xl = (Ncv32u)ptTopX; Ncv32u xh = xl+1; Ncv32f dx = ptTopX - xl; Ncv32u yl = (Ncv32u)ptTopY; Ncv32u yh = yl+1; Ncv32f dy = ptTopY - yl; T *d_src_line1 = (T *)((Ncv8u *)d_srcTop + yl * srcTopPitch); T *d_src_line2 = (T *)((Ncv8u *)d_srcTop + yh * srcTopPitch); T *d_dst_line = (T *)((Ncv8u *)d_dst + i * dstPitch); T p00, p01, p10, p11; p00 = d_src_line1[xl]; p01 = xh < szTopRoi.width ? d_src_line1[xh] : p00; p10 = yh < szTopRoi.height ? d_src_line2[xl] : p00; p11 = (xh < szTopRoi.width && yh < szTopRoi.height) ? d_src_line2[xh] : p00; typedef typename TConvBase2Vec<Ncv32f, NC(T)>::TVec TVFlt; TVFlt m_00_01 = _lerp<T, TVFlt>(p00, p01, dx); TVFlt m_10_11 = _lerp<T, TVFlt>(p10, p11, dx); TVFlt mixture = _lerp<TVFlt, TVFlt>(m_00_01, m_10_11, dy); T outPix = _pixDemoteClampZ<TVFlt, T>(mixture); d_dst_line[j] = outPix; } } namespace cv { namespace cuda { namespace device { namespace pyramid { template <typename T> void kernelInterpolateFrom1_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream) { dim3 bDim(16, 8); dim3 gDim(divUp(dst.cols, bDim.x), divUp(dst.rows, bDim.y)); kernelInterpolateFrom1<<<gDim, bDim, 0, stream>>>((T*) src.data, static_cast<Ncv32u>(src.step), NcvSize32u(src.cols, src.rows), (T*) dst.data, static_cast<Ncv32u>(dst.step), NcvSize32u(dst.cols, dst.rows)); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } void interpolateFrom1(PtrStepSzb src, PtrStepSzb dst, int depth, int cn, cudaStream_t stream) { typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream); static const func_t funcs[6][4] = { {kernelInterpolateFrom1_gpu<uchar1> , 0 /*kernelInterpolateFrom1_gpu<uchar2>*/ , kernelInterpolateFrom1_gpu<uchar3> , kernelInterpolateFrom1_gpu<uchar4> }, {0 /*kernelInterpolateFrom1_gpu<char1>*/ , 0 /*kernelInterpolateFrom1_gpu<char2>*/ , 0 /*kernelInterpolateFrom1_gpu<char3>*/ , 0 /*kernelInterpolateFrom1_gpu<char4>*/ }, {kernelInterpolateFrom1_gpu<ushort1> , 0 /*kernelInterpolateFrom1_gpu<ushort2>*/, kernelInterpolateFrom1_gpu<ushort3> , kernelInterpolateFrom1_gpu<ushort4> }, {0 /*kernelInterpolateFrom1_gpu<short1>*/, 0 /*kernelInterpolateFrom1_gpu<short2>*/ , 0 /*kernelInterpolateFrom1_gpu<short3>*/, 0 /*kernelInterpolateFrom1_gpu<short4>*/}, {0 /*kernelInterpolateFrom1_gpu<int1>*/ , 0 /*kernelInterpolateFrom1_gpu<int2>*/ , 0 /*kernelInterpolateFrom1_gpu<int3>*/ , 0 /*kernelInterpolateFrom1_gpu<int4>*/ }, {kernelInterpolateFrom1_gpu<float1> , 0 /*kernelInterpolateFrom1_gpu<float2>*/ , kernelInterpolateFrom1_gpu<float3> , kernelInterpolateFrom1_gpu<float4> } }; const func_t func = funcs[depth][cn - 1]; CV_Assert(func != 0); func(src, dst, stream); } } }}} #if 0 //def _WIN32 template<typename T> static T _interpLinear(const T &a, const T &b, Ncv32f d) { typedef typename TConvBase2Vec<Ncv32f, NC(T)>::TVec TVFlt; TVFlt tmp = _lerp<T, TVFlt>(a, b, d); return _pixDemoteClampZ<TVFlt, T>(tmp); } template<typename T> static T _interpBilinear(const NCVMatrix<T> &refLayer, Ncv32f x, Ncv32f y) { Ncv32u xl = (Ncv32u)x; Ncv32u xh = xl+1; Ncv32f dx = x - xl; Ncv32u yl = (Ncv32u)y; Ncv32u yh = yl+1; Ncv32f dy = y - yl; T p00, p01, p10, p11; p00 = refLayer.at(xl, yl); p01 = xh < refLayer.width() ? refLayer.at(xh, yl) : p00; p10 = yh < refLayer.height() ? refLayer.at(xl, yh) : p00; p11 = (xh < refLayer.width() && yh < refLayer.height()) ? refLayer.at(xh, yh) : p00; typedef typename TConvBase2Vec<Ncv32f, NC(T)>::TVec TVFlt; TVFlt m_00_01 = _lerp<T, TVFlt>(p00, p01, dx); TVFlt m_10_11 = _lerp<T, TVFlt>(p10, p11, dx); TVFlt mixture = _lerp<TVFlt, TVFlt>(m_00_01, m_10_11, dy); return _pixDemoteClampZ<TVFlt, T>(mixture); } template <class T> NCVImagePyramid<T>::NCVImagePyramid(const NCVMatrix<T> &img, Ncv8u numLayers, INCVMemAllocator &alloc, cudaStream_t cuStream) { this->_isInitialized = false; ncvAssertPrintReturn(img.memType() == alloc.memType(), "NCVImagePyramid::ctor error", ); this->layer0 = &img; NcvSize32u szLastLayer(img.width(), img.height()); this->nLayers = 1; NCV_SET_SKIP_COND(alloc.isCounting()); NcvBool bDeviceCode = alloc.memType() == NCVMemoryTypeDevice; if (numLayers == 0) { numLayers = 255; //it will cut-off when any of the dimensions goes 1 } #ifdef SELF_CHECK_GPU NCVMemNativeAllocator allocCPU(NCVMemoryTypeHostPinned, 512); #endif for (Ncv32u i=0; i<(Ncv32u)numLayers-1; i++) { NcvSize32u szCurLayer(szLastLayer.width / 2, szLastLayer.height / 2); if (szCurLayer.width == 0 || szCurLayer.height == 0) { break; } this->pyramid.push_back(new NCVMatrixAlloc<T>(alloc, szCurLayer.width, szCurLayer.height)); ncvAssertPrintReturn(((NCVMatrixAlloc<T> *)(this->pyramid[i]))->isMemAllocated(), "NCVImagePyramid::ctor error", ); this->nLayers++; //fill in the layer NCV_SKIP_COND_BEGIN const NCVMatrix<T> *prevLayer = i == 0 ? this->layer0 : this->pyramid[i-1]; NCVMatrix<T> *curLayer = this->pyramid[i]; if (bDeviceCode) { dim3 bDim(16, 8); dim3 gDim(divUp(szCurLayer.width, bDim.x), divUp(szCurLayer.height, bDim.y)); kernelDownsampleX2<<<gDim, bDim, 0, cuStream>>>(prevLayer->ptr(), prevLayer->pitch(), curLayer->ptr(), curLayer->pitch(), szCurLayer); ncvAssertPrintReturn(cudaSuccess == cudaGetLastError(), "NCVImagePyramid::ctor error", ); #ifdef SELF_CHECK_GPU NCVMatrixAlloc<T> h_prevLayer(allocCPU, prevLayer->width(), prevLayer->height()); ncvAssertPrintReturn(h_prevLayer.isMemAllocated(), "Validation failure in NCVImagePyramid::ctor", ); NCVMatrixAlloc<T> h_curLayer(allocCPU, curLayer->width(), curLayer->height()); ncvAssertPrintReturn(h_curLayer.isMemAllocated(), "Validation failure in NCVImagePyramid::ctor", ); ncvAssertPrintReturn(NCV_SUCCESS == prevLayer->copy2D(h_prevLayer, prevLayer->size(), cuStream), "Validation failure in NCVImagePyramid::ctor", ); ncvAssertPrintReturn(NCV_SUCCESS == curLayer->copy2D(h_curLayer, curLayer->size(), cuStream), "Validation failure in NCVImagePyramid::ctor", ); ncvAssertPrintReturn(cudaSuccess == cudaStreamSynchronize(cuStream), "Validation failure in NCVImagePyramid::ctor", ); for (Ncv32u i=0; i<szCurLayer.height; i++) { for (Ncv32u j=0; j<szCurLayer.width; j++) { T p00 = h_prevLayer.at(2*j+0, 2*i+0); T p01 = h_prevLayer.at(2*j+1, 2*i+0); T p10 = h_prevLayer.at(2*j+0, 2*i+1); T p11 = h_prevLayer.at(2*j+1, 2*i+1); T outGold = _average4(p00, p01, p10, p11); T outGPU = h_curLayer.at(j, i); ncvAssertPrintReturn(0 == memcmp(&outGold, &outGPU, sizeof(T)), "Validation failure in NCVImagePyramid::ctor with kernelDownsampleX2", ); } } #endif } else { for (Ncv32u i=0; i<szCurLayer.height; i++) { for (Ncv32u j=0; j<szCurLayer.width; j++) { T p00 = prevLayer->at(2*j+0, 2*i+0); T p01 = prevLayer->at(2*j+1, 2*i+0); T p10 = prevLayer->at(2*j+0, 2*i+1); T p11 = prevLayer->at(2*j+1, 2*i+1); curLayer->at(j, i) = _average4(p00, p01, p10, p11); } } } NCV_SKIP_COND_END szLastLayer = szCurLayer; } this->_isInitialized = true; } template <class T> NCVImagePyramid<T>::~NCVImagePyramid() { } template <class T> NcvBool NCVImagePyramid<T>::isInitialized() const { return this->_isInitialized; } template <class T> NCVStatus NCVImagePyramid<T>::getLayer(NCVMatrix<T> &outImg, NcvSize32u outRoi, NcvBool bTrilinear, cudaStream_t cuStream) const { ncvAssertReturn(this->isInitialized(), NCV_UNKNOWN_ERROR); ncvAssertReturn(outImg.memType() == this->layer0->memType(), NCV_MEM_RESIDENCE_ERROR); ncvAssertReturn(outRoi.width <= this->layer0->width() && outRoi.height <= this->layer0->height() && outRoi.width > 0 && outRoi.height > 0, NCV_DIMENSIONS_INVALID); if (outRoi.width == this->layer0->width() && outRoi.height == this->layer0->height()) { ncvAssertReturnNcvStat(this->layer0->copy2D(outImg, NcvSize32u(this->layer0->width(), this->layer0->height()), cuStream)); return NCV_SUCCESS; } Ncv32f lastScale = 1.0f; Ncv32f curScale; const NCVMatrix<T> *lastLayer = this->layer0; const NCVMatrix<T> *curLayer = NULL; NcvBool bUse2Refs = false; for (Ncv32u i=0; i<this->nLayers-1; i++) { curScale = lastScale * 0.5f; curLayer = this->pyramid[i]; if (outRoi.width == curLayer->width() && outRoi.height == curLayer->height()) { ncvAssertReturnNcvStat(this->pyramid[i]->copy2D(outImg, NcvSize32u(this->pyramid[i]->width(), this->pyramid[i]->height()), cuStream)); return NCV_SUCCESS; } if (outRoi.width >= curLayer->width() && outRoi.height >= curLayer->height()) { if (outRoi.width < lastLayer->width() && outRoi.height < lastLayer->height()) { bUse2Refs = true; } break; } lastScale = curScale; lastLayer = curLayer; } bUse2Refs = bUse2Refs && bTrilinear; NCV_SET_SKIP_COND(outImg.memType() == NCVMemoryTypeNone); NcvBool bDeviceCode = this->layer0->memType() == NCVMemoryTypeDevice; #ifdef SELF_CHECK_GPU NCVMemNativeAllocator allocCPU(NCVMemoryTypeHostPinned, 512); #endif NCV_SKIP_COND_BEGIN if (bDeviceCode) { ncvAssertReturn(bUse2Refs == false, NCV_NOT_IMPLEMENTED); dim3 bDim(16, 8); dim3 gDim(divUp(outRoi.width, bDim.x), divUp(outRoi.height, bDim.y)); kernelInterpolateFrom1<<<gDim, bDim, 0, cuStream>>>(lastLayer->ptr(), lastLayer->pitch(), lastLayer->size(), outImg.ptr(), outImg.pitch(), outRoi); ncvAssertCUDAReturn(cudaGetLastError(), NCV_CUDA_ERROR); #ifdef SELF_CHECK_GPU ncvSafeMatAlloc(h_lastLayer, T, allocCPU, lastLayer->width(), lastLayer->height(), NCV_ALLOCATOR_BAD_ALLOC); ncvSafeMatAlloc(h_outImg, T, allocCPU, outImg.width(), outImg.height(), NCV_ALLOCATOR_BAD_ALLOC); ncvAssertReturnNcvStat(lastLayer->copy2D(h_lastLayer, lastLayer->size(), cuStream)); ncvAssertReturnNcvStat(outImg.copy2D(h_outImg, outRoi, cuStream)); ncvAssertCUDAReturn(cudaStreamSynchronize(cuStream), NCV_CUDA_ERROR); for (Ncv32u i=0; i<outRoi.height; i++) { for (Ncv32u j=0; j<outRoi.width; j++) { NcvSize32u szTopLayer(lastLayer->width(), lastLayer->height()); Ncv32f ptTopX = 1.0f * (szTopLayer.width - 1) * j / (outRoi.width - 1); Ncv32f ptTopY = 1.0f * (szTopLayer.height - 1) * i / (outRoi.height - 1); T outGold = _interpBilinear(h_lastLayer, ptTopX, ptTopY); ncvAssertPrintReturn(0 == memcmp(&outGold, &h_outImg.at(j,i), sizeof(T)), "Validation failure in NCVImagePyramid::ctor with kernelInterpolateFrom1", NCV_UNKNOWN_ERROR); } } #endif } else { for (Ncv32u i=0; i<outRoi.height; i++) { for (Ncv32u j=0; j<outRoi.width; j++) { //top layer pixel (always exists) NcvSize32u szTopLayer(lastLayer->width(), lastLayer->height()); Ncv32f ptTopX = 1.0f * (szTopLayer.width - 1) * j / (outRoi.width - 1); Ncv32f ptTopY = 1.0f * (szTopLayer.height - 1) * i / (outRoi.height - 1); T topPix = _interpBilinear(*lastLayer, ptTopX, ptTopY); T trilinearPix = topPix; if (bUse2Refs) { //bottom layer pixel (exists only if the requested scale is greater than the smallest layer scale) NcvSize32u szBottomLayer(curLayer->width(), curLayer->height()); Ncv32f ptBottomX = 1.0f * (szBottomLayer.width - 1) * j / (outRoi.width - 1); Ncv32f ptBottomY = 1.0f * (szBottomLayer.height - 1) * i / (outRoi.height - 1); T bottomPix = _interpBilinear(*curLayer, ptBottomX, ptBottomY); Ncv32f scale = (1.0f * outRoi.width / layer0->width() + 1.0f * outRoi.height / layer0->height()) / 2; Ncv32f dl = (scale - curScale) / (lastScale - curScale); dl = CLAMP(dl, 0.0f, 1.0f); trilinearPix = _interpLinear(bottomPix, topPix, dl); } outImg.at(j, i) = trilinearPix; } } } NCV_SKIP_COND_END return NCV_SUCCESS; } template class NCVImagePyramid<uchar1>; template class NCVImagePyramid<uchar3>; template class NCVImagePyramid<uchar4>; template class NCVImagePyramid<ushort1>; template class NCVImagePyramid<ushort3>; template class NCVImagePyramid<ushort4>; template class NCVImagePyramid<uint1>; template class NCVImagePyramid<uint3>; template class NCVImagePyramid<uint4>; template class NCVImagePyramid<float1>; template class NCVImagePyramid<float3>; template class NCVImagePyramid<float4>; #endif //_WIN32