//===-- ELFDumper.cpp - ELF-specific dumper ---------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements the ELF-specific dumper for llvm-readobj.
///
//===----------------------------------------------------------------------===//

#include "llvm-readobj.h"
#include "ARMAttributeParser.h"
#include "ARMEHABIPrinter.h"
#include "Error.h"
#include "ObjDumper.h"
#include "StackMapPrinter.h"
#include "StreamWriter.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MipsABIFlags.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;
using namespace llvm::object;
using namespace ELF;

#define LLVM_READOBJ_ENUM_CASE(ns, enum) \
  case ns::enum: return #enum;

namespace {

template<typename ELFT>
class ELFDumper : public ObjDumper {
public:
  ELFDumper(const ELFFile<ELFT> *Obj, StreamWriter &Writer);

  void printFileHeaders() override;
  void printSections() override;
  void printRelocations() override;
  void printDynamicRelocations() override;
  void printSymbols() override;
  void printDynamicSymbols() override;
  void printUnwindInfo() override;

  void printDynamicTable() override;
  void printNeededLibraries() override;
  void printProgramHeaders() override;
  void printHashTable() override;
  void printGnuHashTable() override;
  void printLoadName() override;
  void printVersionInfo() override;

  void printAttributes() override;
  void printMipsPLTGOT() override;
  void printMipsABIFlags() override;
  void printMipsReginfo() override;

  void printStackMap() const override;

private:
  typedef ELFFile<ELFT> ELFO;
  typedef typename ELFO::Elf_Shdr Elf_Shdr;
  typedef typename ELFO::Elf_Sym Elf_Sym;
  typedef typename ELFO::Elf_Dyn Elf_Dyn;
  typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
  typedef typename ELFO::Elf_Rel Elf_Rel;
  typedef typename ELFO::Elf_Rela Elf_Rela;
  typedef typename ELFO::Elf_Rela_Range Elf_Rela_Range;
  typedef typename ELFO::Elf_Phdr Elf_Phdr;
  typedef typename ELFO::Elf_Half Elf_Half;
  typedef typename ELFO::Elf_Hash Elf_Hash;
  typedef typename ELFO::Elf_GnuHash Elf_GnuHash;
  typedef typename ELFO::Elf_Ehdr Elf_Ehdr;
  typedef typename ELFO::Elf_Word Elf_Word;
  typedef typename ELFO::uintX_t uintX_t;
  typedef typename ELFO::Elf_Versym Elf_Versym;
  typedef typename ELFO::Elf_Verneed Elf_Verneed;
  typedef typename ELFO::Elf_Vernaux Elf_Vernaux;
  typedef typename ELFO::Elf_Verdef Elf_Verdef;
  typedef typename ELFO::Elf_Verdaux Elf_Verdaux;

  /// \brief Represents a region described by entries in the .dynamic table.
  struct DynRegionInfo {
    DynRegionInfo() : Addr(nullptr), Size(0), EntSize(0) {}
    /// \brief Address in current address space.
    const void *Addr;
    /// \brief Size in bytes of the region.
    uintX_t Size;
    /// \brief Size of each entity in the region.
    uintX_t EntSize;
  };

  void printSymbolsHelper(bool IsDynamic);
  void printSymbol(const Elf_Sym *Symbol, const Elf_Shdr *SymTab,
                   StringRef StrTable, bool IsDynamic);

  void printRelocations(const Elf_Shdr *Sec);
  void printRelocation(Elf_Rela Rel, const Elf_Shdr *SymTab);
  void printValue(uint64_t Type, uint64_t Value);

  const Elf_Rela *dyn_rela_begin() const;
  const Elf_Rela *dyn_rela_end() const;
  Elf_Rela_Range dyn_relas() const;
  StringRef getDynamicString(uint64_t Offset) const;
  const Elf_Dyn *dynamic_table_begin() const {
    ErrorOr<const Elf_Dyn *> Ret = Obj->dynamic_table_begin(DynamicProgHeader);
    error(Ret.getError());
    return *Ret;
  }
  const Elf_Dyn *dynamic_table_end() const {
    ErrorOr<const Elf_Dyn *> Ret = Obj->dynamic_table_end(DynamicProgHeader);
    error(Ret.getError());
    return *Ret;
  }
  StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
                             bool &IsDefault);
  void LoadVersionMap();
  void LoadVersionNeeds(const Elf_Shdr *ec) const;
  void LoadVersionDefs(const Elf_Shdr *sec) const;

  const ELFO *Obj;
  DynRegionInfo DynRelaRegion;
  const Elf_Phdr *DynamicProgHeader = nullptr;
  StringRef DynamicStringTable;
  const Elf_Sym *DynSymStart = nullptr;
  StringRef SOName;
  const Elf_Hash *HashTable = nullptr;
  const Elf_GnuHash *GnuHashTable = nullptr;
  const Elf_Shdr *DotDynSymSec = nullptr;
  const Elf_Shdr *DotSymtabSec = nullptr;
  ArrayRef<Elf_Word> ShndxTable;

  const Elf_Shdr *dot_gnu_version_sec = nullptr;   // .gnu.version
  const Elf_Shdr *dot_gnu_version_r_sec = nullptr; // .gnu.version_r
  const Elf_Shdr *dot_gnu_version_d_sec = nullptr; // .gnu.version_d

  // Records for each version index the corresponding Verdef or Vernaux entry.
  // This is filled the first time LoadVersionMap() is called.
  class VersionMapEntry : public PointerIntPair<const void *, 1> {
  public:
    // If the integer is 0, this is an Elf_Verdef*.
    // If the integer is 1, this is an Elf_Vernaux*.
    VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
    VersionMapEntry(const Elf_Verdef *verdef)
        : PointerIntPair<const void *, 1>(verdef, 0) {}
    VersionMapEntry(const Elf_Vernaux *vernaux)
        : PointerIntPair<const void *, 1>(vernaux, 1) {}
    bool isNull() const { return getPointer() == nullptr; }
    bool isVerdef() const { return !isNull() && getInt() == 0; }
    bool isVernaux() const { return !isNull() && getInt() == 1; }
    const Elf_Verdef *getVerdef() const {
      return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
    }
    const Elf_Vernaux *getVernaux() const {
      return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
    }
  };
  mutable SmallVector<VersionMapEntry, 16> VersionMap;

public:
  Elf_Dyn_Range dynamic_table() const {
    ErrorOr<Elf_Dyn_Range> Ret = Obj->dynamic_table(DynamicProgHeader);
    error(Ret.getError());
    return *Ret;
  }

  std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
                                bool IsDynamic);
  const Elf_Shdr *getDotDynSymSec() const { return DotDynSymSec; }
  const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
  ArrayRef<Elf_Word> getShndxTable() { return ShndxTable; }
};

template <class T> T errorOrDefault(ErrorOr<T> Val, T Default = T()) {
  if (!Val) {
    error(Val.getError());
    return Default;
  }

  return *Val;
}
} // namespace

namespace llvm {

template <class ELFT>
static std::error_code createELFDumper(const ELFFile<ELFT> *Obj,
                                       StreamWriter &Writer,
                                       std::unique_ptr<ObjDumper> &Result) {
  Result.reset(new ELFDumper<ELFT>(Obj, Writer));
  return readobj_error::success;
}

std::error_code createELFDumper(const object::ObjectFile *Obj,
                                StreamWriter &Writer,
                                std::unique_ptr<ObjDumper> &Result) {
  // Little-endian 32-bit
  if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
    return createELFDumper(ELFObj->getELFFile(), Writer, Result);

  // Big-endian 32-bit
  if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
    return createELFDumper(ELFObj->getELFFile(), Writer, Result);

  // Little-endian 64-bit
  if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
    return createELFDumper(ELFObj->getELFFile(), Writer, Result);

  // Big-endian 64-bit
  if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
    return createELFDumper(ELFObj->getELFFile(), Writer, Result);

  return readobj_error::unsupported_obj_file_format;
}

} // namespace llvm

// Iterate through the versions needed section, and place each Elf_Vernaux
// in the VersionMap according to its index.
template <class ELFT>
void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
  unsigned vn_size = sec->sh_size;  // Size of section in bytes
  unsigned vn_count = sec->sh_info; // Number of Verneed entries
  const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
  const char *sec_end = sec_start + vn_size;
  // The first Verneed entry is at the start of the section.
  const char *p = sec_start;
  for (unsigned i = 0; i < vn_count; i++) {
    if (p + sizeof(Elf_Verneed) > sec_end)
      report_fatal_error("Section ended unexpectedly while scanning "
                         "version needed records.");
    const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
    if (vn->vn_version != ELF::VER_NEED_CURRENT)
      report_fatal_error("Unexpected verneed version");
    // Iterate through the Vernaux entries
    const char *paux = p + vn->vn_aux;
    for (unsigned j = 0; j < vn->vn_cnt; j++) {
      if (paux + sizeof(Elf_Vernaux) > sec_end)
        report_fatal_error("Section ended unexpected while scanning auxiliary "
                           "version needed records.");
      const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
      size_t index = vna->vna_other & ELF::VERSYM_VERSION;
      if (index >= VersionMap.size())
        VersionMap.resize(index + 1);
      VersionMap[index] = VersionMapEntry(vna);
      paux += vna->vna_next;
    }
    p += vn->vn_next;
  }
}

// Iterate through the version definitions, and place each Elf_Verdef
// in the VersionMap according to its index.
template <class ELFT>
void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
  unsigned vd_size = sec->sh_size;  // Size of section in bytes
  unsigned vd_count = sec->sh_info; // Number of Verdef entries
  const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
  const char *sec_end = sec_start + vd_size;
  // The first Verdef entry is at the start of the section.
  const char *p = sec_start;
  for (unsigned i = 0; i < vd_count; i++) {
    if (p + sizeof(Elf_Verdef) > sec_end)
      report_fatal_error("Section ended unexpectedly while scanning "
                         "version definitions.");
    const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
    if (vd->vd_version != ELF::VER_DEF_CURRENT)
      report_fatal_error("Unexpected verdef version");
    size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
    if (index >= VersionMap.size())
      VersionMap.resize(index + 1);
    VersionMap[index] = VersionMapEntry(vd);
    p += vd->vd_next;
  }
}

template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() {
  // If there is no dynamic symtab or version table, there is nothing to do.
  if (!DynSymStart || !dot_gnu_version_sec)
    return;

  // Has the VersionMap already been loaded?
  if (VersionMap.size() > 0)
    return;

  // The first two version indexes are reserved.
  // Index 0 is LOCAL, index 1 is GLOBAL.
  VersionMap.push_back(VersionMapEntry());
  VersionMap.push_back(VersionMapEntry());

  if (dot_gnu_version_d_sec)
    LoadVersionDefs(dot_gnu_version_d_sec);

  if (dot_gnu_version_r_sec)
    LoadVersionNeeds(dot_gnu_version_r_sec);
}


template <typename ELFO, class ELFT>
static void printVersionSymbolSection(ELFDumper<ELFT> *Dumper,
                                      const ELFO *Obj,
                                      const typename ELFO::Elf_Shdr *Sec,
                                      StreamWriter &W) {
  DictScope SS(W, "Version symbols");
  if (!Sec)
    return;
  StringRef Name = errorOrDefault(Obj->getSectionName(Sec));
  W.printNumber("Section Name", Name, Sec->sh_name);
  W.printHex("Address", Sec->sh_addr);
  W.printHex("Offset", Sec->sh_offset);
  W.printNumber("Link", Sec->sh_link);

  const typename ELFO::Elf_Shdr *DynSymSec = Dumper->getDotDynSymSec();
  const uint8_t *P = (const uint8_t *)Obj->base() + Sec->sh_offset;
  ErrorOr<StringRef> StrTableOrErr =
      Obj->getStringTableForSymtab(*DynSymSec);
  error(StrTableOrErr.getError());

  // Same number of entries in the dynamic symbol table (DT_SYMTAB).
  ListScope Syms(W, "Symbols");
  for (const typename ELFO::Elf_Sym &Sym : Obj->symbols(DynSymSec)) {
    DictScope S(W, "Symbol");
    std::string FullSymbolName =
        Dumper->getFullSymbolName(&Sym, *StrTableOrErr, true /* IsDynamic */);
    W.printNumber("Version", *P);
    W.printString("Name", FullSymbolName);
    P += sizeof(typename ELFO::Elf_Half);
  }
}

template <typename ELFO, class ELFT>
static void printVersionDefinitionSection(ELFDumper<ELFT> *Dumper,
                                          const ELFO *Obj,
                                          const typename ELFO::Elf_Shdr *Sec,
                                          StreamWriter &W) {
  DictScope SD(W, "Version definition");
  if (!Sec)
    return;
  StringRef Name = errorOrDefault(Obj->getSectionName(Sec));
  W.printNumber("Section Name", Name, Sec->sh_name);
  W.printHex("Address", Sec->sh_addr);
  W.printHex("Offset", Sec->sh_offset);
  W.printNumber("Link", Sec->sh_link);

  unsigned verdef_entries = 0;
  // The number of entries in the section SHT_GNU_verdef
  // is determined by DT_VERDEFNUM tag.
  for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table()) {
    if (Dyn.d_tag == DT_VERDEFNUM)
      verdef_entries = Dyn.d_un.d_val;
  }
  const uint8_t *SecStartAddress =
      (const uint8_t *)Obj->base() + Sec->sh_offset;
  const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
  const uint8_t *P = SecStartAddress;
  ErrorOr<const typename ELFO::Elf_Shdr *> StrTabOrErr =
      Obj->getSection(Sec->sh_link);
  error(StrTabOrErr.getError());

  ListScope Entries(W, "Entries");
  for (unsigned i = 0; i < verdef_entries; ++i) {
    if (P + sizeof(typename ELFO::Elf_Verdef) > SecEndAddress)
      report_fatal_error("invalid offset in the section");
    auto *VD = reinterpret_cast<const typename ELFO::Elf_Verdef *>(P);
    DictScope Entry(W, "Entry");
    W.printHex("Offset", (uintptr_t)P - (uintptr_t)SecStartAddress);
    W.printNumber("Rev", VD->vd_version);
    // FIXME: print something more readable.
    W.printNumber("Flags", VD->vd_flags);
    W.printNumber("Index", VD->vd_ndx);
    W.printNumber("Cnt", VD->vd_cnt);
    W.printString("Name", StringRef((const char *)(Obj->base() +
                                                   (*StrTabOrErr)->sh_offset +
                                                   VD->getAux()->vda_name)));
    P += VD->vd_next;
  }
}

template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
  // Dump version symbol section.
  printVersionSymbolSection(this, Obj, dot_gnu_version_sec, W);

  // Dump version definition section.
  printVersionDefinitionSection(this, Obj, dot_gnu_version_d_sec, W);
}

template <typename ELFT>
StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
                                            const Elf_Sym *symb,
                                            bool &IsDefault) {
  // This is a dynamic symbol. Look in the GNU symbol version table.
  if (!dot_gnu_version_sec) {
    // No version table.
    IsDefault = false;
    return StringRef("");
  }

  // Determine the position in the symbol table of this entry.
  size_t entry_index = (reinterpret_cast<uintptr_t>(symb) -
                        reinterpret_cast<uintptr_t>(DynSymStart)) /
                       sizeof(Elf_Sym);

  // Get the corresponding version index entry
  const Elf_Versym *vs =
      Obj->template getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
  size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;

  // Special markers for unversioned symbols.
  if (version_index == ELF::VER_NDX_LOCAL ||
      version_index == ELF::VER_NDX_GLOBAL) {
    IsDefault = false;
    return StringRef("");
  }

  // Lookup this symbol in the version table
  LoadVersionMap();
  if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
    reportError("Invalid version entry");
  const VersionMapEntry &entry = VersionMap[version_index];

  // Get the version name string
  size_t name_offset;
  if (entry.isVerdef()) {
    // The first Verdaux entry holds the name.
    name_offset = entry.getVerdef()->getAux()->vda_name;
    IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
  } else {
    name_offset = entry.getVernaux()->vna_name;
    IsDefault = false;
  }
  if (name_offset >= StrTab.size())
    reportError("Invalid string offset");
  return StringRef(StrTab.data() + name_offset);
}

template <typename ELFT>
std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
                                               StringRef StrTable,
                                               bool IsDynamic) {
  StringRef SymbolName = errorOrDefault(Symbol->getName(StrTable));
  if (!IsDynamic)
    return SymbolName;

  std::string FullSymbolName(SymbolName);

  bool IsDefault;
  StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
  FullSymbolName += (IsDefault ? "@@" : "@");
  FullSymbolName += Version;
  return FullSymbolName;
}

template <typename ELFO>
static void
getSectionNameIndex(const ELFO &Obj, const typename ELFO::Elf_Sym *Symbol,
                    const typename ELFO::Elf_Shdr *SymTab,
                    ArrayRef<typename ELFO::Elf_Word> ShndxTable,
                    StringRef &SectionName, unsigned &SectionIndex) {
  SectionIndex = Symbol->st_shndx;
  if (Symbol->isUndefined())
    SectionName = "Undefined";
  else if (Symbol->isProcessorSpecific())
    SectionName = "Processor Specific";
  else if (Symbol->isOSSpecific())
    SectionName = "Operating System Specific";
  else if (Symbol->isAbsolute())
    SectionName = "Absolute";
  else if (Symbol->isCommon())
    SectionName = "Common";
  else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
    SectionName = "Reserved";
  else {
    if (SectionIndex == SHN_XINDEX)
      SectionIndex =
          Obj.getExtendedSymbolTableIndex(Symbol, SymTab, ShndxTable);
    ErrorOr<const typename ELFO::Elf_Shdr *> Sec = Obj.getSection(SectionIndex);
    error(Sec.getError());
    SectionName = errorOrDefault(Obj.getSectionName(*Sec));
  }
}

template <class ELFO>
static const typename ELFO::Elf_Shdr *findSectionByAddress(const ELFO *Obj,
                                                           uint64_t Addr) {
  for (const auto &Shdr : Obj->sections())
    if (Shdr.sh_addr == Addr)
      return &Shdr;
  return nullptr;
}

template <class ELFO>
static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj,
                                                        StringRef Name) {
  for (const auto &Shdr : Obj.sections()) {
    if (Name == errorOrDefault(Obj.getSectionName(&Shdr)))
      return &Shdr;
  }
  return nullptr;
}

static const EnumEntry<unsigned> ElfClass[] = {
  { "None",   ELF::ELFCLASSNONE },
  { "32-bit", ELF::ELFCLASS32   },
  { "64-bit", ELF::ELFCLASS64   },
};

static const EnumEntry<unsigned> ElfDataEncoding[] = {
  { "None",         ELF::ELFDATANONE },
  { "LittleEndian", ELF::ELFDATA2LSB },
  { "BigEndian",    ELF::ELFDATA2MSB },
};

static const EnumEntry<unsigned> ElfObjectFileType[] = {
  { "None",         ELF::ET_NONE },
  { "Relocatable",  ELF::ET_REL  },
  { "Executable",   ELF::ET_EXEC },
  { "SharedObject", ELF::ET_DYN  },
  { "Core",         ELF::ET_CORE },
};

static const EnumEntry<unsigned> ElfOSABI[] = {
  { "SystemV",      ELF::ELFOSABI_NONE         },
  { "HPUX",         ELF::ELFOSABI_HPUX         },
  { "NetBSD",       ELF::ELFOSABI_NETBSD       },
  { "GNU/Linux",    ELF::ELFOSABI_LINUX        },
  { "GNU/Hurd",     ELF::ELFOSABI_HURD         },
  { "Solaris",      ELF::ELFOSABI_SOLARIS      },
  { "AIX",          ELF::ELFOSABI_AIX          },
  { "IRIX",         ELF::ELFOSABI_IRIX         },
  { "FreeBSD",      ELF::ELFOSABI_FREEBSD      },
  { "TRU64",        ELF::ELFOSABI_TRU64        },
  { "Modesto",      ELF::ELFOSABI_MODESTO      },
  { "OpenBSD",      ELF::ELFOSABI_OPENBSD      },
  { "OpenVMS",      ELF::ELFOSABI_OPENVMS      },
  { "NSK",          ELF::ELFOSABI_NSK          },
  { "AROS",         ELF::ELFOSABI_AROS         },
  { "FenixOS",      ELF::ELFOSABI_FENIXOS      },
  { "CloudABI",     ELF::ELFOSABI_CLOUDABI     },
  { "C6000_ELFABI", ELF::ELFOSABI_C6000_ELFABI },
  { "C6000_LINUX" , ELF::ELFOSABI_C6000_LINUX  },
  { "ARM",          ELF::ELFOSABI_ARM          },
  { "Standalone"  , ELF::ELFOSABI_STANDALONE   }
};

static const EnumEntry<unsigned> ElfMachineType[] = {
  LLVM_READOBJ_ENUM_ENT(ELF, EM_NONE         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_M32          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_386          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_68K          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_88K          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_IAMCU        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_860          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_S370         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_RS3_LE  ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_PARISC       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_VPP500       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC32PLUS  ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_960          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC64        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_S390         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SPU          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_V800         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_FR20         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_RH32         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_RCE          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ARM          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ALPHA        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SH           ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARCV9      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TRICORE      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300H      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_H8S          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_500       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_IA_64        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_X       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_COLDFIRE     ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC12       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MMA          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_PCP          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_NCPU         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_NDR1         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_STARCORE     ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ME16         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ST100        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TINYJ        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_X86_64       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_PDSP         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP10        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP11        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_FX66         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ST9PLUS      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ST7          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC16       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC11       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC08       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC05       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SVX          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ST19         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_VAX          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_CRIS         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_JAVELIN      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_FIREPATH     ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ZSP          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MMIX         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_HUANY        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_PRISM        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_FR30         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_D10V         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_D30V         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_V850         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_M32R         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10300      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10200      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_PJ           ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_OPENRISC     ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT  ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_XTENSA       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE    ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TMM_GPP      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_NS32K        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TPC          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SNP1K        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ST200        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_IP2K         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MAX          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_CR           ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_F2MC16       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MSP430       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_BLACKFIN     ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C33       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SEP          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ARCA         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_UNICORE      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_EXCESS       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_DXP          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ALTERA_NIOS2 ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_CRX          ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_XGATE        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_C166         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_M16C         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_DSPIC30F     ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_CE           ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_M32C         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TSK3000      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_RS08         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SHARC        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG2        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SCORE7       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_DSP24        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE3   ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_LATTICEMICO32),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C17       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C6000     ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C2000     ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C5500     ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MMDSP_PLUS   ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_CYPRESS_M8C  ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_R32C         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TRIMEDIA     ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_HEXAGON      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_8051         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_STXP7X       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_NDS32        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1X       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MAXQ30       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_XIMO16       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MANIK        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_CRAYNV2      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_RX           ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_METAG        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_MCST_ELBRUS  ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG16       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_CR16         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ETPU         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_SLE9X        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_L10M         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_K10M         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_AARCH64      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR32        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_STM8         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TILE64       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEPRO      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_CUDA         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEGX       ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_CLOUDSHIELD  ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_1ST    ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_2ND    ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT2 ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_OPEN8        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_RL78         ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE5   ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_78KOR        ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_56800EX      ),
  LLVM_READOBJ_ENUM_ENT(ELF, EM_AMDGPU       )
};

static const EnumEntry<unsigned> ElfSymbolBindings[] = {
  { "Local",  ELF::STB_LOCAL        },
  { "Global", ELF::STB_GLOBAL       },
  { "Weak",   ELF::STB_WEAK         },
  { "Unique", ELF::STB_GNU_UNIQUE   }
};

static const EnumEntry<unsigned> ElfSymbolTypes[] = {
  { "None",      ELF::STT_NOTYPE    },
  { "Object",    ELF::STT_OBJECT    },
  { "Function",  ELF::STT_FUNC      },
  { "Section",   ELF::STT_SECTION   },
  { "File",      ELF::STT_FILE      },
  { "Common",    ELF::STT_COMMON    },
  { "TLS",       ELF::STT_TLS       },
  { "GNU_IFunc", ELF::STT_GNU_IFUNC }
};

static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
  { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL },
  { "AMDGPU_HSA_INDIRECT_FUNCTION", ELF::STT_AMDGPU_HSA_INDIRECT_FUNCTION },
  { "AMDGPU_HSA_METADATA",          ELF::STT_AMDGPU_HSA_METADATA }
};

static const char *getElfSectionType(unsigned Arch, unsigned Type) {
  switch (Arch) {
  case ELF::EM_ARM:
    switch (Type) {
    LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_EXIDX);
    LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
    LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
    LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
    LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
    }
  case ELF::EM_HEXAGON:
    switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
  case ELF::EM_X86_64:
    switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
  case ELF::EM_MIPS:
  case ELF::EM_MIPS_RS3_LE:
    switch (Type) {
    LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
    LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
    LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
    }
  }

  switch (Type) {
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_NULL              );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_PROGBITS          );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB            );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_STRTAB            );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_RELA              );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_HASH              );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNAMIC           );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOTE              );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOBITS            );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_REL               );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_SHLIB             );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNSYM            );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_INIT_ARRAY        );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_FINI_ARRAY        );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_PREINIT_ARRAY     );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GROUP             );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX      );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES    );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_HASH          );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verdef        );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verneed       );
  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_versym        );
  default: return "";
  }
}

static const EnumEntry<unsigned> ElfSectionFlags[] = {
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_WRITE           ),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_ALLOC           ),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXCLUDE         ),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXECINSTR       ),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_MERGE           ),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_STRINGS         ),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_INFO_LINK       ),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_LINK_ORDER      ),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_OS_NONCONFORMING),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_GROUP           ),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_TLS             ),
  LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
  LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP    ),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_GLOBAL),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_READONLY),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_CODE),
  LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_AGENT)
};

static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
  // Check potentially overlapped processor-specific
  // program header type.
  switch (Arch) {
  case ELF::EM_AMDGPU:
    switch (Type) {
    LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_READONLY_AGENT);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_CODE_AGENT);
    }
  case ELF::EM_ARM:
    switch (Type) {
    LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX);
    }
  case ELF::EM_MIPS:
  case ELF::EM_MIPS_RS3_LE:
    switch (Type) {
    LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
    LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
    }
  }

  switch (Type) {
  LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL   );
  LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD   );
  LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
  LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
  LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE   );
  LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB  );
  LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR   );
  LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS    );

  LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
  LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);

  LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
  LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
  default: return "";
  }
}

static const EnumEntry<unsigned> ElfSegmentFlags[] = {
  LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
  LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
  LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
};

static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NOREORDER),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_PIC),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_CPIC),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI2),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_32BITMODE),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_FP64),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NAN2008),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O32),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O64),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI32),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI64),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_3900),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4010),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4100),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4650),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4120),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4111),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_SB1),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_XLR),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON2),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON3),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5400),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5900),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5500),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_9000),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2E),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2F),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS3A),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MICROMIPS),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_M16),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_MDMX),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_1),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_2),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_3),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_4),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_5),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R2),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R2),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R6),
  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R6)
};

template <typename ELFT>
ELFDumper<ELFT>::ELFDumper(const ELFFile<ELFT> *Obj, StreamWriter &Writer)
    : ObjDumper(Writer), Obj(Obj) {

  SmallVector<const Elf_Phdr *, 4> LoadSegments;
  for (const Elf_Phdr &Phdr : Obj->program_headers()) {
    if (Phdr.p_type == ELF::PT_DYNAMIC) {
      DynamicProgHeader = &Phdr;
      continue;
    }
    if (Phdr.p_type != ELF::PT_LOAD || Phdr.p_filesz == 0)
      continue;
    LoadSegments.push_back(&Phdr);
  }

  auto toMappedAddr = [&](uint64_t VAddr) -> const uint8_t * {
    const Elf_Phdr **I = std::upper_bound(
        LoadSegments.begin(), LoadSegments.end(), VAddr, compareAddr<ELFT>);
    if (I == LoadSegments.begin())
      report_fatal_error("Virtual address is not in any segment");
    --I;
    const Elf_Phdr &Phdr = **I;
    uint64_t Delta = VAddr - Phdr.p_vaddr;
    if (Delta >= Phdr.p_filesz)
      report_fatal_error("Virtual address is not in any segment");
    return Obj->base() + Phdr.p_offset + Delta;
  };

  uint64_t SONameOffset = 0;
  const char *StringTableBegin = nullptr;
  uint64_t StringTableSize = 0;
  for (const Elf_Dyn &Dyn : dynamic_table()) {
    switch (Dyn.d_tag) {
    case ELF::DT_HASH:
      HashTable =
          reinterpret_cast<const Elf_Hash *>(toMappedAddr(Dyn.getPtr()));
      break;
    case ELF::DT_GNU_HASH:
      GnuHashTable =
          reinterpret_cast<const Elf_GnuHash *>(toMappedAddr(Dyn.getPtr()));
      break;
    case ELF::DT_RELA:
      DynRelaRegion.Addr = toMappedAddr(Dyn.getPtr());
      break;
    case ELF::DT_RELASZ:
      DynRelaRegion.Size = Dyn.getVal();
      break;
    case ELF::DT_RELAENT:
      DynRelaRegion.EntSize = Dyn.getVal();
      break;
    case ELF::DT_SONAME:
      SONameOffset = Dyn.getVal();
      break;
    case ELF::DT_STRTAB:
      StringTableBegin = (const char *)toMappedAddr(Dyn.getPtr());
      break;
    case ELF::DT_STRSZ:
      StringTableSize = Dyn.getVal();
      break;
    case ELF::DT_SYMTAB:
      DynSymStart =
          reinterpret_cast<const Elf_Sym *>(toMappedAddr(Dyn.getPtr()));
      break;
    }
  }
  if (StringTableBegin)
    DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
  if (SONameOffset)
    SOName = getDynamicString(SONameOffset);

  for (const Elf_Shdr &Sec : Obj->sections()) {
    switch (Sec.sh_type) {
    case ELF::SHT_GNU_versym:
      if (dot_gnu_version_sec != nullptr)
        reportError("Multiple SHT_GNU_versym");
      dot_gnu_version_sec = &Sec;
      break;
    case ELF::SHT_GNU_verdef:
      if (dot_gnu_version_d_sec != nullptr)
        reportError("Multiple SHT_GNU_verdef");
      dot_gnu_version_d_sec = &Sec;
      break;
    case ELF::SHT_GNU_verneed:
      if (dot_gnu_version_r_sec != nullptr)
        reportError("Multilpe SHT_GNU_verneed");
      dot_gnu_version_r_sec = &Sec;
      break;
    case ELF::SHT_DYNSYM:
      if (DotDynSymSec != nullptr)
        reportError("Multilpe SHT_DYNSYM");
      DotDynSymSec = &Sec;
      break;
    case ELF::SHT_SYMTAB:
      if (DotSymtabSec != nullptr)
        reportError("Multilpe SHT_SYMTAB");
      DotSymtabSec = &Sec;
      break;
    case ELF::SHT_SYMTAB_SHNDX: {
      ErrorOr<ArrayRef<Elf_Word>> TableOrErr = Obj->getSHNDXTable(Sec);
      error(TableOrErr.getError());
      ShndxTable = *TableOrErr;
      break;
    }
    }
  }
}

template <typename ELFT>
const typename ELFDumper<ELFT>::Elf_Rela *
ELFDumper<ELFT>::dyn_rela_begin() const {
  if (DynRelaRegion.Size && DynRelaRegion.EntSize != sizeof(Elf_Rela))
    report_fatal_error("Invalid relocation entry size");
  return reinterpret_cast<const Elf_Rela *>(DynRelaRegion.Addr);
}

template <typename ELFT>
const typename ELFDumper<ELFT>::Elf_Rela *
ELFDumper<ELFT>::dyn_rela_end() const {
  uint64_t Size = DynRelaRegion.Size;
  if (Size % sizeof(Elf_Rela))
    report_fatal_error("Invalid relocation table size");
  return dyn_rela_begin() + Size / sizeof(Elf_Rela);
}

template <typename ELFT>
typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
  return make_range(dyn_rela_begin(), dyn_rela_end());
}

template<class ELFT>
void ELFDumper<ELFT>::printFileHeaders() {
  const Elf_Ehdr *Header = Obj->getHeader();

  {
    DictScope D(W, "ElfHeader");
    {
      DictScope D(W, "Ident");
      W.printBinary("Magic", makeArrayRef(Header->e_ident).slice(ELF::EI_MAG0,
                                                                 4));
      W.printEnum  ("Class", Header->e_ident[ELF::EI_CLASS],
                      makeArrayRef(ElfClass));
      W.printEnum  ("DataEncoding", Header->e_ident[ELF::EI_DATA],
                      makeArrayRef(ElfDataEncoding));
      W.printNumber("FileVersion", Header->e_ident[ELF::EI_VERSION]);

      // Handle architecture specific OS/ABI values.
      if (Header->e_machine == ELF::EM_AMDGPU &&
          Header->e_ident[ELF::EI_OSABI] == ELF::ELFOSABI_AMDGPU_HSA)
        W.printHex("OS/ABI", "AMDGPU_HSA", ELF::ELFOSABI_AMDGPU_HSA);
      else
        W.printEnum  ("OS/ABI", Header->e_ident[ELF::EI_OSABI],
                      makeArrayRef(ElfOSABI));
      W.printNumber("ABIVersion", Header->e_ident[ELF::EI_ABIVERSION]);
      W.printBinary("Unused", makeArrayRef(Header->e_ident).slice(ELF::EI_PAD));
    }

    W.printEnum  ("Type", Header->e_type, makeArrayRef(ElfObjectFileType));
    W.printEnum  ("Machine", Header->e_machine, makeArrayRef(ElfMachineType));
    W.printNumber("Version", Header->e_version);
    W.printHex   ("Entry", Header->e_entry);
    W.printHex   ("ProgramHeaderOffset", Header->e_phoff);
    W.printHex   ("SectionHeaderOffset", Header->e_shoff);
    if (Header->e_machine == EM_MIPS)
      W.printFlags("Flags", Header->e_flags, makeArrayRef(ElfHeaderMipsFlags),
                   unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
                   unsigned(ELF::EF_MIPS_MACH));
    else
      W.printFlags("Flags", Header->e_flags);
    W.printNumber("HeaderSize", Header->e_ehsize);
    W.printNumber("ProgramHeaderEntrySize", Header->e_phentsize);
    W.printNumber("ProgramHeaderCount", Header->e_phnum);
    W.printNumber("SectionHeaderEntrySize", Header->e_shentsize);
    W.printNumber("SectionHeaderCount", Header->e_shnum);
    W.printNumber("StringTableSectionIndex", Header->e_shstrndx);
  }
}

template<class ELFT>
void ELFDumper<ELFT>::printSections() {
  ListScope SectionsD(W, "Sections");

  int SectionIndex = -1;
  for (const Elf_Shdr &Sec : Obj->sections()) {
    ++SectionIndex;

    StringRef Name = errorOrDefault(Obj->getSectionName(&Sec));

    DictScope SectionD(W, "Section");
    W.printNumber("Index", SectionIndex);
    W.printNumber("Name", Name, Sec.sh_name);
    W.printHex("Type",
               getElfSectionType(Obj->getHeader()->e_machine, Sec.sh_type),
               Sec.sh_type);
    W.printFlags("Flags", Sec.sh_flags, makeArrayRef(ElfSectionFlags));
    W.printHex("Address", Sec.sh_addr);
    W.printHex("Offset", Sec.sh_offset);
    W.printNumber("Size", Sec.sh_size);
    W.printNumber("Link", Sec.sh_link);
    W.printNumber("Info", Sec.sh_info);
    W.printNumber("AddressAlignment", Sec.sh_addralign);
    W.printNumber("EntrySize", Sec.sh_entsize);

    if (opts::SectionRelocations) {
      ListScope D(W, "Relocations");
      printRelocations(&Sec);
    }

    if (opts::SectionSymbols) {
      ListScope D(W, "Symbols");
      const Elf_Shdr *Symtab = DotSymtabSec;
      ErrorOr<StringRef> StrTableOrErr = Obj->getStringTableForSymtab(*Symtab);
      error(StrTableOrErr.getError());
      StringRef StrTable = *StrTableOrErr;

      for (const Elf_Sym &Sym : Obj->symbols(Symtab)) {
        ErrorOr<const Elf_Shdr *> SymSec =
            Obj->getSection(&Sym, Symtab, ShndxTable);
        if (!SymSec)
          continue;
        if (*SymSec == &Sec)
          printSymbol(&Sym, Symtab, StrTable, false);
      }
    }

    if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
      ArrayRef<uint8_t> Data = errorOrDefault(Obj->getSectionContents(&Sec));
      W.printBinaryBlock("SectionData",
                         StringRef((const char *)Data.data(), Data.size()));
    }
  }
}

template<class ELFT>
void ELFDumper<ELFT>::printRelocations() {
  ListScope D(W, "Relocations");

  int SectionNumber = -1;
  for (const Elf_Shdr &Sec : Obj->sections()) {
    ++SectionNumber;

    if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA)
      continue;

    StringRef Name = errorOrDefault(Obj->getSectionName(&Sec));

    W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
    W.indent();

    printRelocations(&Sec);

    W.unindent();
    W.startLine() << "}\n";
  }
}

template<class ELFT>
void ELFDumper<ELFT>::printDynamicRelocations() {
  W.startLine() << "Dynamic Relocations {\n";
  W.indent();
  for (const Elf_Rela &Rel : dyn_relas()) {
    SmallString<32> RelocName;
    Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
    StringRef SymbolName;
    uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL());
    const Elf_Sym *Sym = DynSymStart + SymIndex;
    SymbolName = errorOrDefault(Sym->getName(DynamicStringTable));
    if (opts::ExpandRelocs) {
      DictScope Group(W, "Relocation");
      W.printHex("Offset", Rel.r_offset);
      W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
      W.printString("Symbol", SymbolName.size() > 0 ? SymbolName : "-");
      W.printHex("Addend", Rel.r_addend);
    }
    else {
      raw_ostream& OS = W.startLine();
      OS << W.hex(Rel.r_offset) << " " << RelocName << " "
         << (SymbolName.size() > 0 ? SymbolName : "-") << " "
         << W.hex(Rel.r_addend) << "\n";
    }
  }
  W.unindent();
  W.startLine() << "}\n";
}

template <class ELFT>
void ELFDumper<ELFT>::printRelocations(const Elf_Shdr *Sec) {
  ErrorOr<const Elf_Shdr *> SymTabOrErr = Obj->getSection(Sec->sh_link);
  error(SymTabOrErr.getError());
  const Elf_Shdr *SymTab = *SymTabOrErr;

  switch (Sec->sh_type) {
  case ELF::SHT_REL:
    for (const Elf_Rel &R : Obj->rels(Sec)) {
      Elf_Rela Rela;
      Rela.r_offset = R.r_offset;
      Rela.r_info = R.r_info;
      Rela.r_addend = 0;
      printRelocation(Rela, SymTab);
    }
    break;
  case ELF::SHT_RELA:
    for (const Elf_Rela &R : Obj->relas(Sec))
      printRelocation(R, SymTab);
    break;
  }
}

template <class ELFT>
void ELFDumper<ELFT>::printRelocation(Elf_Rela Rel, const Elf_Shdr *SymTab) {
  SmallString<32> RelocName;
  Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
  StringRef TargetName;
  const Elf_Sym *Sym = Obj->getRelocationSymbol(&Rel, SymTab);
  if (Sym && Sym->getType() == ELF::STT_SECTION) {
    ErrorOr<const Elf_Shdr *> Sec = Obj->getSection(Sym, SymTab, ShndxTable);
    error(Sec.getError());
    ErrorOr<StringRef> SecName = Obj->getSectionName(*Sec);
    if (SecName)
      TargetName = SecName.get();
  } else if (Sym) {
    ErrorOr<StringRef> StrTableOrErr = Obj->getStringTableForSymtab(*SymTab);
    error(StrTableOrErr.getError());
    TargetName = errorOrDefault(Sym->getName(*StrTableOrErr));
  }

  if (opts::ExpandRelocs) {
    DictScope Group(W, "Relocation");
    W.printHex("Offset", Rel.r_offset);
    W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
    W.printNumber("Symbol", TargetName.size() > 0 ? TargetName : "-",
                  Rel.getSymbol(Obj->isMips64EL()));
    W.printHex("Addend", Rel.r_addend);
  } else {
    raw_ostream& OS = W.startLine();
    OS << W.hex(Rel.r_offset) << " " << RelocName << " "
       << (TargetName.size() > 0 ? TargetName : "-") << " "
       << W.hex(Rel.r_addend) << "\n";
  }
}

template<class ELFT>
void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) {
  const Elf_Shdr *Symtab = (IsDynamic) ? DotDynSymSec : DotSymtabSec;
  if (!Symtab)
    return;
  ErrorOr<StringRef> StrTableOrErr = Obj->getStringTableForSymtab(*Symtab);
  error(StrTableOrErr.getError());
  StringRef StrTable = *StrTableOrErr;
  for (const Elf_Sym &Sym : Obj->symbols(Symtab))
    printSymbol(&Sym, Symtab, StrTable, IsDynamic);
}

template<class ELFT>
void ELFDumper<ELFT>::printSymbols() {
  ListScope Group(W, "Symbols");
  printSymbolsHelper(false);
}

template<class ELFT>
void ELFDumper<ELFT>::printDynamicSymbols() {
  ListScope Group(W, "DynamicSymbols");
  printSymbolsHelper(true);
}

template <class ELFT>
void ELFDumper<ELFT>::printSymbol(const Elf_Sym *Symbol, const Elf_Shdr *SymTab,
                                  StringRef StrTable, bool IsDynamic) {
  unsigned SectionIndex = 0;
  StringRef SectionName;
  getSectionNameIndex(*Obj, Symbol, SymTab, ShndxTable, SectionName,
                      SectionIndex);
  std::string FullSymbolName = getFullSymbolName(Symbol, StrTable, IsDynamic);
  unsigned char SymbolType = Symbol->getType();

  DictScope D(W, "Symbol");
  W.printNumber("Name", FullSymbolName, Symbol->st_name);
  W.printHex   ("Value", Symbol->st_value);
  W.printNumber("Size", Symbol->st_size);
  W.printEnum  ("Binding", Symbol->getBinding(),
                  makeArrayRef(ElfSymbolBindings));
  if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
      SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
    W.printEnum  ("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
  else
    W.printEnum  ("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
  W.printNumber("Other", Symbol->st_other);
  W.printHex("Section", SectionName, SectionIndex);
}

#define LLVM_READOBJ_TYPE_CASE(name) \
  case DT_##name: return #name

static const char *getTypeString(uint64_t Type) {
  switch (Type) {
  LLVM_READOBJ_TYPE_CASE(BIND_NOW);
  LLVM_READOBJ_TYPE_CASE(DEBUG);
  LLVM_READOBJ_TYPE_CASE(FINI);
  LLVM_READOBJ_TYPE_CASE(FINI_ARRAY);
  LLVM_READOBJ_TYPE_CASE(FINI_ARRAYSZ);
  LLVM_READOBJ_TYPE_CASE(FLAGS);
  LLVM_READOBJ_TYPE_CASE(FLAGS_1);
  LLVM_READOBJ_TYPE_CASE(HASH);
  LLVM_READOBJ_TYPE_CASE(INIT);
  LLVM_READOBJ_TYPE_CASE(INIT_ARRAY);
  LLVM_READOBJ_TYPE_CASE(INIT_ARRAYSZ);
  LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAY);
  LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAYSZ);
  LLVM_READOBJ_TYPE_CASE(JMPREL);
  LLVM_READOBJ_TYPE_CASE(NEEDED);
  LLVM_READOBJ_TYPE_CASE(NULL);
  LLVM_READOBJ_TYPE_CASE(PLTGOT);
  LLVM_READOBJ_TYPE_CASE(PLTREL);
  LLVM_READOBJ_TYPE_CASE(PLTRELSZ);
  LLVM_READOBJ_TYPE_CASE(REL);
  LLVM_READOBJ_TYPE_CASE(RELA);
  LLVM_READOBJ_TYPE_CASE(RELENT);
  LLVM_READOBJ_TYPE_CASE(RELSZ);
  LLVM_READOBJ_TYPE_CASE(RELAENT);
  LLVM_READOBJ_TYPE_CASE(RELASZ);
  LLVM_READOBJ_TYPE_CASE(RPATH);
  LLVM_READOBJ_TYPE_CASE(RUNPATH);
  LLVM_READOBJ_TYPE_CASE(SONAME);
  LLVM_READOBJ_TYPE_CASE(STRSZ);
  LLVM_READOBJ_TYPE_CASE(STRTAB);
  LLVM_READOBJ_TYPE_CASE(SYMBOLIC);
  LLVM_READOBJ_TYPE_CASE(SYMENT);
  LLVM_READOBJ_TYPE_CASE(SYMTAB);
  LLVM_READOBJ_TYPE_CASE(TEXTREL);
  LLVM_READOBJ_TYPE_CASE(VERDEF);
  LLVM_READOBJ_TYPE_CASE(VERDEFNUM);
  LLVM_READOBJ_TYPE_CASE(VERNEED);
  LLVM_READOBJ_TYPE_CASE(VERNEEDNUM);
  LLVM_READOBJ_TYPE_CASE(VERSYM);
  LLVM_READOBJ_TYPE_CASE(RELCOUNT);
  LLVM_READOBJ_TYPE_CASE(GNU_HASH);
  LLVM_READOBJ_TYPE_CASE(MIPS_RLD_VERSION);
  LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP_REL);
  LLVM_READOBJ_TYPE_CASE(MIPS_FLAGS);
  LLVM_READOBJ_TYPE_CASE(MIPS_BASE_ADDRESS);
  LLVM_READOBJ_TYPE_CASE(MIPS_LOCAL_GOTNO);
  LLVM_READOBJ_TYPE_CASE(MIPS_SYMTABNO);
  LLVM_READOBJ_TYPE_CASE(MIPS_UNREFEXTNO);
  LLVM_READOBJ_TYPE_CASE(MIPS_GOTSYM);
  LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP);
  LLVM_READOBJ_TYPE_CASE(MIPS_PLTGOT);
  LLVM_READOBJ_TYPE_CASE(MIPS_OPTIONS);
  default: return "unknown";
  }
}

#undef LLVM_READOBJ_TYPE_CASE

#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
  { #enum, prefix##_##enum }

static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
  LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
  LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
  LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
  LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
  LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
};

static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
  LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
};

static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
  LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
  LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
  LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
};

#undef LLVM_READOBJ_DT_FLAG_ENT

template <typename T, typename TFlag>
void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
  typedef EnumEntry<TFlag> FlagEntry;
  typedef SmallVector<FlagEntry, 10> FlagVector;
  FlagVector SetFlags;

  for (const auto &Flag : Flags) {
    if (Flag.Value == 0)
      continue;

    if ((Value & Flag.Value) == Flag.Value)
      SetFlags.push_back(Flag);
  }

  for (const auto &Flag : SetFlags) {
    OS << Flag.Name << " ";
  }
}

template <class ELFT>
StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
  if (Value >= DynamicStringTable.size())
    reportError("Invalid dynamic string table reference");
  return StringRef(DynamicStringTable.data() + Value);
}

template <class ELFT>
void ELFDumper<ELFT>::printValue(uint64_t Type, uint64_t Value) {
  raw_ostream &OS = W.getOStream();
  switch (Type) {
  case DT_PLTREL:
    if (Value == DT_REL) {
      OS << "REL";
      break;
    } else if (Value == DT_RELA) {
      OS << "RELA";
      break;
    }
  // Fallthrough.
  case DT_PLTGOT:
  case DT_HASH:
  case DT_STRTAB:
  case DT_SYMTAB:
  case DT_RELA:
  case DT_INIT:
  case DT_FINI:
  case DT_REL:
  case DT_JMPREL:
  case DT_INIT_ARRAY:
  case DT_FINI_ARRAY:
  case DT_PREINIT_ARRAY:
  case DT_DEBUG:
  case DT_VERDEF:
  case DT_VERNEED:
  case DT_VERSYM:
  case DT_GNU_HASH:
  case DT_NULL:
  case DT_MIPS_BASE_ADDRESS:
  case DT_MIPS_GOTSYM:
  case DT_MIPS_RLD_MAP:
  case DT_MIPS_RLD_MAP_REL:
  case DT_MIPS_PLTGOT:
  case DT_MIPS_OPTIONS:
    OS << format("0x%" PRIX64, Value);
    break;
  case DT_RELCOUNT:
  case DT_VERDEFNUM:
  case DT_VERNEEDNUM:
  case DT_MIPS_RLD_VERSION:
  case DT_MIPS_LOCAL_GOTNO:
  case DT_MIPS_SYMTABNO:
  case DT_MIPS_UNREFEXTNO:
    OS << Value;
    break;
  case DT_PLTRELSZ:
  case DT_RELASZ:
  case DT_RELAENT:
  case DT_STRSZ:
  case DT_SYMENT:
  case DT_RELSZ:
  case DT_RELENT:
  case DT_INIT_ARRAYSZ:
  case DT_FINI_ARRAYSZ:
  case DT_PREINIT_ARRAYSZ:
    OS << Value << " (bytes)";
    break;
  case DT_NEEDED:
    OS << "SharedLibrary (" << getDynamicString(Value) << ")";
    break;
  case DT_SONAME:
    OS << "LibrarySoname (" << getDynamicString(Value) << ")";
    break;
  case DT_RPATH:
  case DT_RUNPATH:
    OS << getDynamicString(Value);
    break;
  case DT_MIPS_FLAGS:
    printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
    break;
  case DT_FLAGS:
    printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
    break;
  case DT_FLAGS_1:
    printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
    break;
  default:
    OS << format("0x%" PRIX64, Value);
    break;
  }
}

template<class ELFT>
void ELFDumper<ELFT>::printUnwindInfo() {
  W.startLine() << "UnwindInfo not implemented.\n";
}

namespace {
template <> void ELFDumper<ELFType<support::little, false>>::printUnwindInfo() {
  const unsigned Machine = Obj->getHeader()->e_machine;
  if (Machine == EM_ARM) {
    ARM::EHABI::PrinterContext<ELFType<support::little, false>> Ctx(
        W, Obj, DotSymtabSec);
    return Ctx.PrintUnwindInformation();
  }
  W.startLine() << "UnwindInfo not implemented.\n";
}
}

template<class ELFT>
void ELFDumper<ELFT>::printDynamicTable() {
  auto I = dynamic_table_begin();
  auto E = dynamic_table_end();

  if (I == E)
    return;

  --E;
  while (I != E && E->getTag() == ELF::DT_NULL)
    --E;
  if (E->getTag() != ELF::DT_NULL)
    ++E;
  ++E;

  ptrdiff_t Total = std::distance(I, E);
  if (Total == 0)
    return;

  raw_ostream &OS = W.getOStream();
  W.startLine() << "DynamicSection [ (" << Total << " entries)\n";

  bool Is64 = ELFT::Is64Bits;

  W.startLine()
     << "  Tag" << (Is64 ? "                " : "        ") << "Type"
     << "                 " << "Name/Value\n";
  while (I != E) {
    const Elf_Dyn &Entry = *I;
    uintX_t Tag = Entry.getTag();
    ++I;
    W.startLine() << "  " << format_hex(Tag, Is64 ? 18 : 10, true) << " "
                  << format("%-21s", getTypeString(Tag));
    printValue(Tag, Entry.getVal());
    OS << "\n";
  }

  W.startLine() << "]\n";
}

template<class ELFT>
void ELFDumper<ELFT>::printNeededLibraries() {
  ListScope D(W, "NeededLibraries");

  typedef std::vector<StringRef> LibsTy;
  LibsTy Libs;

  for (const auto &Entry : dynamic_table())
    if (Entry.d_tag == ELF::DT_NEEDED)
      Libs.push_back(getDynamicString(Entry.d_un.d_val));

  std::stable_sort(Libs.begin(), Libs.end());

  for (const auto &L : Libs) {
    outs() << "  " << L << "\n";
  }
}

template<class ELFT>
void ELFDumper<ELFT>::printProgramHeaders() {
  ListScope L(W, "ProgramHeaders");

  for (const Elf_Phdr &Phdr : Obj->program_headers()) {
    DictScope P(W, "ProgramHeader");
    W.printHex("Type",
               getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
               Phdr.p_type);
    W.printHex("Offset", Phdr.p_offset);
    W.printHex("VirtualAddress", Phdr.p_vaddr);
    W.printHex("PhysicalAddress", Phdr.p_paddr);
    W.printNumber("FileSize", Phdr.p_filesz);
    W.printNumber("MemSize", Phdr.p_memsz);
    W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
    W.printNumber("Alignment", Phdr.p_align);
  }
}

template <typename ELFT>
void ELFDumper<ELFT>::printHashTable() {
  DictScope D(W, "HashTable");
  if (!HashTable)
    return;
  W.printNumber("Num Buckets", HashTable->nbucket);
  W.printNumber("Num Chains", HashTable->nchain);
  W.printList("Buckets", HashTable->buckets());
  W.printList("Chains", HashTable->chains());
}

template <typename ELFT>
void ELFDumper<ELFT>::printGnuHashTable() {
  DictScope D(W, "GnuHashTable");
  if (!GnuHashTable)
    return;
  W.printNumber("Num Buckets", GnuHashTable->nbuckets);
  W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
  W.printNumber("Num Mask Words", GnuHashTable->maskwords);
  W.printNumber("Shift Count", GnuHashTable->shift2);
  W.printHexList("Bloom Filter", GnuHashTable->filter());
  W.printList("Buckets", GnuHashTable->buckets());
  if (!DotDynSymSec)
    reportError("No dynamic symbol section");
  W.printHexList("Values",
                 GnuHashTable->values(DotDynSymSec->getEntityCount()));
}

template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
  outs() << "LoadName: " << SOName << '\n';
}

template <class ELFT>
void ELFDumper<ELFT>::printAttributes() {
  W.startLine() << "Attributes not implemented.\n";
}

namespace {
template <> void ELFDumper<ELFType<support::little, false>>::printAttributes() {
  if (Obj->getHeader()->e_machine != EM_ARM) {
    W.startLine() << "Attributes not implemented.\n";
    return;
  }

  DictScope BA(W, "BuildAttributes");
  for (const ELFO::Elf_Shdr &Sec : Obj->sections()) {
    if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
      continue;

    ErrorOr<ArrayRef<uint8_t>> Contents = Obj->getSectionContents(&Sec);
    if (!Contents)
      continue;

    if ((*Contents)[0] != ARMBuildAttrs::Format_Version) {
      errs() << "unrecognised FormatVersion: 0x" << utohexstr((*Contents)[0])
             << '\n';
      continue;
    }

    W.printHex("FormatVersion", (*Contents)[0]);
    if (Contents->size() == 1)
      continue;

    ARMAttributeParser(W).Parse(*Contents);
  }
}
}

namespace {
template <class ELFT> class MipsGOTParser {
public:
  typedef object::ELFFile<ELFT> ELFO;
  typedef typename ELFO::Elf_Shdr Elf_Shdr;
  typedef typename ELFO::Elf_Sym Elf_Sym;
  typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
  typedef typename ELFO::Elf_Addr GOTEntry;
  typedef typename ELFO::Elf_Rel Elf_Rel;
  typedef typename ELFO::Elf_Rela Elf_Rela;

  MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
                Elf_Dyn_Range DynTable, StreamWriter &W);

  void parseGOT();
  void parsePLT();

private:
  ELFDumper<ELFT> *Dumper;
  const ELFO *Obj;
  StreamWriter &W;
  llvm::Optional<uint64_t> DtPltGot;
  llvm::Optional<uint64_t> DtLocalGotNum;
  llvm::Optional<uint64_t> DtGotSym;
  llvm::Optional<uint64_t> DtMipsPltGot;
  llvm::Optional<uint64_t> DtJmpRel;

  std::size_t getGOTTotal(ArrayRef<uint8_t> GOT) const;
  const GOTEntry *makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum);

  void printGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
                     const GOTEntry *It);
  void printGlobalGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
                           const GOTEntry *It, const Elf_Sym *Sym,
                           StringRef StrTable, bool IsDynamic);
  void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
                     const GOTEntry *It, StringRef Purpose);
  void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
                     const GOTEntry *It, StringRef StrTable,
                     const Elf_Sym *Sym);
};
}

template <class ELFT>
MipsGOTParser<ELFT>::MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
                                   Elf_Dyn_Range DynTable, StreamWriter &W)
    : Dumper(Dumper), Obj(Obj), W(W) {
  for (const auto &Entry : DynTable) {
    switch (Entry.getTag()) {
    case ELF::DT_PLTGOT:
      DtPltGot = Entry.getVal();
      break;
    case ELF::DT_MIPS_LOCAL_GOTNO:
      DtLocalGotNum = Entry.getVal();
      break;
    case ELF::DT_MIPS_GOTSYM:
      DtGotSym = Entry.getVal();
      break;
    case ELF::DT_MIPS_PLTGOT:
      DtMipsPltGot = Entry.getVal();
      break;
    case ELF::DT_JMPREL:
      DtJmpRel = Entry.getVal();
      break;
    }
  }
}

template <class ELFT> void MipsGOTParser<ELFT>::parseGOT() {
  // See "Global Offset Table" in Chapter 5 in the following document
  // for detailed GOT description.
  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
  if (!DtPltGot) {
    W.startLine() << "Cannot find PLTGOT dynamic table tag.\n";
    return;
  }
  if (!DtLocalGotNum) {
    W.startLine() << "Cannot find MIPS_LOCAL_GOTNO dynamic table tag.\n";
    return;
  }
  if (!DtGotSym) {
    W.startLine() << "Cannot find MIPS_GOTSYM dynamic table tag.\n";
    return;
  }

  const Elf_Shdr *GOTShdr = findSectionByAddress(Obj, *DtPltGot);
  if (!GOTShdr) {
    W.startLine() << "There is no .got section in the file.\n";
    return;
  }

  ErrorOr<ArrayRef<uint8_t>> GOT = Obj->getSectionContents(GOTShdr);
  if (!GOT) {
    W.startLine() << "The .got section is empty.\n";
    return;
  }

  if (*DtLocalGotNum > getGOTTotal(*GOT)) {
    W.startLine() << "MIPS_LOCAL_GOTNO exceeds a number of GOT entries.\n";
    return;
  }

  const Elf_Shdr *DynSymSec = Dumper->getDotDynSymSec();
  ErrorOr<StringRef> StrTable = Obj->getStringTableForSymtab(*DynSymSec);
  error(StrTable.getError());
  const Elf_Sym *DynSymBegin = Obj->symbol_begin(DynSymSec);
  const Elf_Sym *DynSymEnd = Obj->symbol_end(DynSymSec);
  std::size_t DynSymTotal = std::size_t(std::distance(DynSymBegin, DynSymEnd));

  if (*DtGotSym > DynSymTotal) {
    W.startLine() << "MIPS_GOTSYM exceeds a number of dynamic symbols.\n";
    return;
  }

  std::size_t GlobalGotNum = DynSymTotal - *DtGotSym;

  if (*DtLocalGotNum + GlobalGotNum > getGOTTotal(*GOT)) {
    W.startLine() << "Number of global GOT entries exceeds the size of GOT.\n";
    return;
  }

  const GOTEntry *GotBegin = makeGOTIter(*GOT, 0);
  const GOTEntry *GotLocalEnd = makeGOTIter(*GOT, *DtLocalGotNum);
  const GOTEntry *It = GotBegin;

  DictScope GS(W, "Primary GOT");

  W.printHex("Canonical gp value", GOTShdr->sh_addr + 0x7ff0);
  {
    ListScope RS(W, "Reserved entries");

    {
      DictScope D(W, "Entry");
      printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
      W.printString("Purpose", StringRef("Lazy resolver"));
    }

    if (It != GotLocalEnd && (*It >> (sizeof(GOTEntry) * 8 - 1)) != 0) {
      DictScope D(W, "Entry");
      printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
      W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
    }
  }
  {
    ListScope LS(W, "Local entries");
    for (; It != GotLocalEnd; ++It) {
      DictScope D(W, "Entry");
      printGotEntry(GOTShdr->sh_addr, GotBegin, It);
    }
  }
  {
    ListScope GS(W, "Global entries");

    const GOTEntry *GotGlobalEnd =
        makeGOTIter(*GOT, *DtLocalGotNum + GlobalGotNum);
    const Elf_Sym *GotDynSym = DynSymBegin + *DtGotSym;
    for (; It != GotGlobalEnd; ++It) {
      DictScope D(W, "Entry");
      printGlobalGotEntry(GOTShdr->sh_addr, GotBegin, It, GotDynSym++,
                          *StrTable, true);
    }
  }

  std::size_t SpecGotNum = getGOTTotal(*GOT) - *DtLocalGotNum - GlobalGotNum;
  W.printNumber("Number of TLS and multi-GOT entries", uint64_t(SpecGotNum));
}

template <class ELFT> void MipsGOTParser<ELFT>::parsePLT() {
  if (!DtMipsPltGot) {
    W.startLine() << "Cannot find MIPS_PLTGOT dynamic table tag.\n";
    return;
  }
  if (!DtJmpRel) {
    W.startLine() << "Cannot find JMPREL dynamic table tag.\n";
    return;
  }

  const Elf_Shdr *PLTShdr = findSectionByAddress(Obj, *DtMipsPltGot);
  if (!PLTShdr) {
    W.startLine() << "There is no .got.plt section in the file.\n";
    return;
  }
  ErrorOr<ArrayRef<uint8_t>> PLT = Obj->getSectionContents(PLTShdr);
  if (!PLT) {
    W.startLine() << "The .got.plt section is empty.\n";
    return;
  }

  const Elf_Shdr *PLTRelShdr = findSectionByAddress(Obj, *DtJmpRel);
  if (!PLTShdr) {
    W.startLine() << "There is no .rel.plt section in the file.\n";
    return;
  }
  ErrorOr<const Elf_Shdr *> SymTableOrErr =
      Obj->getSection(PLTRelShdr->sh_link);
  error(SymTableOrErr.getError());
  const Elf_Shdr *SymTable = *SymTableOrErr;
  ErrorOr<StringRef> StrTable = Obj->getStringTableForSymtab(*SymTable);
  error(StrTable.getError());

  const GOTEntry *PLTBegin = makeGOTIter(*PLT, 0);
  const GOTEntry *PLTEnd = makeGOTIter(*PLT, getGOTTotal(*PLT));
  const GOTEntry *It = PLTBegin;

  DictScope GS(W, "PLT GOT");
  {
    ListScope RS(W, "Reserved entries");
    printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "PLT lazy resolver");
    if (It != PLTEnd)
      printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "Module pointer");
  }
  {
    ListScope GS(W, "Entries");

    switch (PLTRelShdr->sh_type) {
    case ELF::SHT_REL:
      for (const Elf_Rel *RI = Obj->rel_begin(PLTRelShdr),
                         *RE = Obj->rel_end(PLTRelShdr);
           RI != RE && It != PLTEnd; ++RI, ++It) {
        const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable);
        printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, *StrTable, Sym);
      }
      break;
    case ELF::SHT_RELA:
      for (const Elf_Rela *RI = Obj->rela_begin(PLTRelShdr),
                          *RE = Obj->rela_end(PLTRelShdr);
           RI != RE && It != PLTEnd; ++RI, ++It) {
        const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable);
        printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, *StrTable, Sym);
      }
      break;
    }
  }
}

template <class ELFT>
std::size_t MipsGOTParser<ELFT>::getGOTTotal(ArrayRef<uint8_t> GOT) const {
  return GOT.size() / sizeof(GOTEntry);
}

template <class ELFT>
const typename MipsGOTParser<ELFT>::GOTEntry *
MipsGOTParser<ELFT>::makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum) {
  const char *Data = reinterpret_cast<const char *>(GOT.data());
  return reinterpret_cast<const GOTEntry *>(Data + EntryNum * sizeof(GOTEntry));
}

template <class ELFT>
void MipsGOTParser<ELFT>::printGotEntry(uint64_t GotAddr,
                                        const GOTEntry *BeginIt,
                                        const GOTEntry *It) {
  int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
  W.printHex("Address", GotAddr + Offset);
  W.printNumber("Access", Offset - 0x7ff0);
  W.printHex("Initial", *It);
}

template <class ELFT>
void MipsGOTParser<ELFT>::printGlobalGotEntry(
    uint64_t GotAddr, const GOTEntry *BeginIt, const GOTEntry *It,
    const Elf_Sym *Sym, StringRef StrTable, bool IsDynamic) {
  printGotEntry(GotAddr, BeginIt, It);

  W.printHex("Value", Sym->st_value);
  W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));

  unsigned SectionIndex = 0;
  StringRef SectionName;
  getSectionNameIndex(*Obj, Sym, Dumper->getDotDynSymSec(),
                      Dumper->getShndxTable(), SectionName, SectionIndex);
  W.printHex("Section", SectionName, SectionIndex);

  std::string FullSymbolName =
      Dumper->getFullSymbolName(Sym, StrTable, IsDynamic);
  W.printNumber("Name", FullSymbolName, Sym->st_name);
}

template <class ELFT>
void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
                                        const GOTEntry *BeginIt,
                                        const GOTEntry *It, StringRef Purpose) {
  DictScope D(W, "Entry");
  int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
  W.printHex("Address", PLTAddr + Offset);
  W.printHex("Initial", *It);
  W.printString("Purpose", Purpose);
}

template <class ELFT>
void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
                                        const GOTEntry *BeginIt,
                                        const GOTEntry *It, StringRef StrTable,
                                        const Elf_Sym *Sym) {
  DictScope D(W, "Entry");
  int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
  W.printHex("Address", PLTAddr + Offset);
  W.printHex("Initial", *It);
  W.printHex("Value", Sym->st_value);
  W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));

  unsigned SectionIndex = 0;
  StringRef SectionName;
  getSectionNameIndex(*Obj, Sym, Dumper->getDotDynSymSec(),
                      Dumper->getShndxTable(), SectionName, SectionIndex);
  W.printHex("Section", SectionName, SectionIndex);

  std::string FullSymbolName = Dumper->getFullSymbolName(Sym, StrTable, true);
  W.printNumber("Name", FullSymbolName, Sym->st_name);
}

template <class ELFT> void ELFDumper<ELFT>::printMipsPLTGOT() {
  if (Obj->getHeader()->e_machine != EM_MIPS) {
    W.startLine() << "MIPS PLT GOT is available for MIPS targets only.\n";
    return;
  }

  MipsGOTParser<ELFT> GOTParser(this, Obj, dynamic_table(), W);
  GOTParser.parseGOT();
  GOTParser.parsePLT();
}

static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
  {"None",                    Mips::AFL_EXT_NONE},
  {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
  {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
  {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
  {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
  {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
  {"LSI R4010",               Mips::AFL_EXT_4010},
  {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
  {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
  {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
  {"MIPS R4650",              Mips::AFL_EXT_4650},
  {"MIPS R5900",              Mips::AFL_EXT_5900},
  {"MIPS R10000",             Mips::AFL_EXT_10000},
  {"NEC VR4100",              Mips::AFL_EXT_4100},
  {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
  {"NEC VR4120",              Mips::AFL_EXT_4120},
  {"NEC VR5400",              Mips::AFL_EXT_5400},
  {"NEC VR5500",              Mips::AFL_EXT_5500},
  {"RMI Xlr",                 Mips::AFL_EXT_XLR},
  {"Toshiba R3900",           Mips::AFL_EXT_3900}
};

static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
  {"DSP",                Mips::AFL_ASE_DSP},
  {"DSPR2",              Mips::AFL_ASE_DSPR2},
  {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
  {"MCU",                Mips::AFL_ASE_MCU},
  {"MDMX",               Mips::AFL_ASE_MDMX},
  {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
  {"MT",                 Mips::AFL_ASE_MT},
  {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
  {"VZ",                 Mips::AFL_ASE_VIRT},
  {"MSA",                Mips::AFL_ASE_MSA},
  {"MIPS16",             Mips::AFL_ASE_MIPS16},
  {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
  {"XPA",                Mips::AFL_ASE_XPA}
};

static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
  {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
  {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
  {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
  {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
  {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
   Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
  {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
  {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
  {"Hard float compat (32-bit CPU, 64-bit FPU)",
   Mips::Val_GNU_MIPS_ABI_FP_64A}
};

static const EnumEntry<unsigned> ElfMipsFlags1[] {
  {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
};

static int getMipsRegisterSize(uint8_t Flag) {
  switch (Flag) {
  case Mips::AFL_REG_NONE:
    return 0;
  case Mips::AFL_REG_32:
    return 32;
  case Mips::AFL_REG_64:
    return 64;
  case Mips::AFL_REG_128:
    return 128;
  default:
    return -1;
  }
}

template <class ELFT> void ELFDumper<ELFT>::printMipsABIFlags() {
  const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags");
  if (!Shdr) {
    W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
    return;
  }
  ErrorOr<ArrayRef<uint8_t>> Sec = Obj->getSectionContents(Shdr);
  if (!Sec) {
    W.startLine() << "The .MIPS.abiflags section is empty.\n";
    return;
  }
  if (Sec->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
    W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
    return;
  }

  auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec->data());

  raw_ostream &OS = W.getOStream();
  DictScope GS(W, "MIPS ABI Flags");

  W.printNumber("Version", Flags->version);
  W.startLine() << "ISA: ";
  if (Flags->isa_rev <= 1)
    OS << format("MIPS%u", Flags->isa_level);
  else
    OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
  OS << "\n";
  W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
  W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
  W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
  W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
  W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
  W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
  W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
  W.printHex("Flags 2", Flags->flags2);
}

template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
  const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo");
  if (!Shdr) {
    W.startLine() << "There is no .reginfo section in the file.\n";
    return;
  }
  ErrorOr<ArrayRef<uint8_t>> Sec = Obj->getSectionContents(Shdr);
  if (!Sec) {
    W.startLine() << "The .reginfo section is empty.\n";
    return;
  }
  if (Sec->size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
    W.startLine() << "The .reginfo section has a wrong size.\n";
    return;
  }

  auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec->data());

  DictScope GS(W, "MIPS RegInfo");
  W.printHex("GP", Reginfo->ri_gp_value);
  W.printHex("General Mask", Reginfo->ri_gprmask);
  W.printHex("Co-Proc Mask0", Reginfo->ri_cprmask[0]);
  W.printHex("Co-Proc Mask1", Reginfo->ri_cprmask[1]);
  W.printHex("Co-Proc Mask2", Reginfo->ri_cprmask[2]);
  W.printHex("Co-Proc Mask3", Reginfo->ri_cprmask[3]);
}

template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
  const Elf_Shdr *StackMapSection = nullptr;
  for (const auto &Sec : Obj->sections()) {
    ErrorOr<StringRef> Name = Obj->getSectionName(&Sec);
    if (*Name == ".llvm_stackmaps") {
      StackMapSection = &Sec;
      break;
    }
  }

  if (!StackMapSection)
    return;

  StringRef StackMapContents;
  ErrorOr<ArrayRef<uint8_t>> StackMapContentsArray =
    Obj->getSectionContents(StackMapSection);

  prettyPrintStackMap(
              llvm::outs(),
              StackMapV1Parser<ELFT::TargetEndianness>(*StackMapContentsArray));
}