//===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MachO-specific dumper for llvm-objdump.
//
//===----------------------------------------------------------------------===//

#include "llvm-objdump.h"
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/config.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
#include <system_error>

#if HAVE_CXXABI_H
#include <cxxabi.h>
#endif

using namespace llvm;
using namespace object;

static cl::opt<bool>
    UseDbg("g",
           cl::desc("Print line information from debug info if available"));

static cl::opt<std::string> DSYMFile("dsym",
                                     cl::desc("Use .dSYM file for debug info"));

static cl::opt<bool> FullLeadingAddr("full-leading-addr",
                                     cl::desc("Print full leading address"));

static cl::opt<bool> NoLeadingAddr("no-leading-addr",
                                   cl::desc("Print no leading address"));

cl::opt<bool> llvm::UniversalHeaders("universal-headers",
                                     cl::desc("Print Mach-O universal headers "
                                              "(requires -macho)"));

cl::opt<bool>
    llvm::ArchiveHeaders("archive-headers",
                         cl::desc("Print archive headers for Mach-O archives "
                                  "(requires -macho)"));

cl::opt<bool>
    ArchiveMemberOffsets("archive-member-offsets",
                         cl::desc("Print the offset to each archive member for "
                                  "Mach-O archives (requires -macho and "
                                  "-archive-headers)"));

cl::opt<bool>
    llvm::IndirectSymbols("indirect-symbols",
                          cl::desc("Print indirect symbol table for Mach-O "
                                   "objects (requires -macho)"));

cl::opt<bool>
    llvm::DataInCode("data-in-code",
                     cl::desc("Print the data in code table for Mach-O objects "
                              "(requires -macho)"));

cl::opt<bool>
    llvm::LinkOptHints("link-opt-hints",
                       cl::desc("Print the linker optimization hints for "
                                "Mach-O objects (requires -macho)"));

cl::opt<bool>
    llvm::InfoPlist("info-plist",
                    cl::desc("Print the info plist section as strings for "
                             "Mach-O objects (requires -macho)"));

cl::opt<bool>
    llvm::DylibsUsed("dylibs-used",
                     cl::desc("Print the shared libraries used for linked "
                              "Mach-O files (requires -macho)"));

cl::opt<bool>
    llvm::DylibId("dylib-id",
                  cl::desc("Print the shared library's id for the dylib Mach-O "
                           "file (requires -macho)"));

cl::opt<bool>
    llvm::NonVerbose("non-verbose",
                     cl::desc("Print the info for Mach-O objects in "
                              "non-verbose or numeric form (requires -macho)"));

cl::opt<bool>
    llvm::ObjcMetaData("objc-meta-data",
                       cl::desc("Print the Objective-C runtime meta data for "
                                "Mach-O files (requires -macho)"));

cl::opt<std::string> llvm::DisSymName(
    "dis-symname",
    cl::desc("disassemble just this symbol's instructions (requires -macho"));

static cl::opt<bool> NoSymbolicOperands(
    "no-symbolic-operands",
    cl::desc("do not symbolic operands when disassembling (requires -macho)"));

static cl::list<std::string>
    ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"),
              cl::ZeroOrMore);

bool ArchAll = false;

static std::string ThumbTripleName;

static const Target *GetTarget(const MachOObjectFile *MachOObj,
                               const char **McpuDefault,
                               const Target **ThumbTarget) {
  // Figure out the target triple.
  if (TripleName.empty()) {
    llvm::Triple TT("unknown-unknown-unknown");
    llvm::Triple ThumbTriple = Triple();
    TT = MachOObj->getArch(McpuDefault, &ThumbTriple);
    TripleName = TT.str();
    ThumbTripleName = ThumbTriple.str();
  }

  // Get the target specific parser.
  std::string Error;
  const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
  if (TheTarget && ThumbTripleName.empty())
    return TheTarget;

  *ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error);
  if (*ThumbTarget)
    return TheTarget;

  errs() << "llvm-objdump: error: unable to get target for '";
  if (!TheTarget)
    errs() << TripleName;
  else
    errs() << ThumbTripleName;
  errs() << "', see --version and --triple.\n";
  return nullptr;
}

struct SymbolSorter {
  bool operator()(const SymbolRef &A, const SymbolRef &B) {
    uint64_t AAddr = (A.getType() != SymbolRef::ST_Function) ? 0 : A.getValue();
    uint64_t BAddr = (B.getType() != SymbolRef::ST_Function) ? 0 : B.getValue();
    return AAddr < BAddr;
  }
};

// Types for the storted data in code table that is built before disassembly
// and the predicate function to sort them.
typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
typedef std::vector<DiceTableEntry> DiceTable;
typedef DiceTable::iterator dice_table_iterator;

// This is used to search for a data in code table entry for the PC being
// disassembled.  The j parameter has the PC in j.first.  A single data in code
// table entry can cover many bytes for each of its Kind's.  So if the offset,
// aka the i.first value, of the data in code table entry plus its Length
// covers the PC being searched for this will return true.  If not it will
// return false.
static bool compareDiceTableEntries(const DiceTableEntry &i,
                                    const DiceTableEntry &j) {
  uint16_t Length;
  i.second.getLength(Length);

  return j.first >= i.first && j.first < i.first + Length;
}

static uint64_t DumpDataInCode(const uint8_t *bytes, uint64_t Length,
                               unsigned short Kind) {
  uint32_t Value, Size = 1;

  switch (Kind) {
  default:
  case MachO::DICE_KIND_DATA:
    if (Length >= 4) {
      if (!NoShowRawInsn)
        dumpBytes(makeArrayRef(bytes, 4), outs());
      Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
      outs() << "\t.long " << Value;
      Size = 4;
    } else if (Length >= 2) {
      if (!NoShowRawInsn)
        dumpBytes(makeArrayRef(bytes, 2), outs());
      Value = bytes[1] << 8 | bytes[0];
      outs() << "\t.short " << Value;
      Size = 2;
    } else {
      if (!NoShowRawInsn)
        dumpBytes(makeArrayRef(bytes, 2), outs());
      Value = bytes[0];
      outs() << "\t.byte " << Value;
      Size = 1;
    }
    if (Kind == MachO::DICE_KIND_DATA)
      outs() << "\t@ KIND_DATA\n";
    else
      outs() << "\t@ data in code kind = " << Kind << "\n";
    break;
  case MachO::DICE_KIND_JUMP_TABLE8:
    if (!NoShowRawInsn)
      dumpBytes(makeArrayRef(bytes, 1), outs());
    Value = bytes[0];
    outs() << "\t.byte " << format("%3u", Value) << "\t@ KIND_JUMP_TABLE8\n";
    Size = 1;
    break;
  case MachO::DICE_KIND_JUMP_TABLE16:
    if (!NoShowRawInsn)
      dumpBytes(makeArrayRef(bytes, 2), outs());
    Value = bytes[1] << 8 | bytes[0];
    outs() << "\t.short " << format("%5u", Value & 0xffff)
           << "\t@ KIND_JUMP_TABLE16\n";
    Size = 2;
    break;
  case MachO::DICE_KIND_JUMP_TABLE32:
  case MachO::DICE_KIND_ABS_JUMP_TABLE32:
    if (!NoShowRawInsn)
      dumpBytes(makeArrayRef(bytes, 4), outs());
    Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
    outs() << "\t.long " << Value;
    if (Kind == MachO::DICE_KIND_JUMP_TABLE32)
      outs() << "\t@ KIND_JUMP_TABLE32\n";
    else
      outs() << "\t@ KIND_ABS_JUMP_TABLE32\n";
    Size = 4;
    break;
  }
  return Size;
}

static void getSectionsAndSymbols(MachOObjectFile *MachOObj,
                                  std::vector<SectionRef> &Sections,
                                  std::vector<SymbolRef> &Symbols,
                                  SmallVectorImpl<uint64_t> &FoundFns,
                                  uint64_t &BaseSegmentAddress) {
  for (const SymbolRef &Symbol : MachOObj->symbols()) {
    ErrorOr<StringRef> SymName = Symbol.getName();
    if (std::error_code EC = SymName.getError())
      report_fatal_error(EC.message());
    if (!SymName->startswith("ltmp"))
      Symbols.push_back(Symbol);
  }

  for (const SectionRef &Section : MachOObj->sections()) {
    StringRef SectName;
    Section.getName(SectName);
    Sections.push_back(Section);
  }

  bool BaseSegmentAddressSet = false;
  for (const auto &Command : MachOObj->load_commands()) {
    if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) {
      // We found a function starts segment, parse the addresses for later
      // consumption.
      MachO::linkedit_data_command LLC =
          MachOObj->getLinkeditDataLoadCommand(Command);

      MachOObj->ReadULEB128s(LLC.dataoff, FoundFns);
    } else if (Command.C.cmd == MachO::LC_SEGMENT) {
      MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command);
      StringRef SegName = SLC.segname;
      if (!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
        BaseSegmentAddressSet = true;
        BaseSegmentAddress = SLC.vmaddr;
      }
    }
  }
}

static void PrintIndirectSymbolTable(MachOObjectFile *O, bool verbose,
                                     uint32_t n, uint32_t count,
                                     uint32_t stride, uint64_t addr) {
  MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
  uint32_t nindirectsyms = Dysymtab.nindirectsyms;
  if (n > nindirectsyms)
    outs() << " (entries start past the end of the indirect symbol "
              "table) (reserved1 field greater than the table size)";
  else if (n + count > nindirectsyms)
    outs() << " (entries extends past the end of the indirect symbol "
              "table)";
  outs() << "\n";
  uint32_t cputype = O->getHeader().cputype;
  if (cputype & MachO::CPU_ARCH_ABI64)
    outs() << "address            index";
  else
    outs() << "address    index";
  if (verbose)
    outs() << " name\n";
  else
    outs() << "\n";
  for (uint32_t j = 0; j < count && n + j < nindirectsyms; j++) {
    if (cputype & MachO::CPU_ARCH_ABI64)
      outs() << format("0x%016" PRIx64, addr + j * stride) << " ";
    else
      outs() << format("0x%08" PRIx32, addr + j * stride) << " ";
    MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
    uint32_t indirect_symbol = O->getIndirectSymbolTableEntry(Dysymtab, n + j);
    if (indirect_symbol == MachO::INDIRECT_SYMBOL_LOCAL) {
      outs() << "LOCAL\n";
      continue;
    }
    if (indirect_symbol ==
        (MachO::INDIRECT_SYMBOL_LOCAL | MachO::INDIRECT_SYMBOL_ABS)) {
      outs() << "LOCAL ABSOLUTE\n";
      continue;
    }
    if (indirect_symbol == MachO::INDIRECT_SYMBOL_ABS) {
      outs() << "ABSOLUTE\n";
      continue;
    }
    outs() << format("%5u ", indirect_symbol);
    if (verbose) {
      MachO::symtab_command Symtab = O->getSymtabLoadCommand();
      if (indirect_symbol < Symtab.nsyms) {
        symbol_iterator Sym = O->getSymbolByIndex(indirect_symbol);
        SymbolRef Symbol = *Sym;
        ErrorOr<StringRef> SymName = Symbol.getName();
        if (std::error_code EC = SymName.getError())
          report_fatal_error(EC.message());
        outs() << *SymName;
      } else {
        outs() << "?";
      }
    }
    outs() << "\n";
  }
}

static void PrintIndirectSymbols(MachOObjectFile *O, bool verbose) {
  for (const auto &Load : O->load_commands()) {
    if (Load.C.cmd == MachO::LC_SEGMENT_64) {
      MachO::segment_command_64 Seg = O->getSegment64LoadCommand(Load);
      for (unsigned J = 0; J < Seg.nsects; ++J) {
        MachO::section_64 Sec = O->getSection64(Load, J);
        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
        if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
            section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
            section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
            section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
            section_type == MachO::S_SYMBOL_STUBS) {
          uint32_t stride;
          if (section_type == MachO::S_SYMBOL_STUBS)
            stride = Sec.reserved2;
          else
            stride = 8;
          if (stride == 0) {
            outs() << "Can't print indirect symbols for (" << Sec.segname << ","
                   << Sec.sectname << ") "
                   << "(size of stubs in reserved2 field is zero)\n";
            continue;
          }
          uint32_t count = Sec.size / stride;
          outs() << "Indirect symbols for (" << Sec.segname << ","
                 << Sec.sectname << ") " << count << " entries";
          uint32_t n = Sec.reserved1;
          PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
        }
      }
    } else if (Load.C.cmd == MachO::LC_SEGMENT) {
      MachO::segment_command Seg = O->getSegmentLoadCommand(Load);
      for (unsigned J = 0; J < Seg.nsects; ++J) {
        MachO::section Sec = O->getSection(Load, J);
        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
        if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
            section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
            section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
            section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
            section_type == MachO::S_SYMBOL_STUBS) {
          uint32_t stride;
          if (section_type == MachO::S_SYMBOL_STUBS)
            stride = Sec.reserved2;
          else
            stride = 4;
          if (stride == 0) {
            outs() << "Can't print indirect symbols for (" << Sec.segname << ","
                   << Sec.sectname << ") "
                   << "(size of stubs in reserved2 field is zero)\n";
            continue;
          }
          uint32_t count = Sec.size / stride;
          outs() << "Indirect symbols for (" << Sec.segname << ","
                 << Sec.sectname << ") " << count << " entries";
          uint32_t n = Sec.reserved1;
          PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
        }
      }
    }
  }
}

static void PrintDataInCodeTable(MachOObjectFile *O, bool verbose) {
  MachO::linkedit_data_command DIC = O->getDataInCodeLoadCommand();
  uint32_t nentries = DIC.datasize / sizeof(struct MachO::data_in_code_entry);
  outs() << "Data in code table (" << nentries << " entries)\n";
  outs() << "offset     length kind\n";
  for (dice_iterator DI = O->begin_dices(), DE = O->end_dices(); DI != DE;
       ++DI) {
    uint32_t Offset;
    DI->getOffset(Offset);
    outs() << format("0x%08" PRIx32, Offset) << " ";
    uint16_t Length;
    DI->getLength(Length);
    outs() << format("%6u", Length) << " ";
    uint16_t Kind;
    DI->getKind(Kind);
    if (verbose) {
      switch (Kind) {
      case MachO::DICE_KIND_DATA:
        outs() << "DATA";
        break;
      case MachO::DICE_KIND_JUMP_TABLE8:
        outs() << "JUMP_TABLE8";
        break;
      case MachO::DICE_KIND_JUMP_TABLE16:
        outs() << "JUMP_TABLE16";
        break;
      case MachO::DICE_KIND_JUMP_TABLE32:
        outs() << "JUMP_TABLE32";
        break;
      case MachO::DICE_KIND_ABS_JUMP_TABLE32:
        outs() << "ABS_JUMP_TABLE32";
        break;
      default:
        outs() << format("0x%04" PRIx32, Kind);
        break;
      }
    } else
      outs() << format("0x%04" PRIx32, Kind);
    outs() << "\n";
  }
}

static void PrintLinkOptHints(MachOObjectFile *O) {
  MachO::linkedit_data_command LohLC = O->getLinkOptHintsLoadCommand();
  const char *loh = O->getData().substr(LohLC.dataoff, 1).data();
  uint32_t nloh = LohLC.datasize;
  outs() << "Linker optimiztion hints (" << nloh << " total bytes)\n";
  for (uint32_t i = 0; i < nloh;) {
    unsigned n;
    uint64_t identifier = decodeULEB128((const uint8_t *)(loh + i), &n);
    i += n;
    outs() << "    identifier " << identifier << " ";
    if (i >= nloh)
      return;
    switch (identifier) {
    case 1:
      outs() << "AdrpAdrp\n";
      break;
    case 2:
      outs() << "AdrpLdr\n";
      break;
    case 3:
      outs() << "AdrpAddLdr\n";
      break;
    case 4:
      outs() << "AdrpLdrGotLdr\n";
      break;
    case 5:
      outs() << "AdrpAddStr\n";
      break;
    case 6:
      outs() << "AdrpLdrGotStr\n";
      break;
    case 7:
      outs() << "AdrpAdd\n";
      break;
    case 8:
      outs() << "AdrpLdrGot\n";
      break;
    default:
      outs() << "Unknown identifier value\n";
      break;
    }
    uint64_t narguments = decodeULEB128((const uint8_t *)(loh + i), &n);
    i += n;
    outs() << "    narguments " << narguments << "\n";
    if (i >= nloh)
      return;

    for (uint32_t j = 0; j < narguments; j++) {
      uint64_t value = decodeULEB128((const uint8_t *)(loh + i), &n);
      i += n;
      outs() << "\tvalue " << format("0x%" PRIx64, value) << "\n";
      if (i >= nloh)
        return;
    }
  }
}

static void PrintDylibs(MachOObjectFile *O, bool JustId) {
  unsigned Index = 0;
  for (const auto &Load : O->load_commands()) {
    if ((JustId && Load.C.cmd == MachO::LC_ID_DYLIB) ||
        (!JustId && (Load.C.cmd == MachO::LC_ID_DYLIB ||
                     Load.C.cmd == MachO::LC_LOAD_DYLIB ||
                     Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
                     Load.C.cmd == MachO::LC_REEXPORT_DYLIB ||
                     Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
                     Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB))) {
      MachO::dylib_command dl = O->getDylibIDLoadCommand(Load);
      if (dl.dylib.name < dl.cmdsize) {
        const char *p = (const char *)(Load.Ptr) + dl.dylib.name;
        if (JustId)
          outs() << p << "\n";
        else {
          outs() << "\t" << p;
          outs() << " (compatibility version "
                 << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
                 << ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
                 << (dl.dylib.compatibility_version & 0xff) << ",";
          outs() << " current version "
                 << ((dl.dylib.current_version >> 16) & 0xffff) << "."
                 << ((dl.dylib.current_version >> 8) & 0xff) << "."
                 << (dl.dylib.current_version & 0xff) << ")\n";
        }
      } else {
        outs() << "\tBad offset (" << dl.dylib.name << ") for name of ";
        if (Load.C.cmd == MachO::LC_ID_DYLIB)
          outs() << "LC_ID_DYLIB ";
        else if (Load.C.cmd == MachO::LC_LOAD_DYLIB)
          outs() << "LC_LOAD_DYLIB ";
        else if (Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB)
          outs() << "LC_LOAD_WEAK_DYLIB ";
        else if (Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB)
          outs() << "LC_LAZY_LOAD_DYLIB ";
        else if (Load.C.cmd == MachO::LC_REEXPORT_DYLIB)
          outs() << "LC_REEXPORT_DYLIB ";
        else if (Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
          outs() << "LC_LOAD_UPWARD_DYLIB ";
        else
          outs() << "LC_??? ";
        outs() << "command " << Index++ << "\n";
      }
    }
  }
}

typedef DenseMap<uint64_t, StringRef> SymbolAddressMap;

static void CreateSymbolAddressMap(MachOObjectFile *O,
                                   SymbolAddressMap *AddrMap) {
  // Create a map of symbol addresses to symbol names.
  for (const SymbolRef &Symbol : O->symbols()) {
    SymbolRef::Type ST = Symbol.getType();
    if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
        ST == SymbolRef::ST_Other) {
      uint64_t Address = Symbol.getValue();
      ErrorOr<StringRef> SymNameOrErr = Symbol.getName();
      if (std::error_code EC = SymNameOrErr.getError())
        report_fatal_error(EC.message());
      StringRef SymName = *SymNameOrErr;
      if (!SymName.startswith(".objc"))
        (*AddrMap)[Address] = SymName;
    }
  }
}

// GuessSymbolName is passed the address of what might be a symbol and a
// pointer to the SymbolAddressMap.  It returns the name of a symbol
// with that address or nullptr if no symbol is found with that address.
static const char *GuessSymbolName(uint64_t value, SymbolAddressMap *AddrMap) {
  const char *SymbolName = nullptr;
  // A DenseMap can't lookup up some values.
  if (value != 0xffffffffffffffffULL && value != 0xfffffffffffffffeULL) {
    StringRef name = AddrMap->lookup(value);
    if (!name.empty())
      SymbolName = name.data();
  }
  return SymbolName;
}

static void DumpCstringChar(const char c) {
  char p[2];
  p[0] = c;
  p[1] = '\0';
  outs().write_escaped(p);
}

static void DumpCstringSection(MachOObjectFile *O, const char *sect,
                               uint32_t sect_size, uint64_t sect_addr,
                               bool print_addresses) {
  for (uint32_t i = 0; i < sect_size; i++) {
    if (print_addresses) {
      if (O->is64Bit())
        outs() << format("%016" PRIx64, sect_addr + i) << "  ";
      else
        outs() << format("%08" PRIx64, sect_addr + i) << "  ";
    }
    for (; i < sect_size && sect[i] != '\0'; i++)
      DumpCstringChar(sect[i]);
    if (i < sect_size && sect[i] == '\0')
      outs() << "\n";
  }
}

static void DumpLiteral4(uint32_t l, float f) {
  outs() << format("0x%08" PRIx32, l);
  if ((l & 0x7f800000) != 0x7f800000)
    outs() << format(" (%.16e)\n", f);
  else {
    if (l == 0x7f800000)
      outs() << " (+Infinity)\n";
    else if (l == 0xff800000)
      outs() << " (-Infinity)\n";
    else if ((l & 0x00400000) == 0x00400000)
      outs() << " (non-signaling Not-a-Number)\n";
    else
      outs() << " (signaling Not-a-Number)\n";
  }
}

static void DumpLiteral4Section(MachOObjectFile *O, const char *sect,
                                uint32_t sect_size, uint64_t sect_addr,
                                bool print_addresses) {
  for (uint32_t i = 0; i < sect_size; i += sizeof(float)) {
    if (print_addresses) {
      if (O->is64Bit())
        outs() << format("%016" PRIx64, sect_addr + i) << "  ";
      else
        outs() << format("%08" PRIx64, sect_addr + i) << "  ";
    }
    float f;
    memcpy(&f, sect + i, sizeof(float));
    if (O->isLittleEndian() != sys::IsLittleEndianHost)
      sys::swapByteOrder(f);
    uint32_t l;
    memcpy(&l, sect + i, sizeof(uint32_t));
    if (O->isLittleEndian() != sys::IsLittleEndianHost)
      sys::swapByteOrder(l);
    DumpLiteral4(l, f);
  }
}

static void DumpLiteral8(MachOObjectFile *O, uint32_t l0, uint32_t l1,
                         double d) {
  outs() << format("0x%08" PRIx32, l0) << " " << format("0x%08" PRIx32, l1);
  uint32_t Hi, Lo;
  Hi = (O->isLittleEndian()) ? l1 : l0;
  Lo = (O->isLittleEndian()) ? l0 : l1;

  // Hi is the high word, so this is equivalent to if(isfinite(d))
  if ((Hi & 0x7ff00000) != 0x7ff00000)
    outs() << format(" (%.16e)\n", d);
  else {
    if (Hi == 0x7ff00000 && Lo == 0)
      outs() << " (+Infinity)\n";
    else if (Hi == 0xfff00000 && Lo == 0)
      outs() << " (-Infinity)\n";
    else if ((Hi & 0x00080000) == 0x00080000)
      outs() << " (non-signaling Not-a-Number)\n";
    else
      outs() << " (signaling Not-a-Number)\n";
  }
}

static void DumpLiteral8Section(MachOObjectFile *O, const char *sect,
                                uint32_t sect_size, uint64_t sect_addr,
                                bool print_addresses) {
  for (uint32_t i = 0; i < sect_size; i += sizeof(double)) {
    if (print_addresses) {
      if (O->is64Bit())
        outs() << format("%016" PRIx64, sect_addr + i) << "  ";
      else
        outs() << format("%08" PRIx64, sect_addr + i) << "  ";
    }
    double d;
    memcpy(&d, sect + i, sizeof(double));
    if (O->isLittleEndian() != sys::IsLittleEndianHost)
      sys::swapByteOrder(d);
    uint32_t l0, l1;
    memcpy(&l0, sect + i, sizeof(uint32_t));
    memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
    if (O->isLittleEndian() != sys::IsLittleEndianHost) {
      sys::swapByteOrder(l0);
      sys::swapByteOrder(l1);
    }
    DumpLiteral8(O, l0, l1, d);
  }
}

static void DumpLiteral16(uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3) {
  outs() << format("0x%08" PRIx32, l0) << " ";
  outs() << format("0x%08" PRIx32, l1) << " ";
  outs() << format("0x%08" PRIx32, l2) << " ";
  outs() << format("0x%08" PRIx32, l3) << "\n";
}

static void DumpLiteral16Section(MachOObjectFile *O, const char *sect,
                                 uint32_t sect_size, uint64_t sect_addr,
                                 bool print_addresses) {
  for (uint32_t i = 0; i < sect_size; i += 16) {
    if (print_addresses) {
      if (O->is64Bit())
        outs() << format("%016" PRIx64, sect_addr + i) << "  ";
      else
        outs() << format("%08" PRIx64, sect_addr + i) << "  ";
    }
    uint32_t l0, l1, l2, l3;
    memcpy(&l0, sect + i, sizeof(uint32_t));
    memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
    memcpy(&l2, sect + i + 2 * sizeof(uint32_t), sizeof(uint32_t));
    memcpy(&l3, sect + i + 3 * sizeof(uint32_t), sizeof(uint32_t));
    if (O->isLittleEndian() != sys::IsLittleEndianHost) {
      sys::swapByteOrder(l0);
      sys::swapByteOrder(l1);
      sys::swapByteOrder(l2);
      sys::swapByteOrder(l3);
    }
    DumpLiteral16(l0, l1, l2, l3);
  }
}

static void DumpLiteralPointerSection(MachOObjectFile *O,
                                      const SectionRef &Section,
                                      const char *sect, uint32_t sect_size,
                                      uint64_t sect_addr,
                                      bool print_addresses) {
  // Collect the literal sections in this Mach-O file.
  std::vector<SectionRef> LiteralSections;
  for (const SectionRef &Section : O->sections()) {
    DataRefImpl Ref = Section.getRawDataRefImpl();
    uint32_t section_type;
    if (O->is64Bit()) {
      const MachO::section_64 Sec = O->getSection64(Ref);
      section_type = Sec.flags & MachO::SECTION_TYPE;
    } else {
      const MachO::section Sec = O->getSection(Ref);
      section_type = Sec.flags & MachO::SECTION_TYPE;
    }
    if (section_type == MachO::S_CSTRING_LITERALS ||
        section_type == MachO::S_4BYTE_LITERALS ||
        section_type == MachO::S_8BYTE_LITERALS ||
        section_type == MachO::S_16BYTE_LITERALS)
      LiteralSections.push_back(Section);
  }

  // Set the size of the literal pointer.
  uint32_t lp_size = O->is64Bit() ? 8 : 4;

  // Collect the external relocation symbols for the literal pointers.
  std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
  for (const RelocationRef &Reloc : Section.relocations()) {
    DataRefImpl Rel;
    MachO::any_relocation_info RE;
    bool isExtern = false;
    Rel = Reloc.getRawDataRefImpl();
    RE = O->getRelocation(Rel);
    isExtern = O->getPlainRelocationExternal(RE);
    if (isExtern) {
      uint64_t RelocOffset = Reloc.getOffset();
      symbol_iterator RelocSym = Reloc.getSymbol();
      Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
    }
  }
  array_pod_sort(Relocs.begin(), Relocs.end());

  // Dump each literal pointer.
  for (uint32_t i = 0; i < sect_size; i += lp_size) {
    if (print_addresses) {
      if (O->is64Bit())
        outs() << format("%016" PRIx64, sect_addr + i) << "  ";
      else
        outs() << format("%08" PRIx64, sect_addr + i) << "  ";
    }
    uint64_t lp;
    if (O->is64Bit()) {
      memcpy(&lp, sect + i, sizeof(uint64_t));
      if (O->isLittleEndian() != sys::IsLittleEndianHost)
        sys::swapByteOrder(lp);
    } else {
      uint32_t li;
      memcpy(&li, sect + i, sizeof(uint32_t));
      if (O->isLittleEndian() != sys::IsLittleEndianHost)
        sys::swapByteOrder(li);
      lp = li;
    }

    // First look for an external relocation entry for this literal pointer.
    auto Reloc = std::find_if(
        Relocs.begin(), Relocs.end(),
        [&](const std::pair<uint64_t, SymbolRef> &P) { return P.first == i; });
    if (Reloc != Relocs.end()) {
      symbol_iterator RelocSym = Reloc->second;
      ErrorOr<StringRef> SymName = RelocSym->getName();
      if (std::error_code EC = SymName.getError())
        report_fatal_error(EC.message());
      outs() << "external relocation entry for symbol:" << *SymName << "\n";
      continue;
    }

    // For local references see what the section the literal pointer points to.
    auto Sect = std::find_if(LiteralSections.begin(), LiteralSections.end(),
                             [&](const SectionRef &R) {
                               return lp >= R.getAddress() &&
                                      lp < R.getAddress() + R.getSize();
                             });
    if (Sect == LiteralSections.end()) {
      outs() << format("0x%" PRIx64, lp) << " (not in a literal section)\n";
      continue;
    }

    uint64_t SectAddress = Sect->getAddress();
    uint64_t SectSize = Sect->getSize();

    StringRef SectName;
    Sect->getName(SectName);
    DataRefImpl Ref = Sect->getRawDataRefImpl();
    StringRef SegmentName = O->getSectionFinalSegmentName(Ref);
    outs() << SegmentName << ":" << SectName << ":";

    uint32_t section_type;
    if (O->is64Bit()) {
      const MachO::section_64 Sec = O->getSection64(Ref);
      section_type = Sec.flags & MachO::SECTION_TYPE;
    } else {
      const MachO::section Sec = O->getSection(Ref);
      section_type = Sec.flags & MachO::SECTION_TYPE;
    }

    StringRef BytesStr;
    Sect->getContents(BytesStr);
    const char *Contents = reinterpret_cast<const char *>(BytesStr.data());

    switch (section_type) {
    case MachO::S_CSTRING_LITERALS:
      for (uint64_t i = lp - SectAddress; i < SectSize && Contents[i] != '\0';
           i++) {
        DumpCstringChar(Contents[i]);
      }
      outs() << "\n";
      break;
    case MachO::S_4BYTE_LITERALS:
      float f;
      memcpy(&f, Contents + (lp - SectAddress), sizeof(float));
      uint32_t l;
      memcpy(&l, Contents + (lp - SectAddress), sizeof(uint32_t));
      if (O->isLittleEndian() != sys::IsLittleEndianHost) {
        sys::swapByteOrder(f);
        sys::swapByteOrder(l);
      }
      DumpLiteral4(l, f);
      break;
    case MachO::S_8BYTE_LITERALS: {
      double d;
      memcpy(&d, Contents + (lp - SectAddress), sizeof(double));
      uint32_t l0, l1;
      memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
      memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
             sizeof(uint32_t));
      if (O->isLittleEndian() != sys::IsLittleEndianHost) {
        sys::swapByteOrder(f);
        sys::swapByteOrder(l0);
        sys::swapByteOrder(l1);
      }
      DumpLiteral8(O, l0, l1, d);
      break;
    }
    case MachO::S_16BYTE_LITERALS: {
      uint32_t l0, l1, l2, l3;
      memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
      memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
             sizeof(uint32_t));
      memcpy(&l2, Contents + (lp - SectAddress) + 2 * sizeof(uint32_t),
             sizeof(uint32_t));
      memcpy(&l3, Contents + (lp - SectAddress) + 3 * sizeof(uint32_t),
             sizeof(uint32_t));
      if (O->isLittleEndian() != sys::IsLittleEndianHost) {
        sys::swapByteOrder(l0);
        sys::swapByteOrder(l1);
        sys::swapByteOrder(l2);
        sys::swapByteOrder(l3);
      }
      DumpLiteral16(l0, l1, l2, l3);
      break;
    }
    }
  }
}

static void DumpInitTermPointerSection(MachOObjectFile *O, const char *sect,
                                       uint32_t sect_size, uint64_t sect_addr,
                                       SymbolAddressMap *AddrMap,
                                       bool verbose) {
  uint32_t stride;
  stride = (O->is64Bit()) ? sizeof(uint64_t) : sizeof(uint32_t);
  for (uint32_t i = 0; i < sect_size; i += stride) {
    const char *SymbolName = nullptr;
    if (O->is64Bit()) {
      outs() << format("0x%016" PRIx64, sect_addr + i * stride) << " ";
      uint64_t pointer_value;
      memcpy(&pointer_value, sect + i, stride);
      if (O->isLittleEndian() != sys::IsLittleEndianHost)
        sys::swapByteOrder(pointer_value);
      outs() << format("0x%016" PRIx64, pointer_value);
      if (verbose)
        SymbolName = GuessSymbolName(pointer_value, AddrMap);
    } else {
      outs() << format("0x%08" PRIx64, sect_addr + i * stride) << " ";
      uint32_t pointer_value;
      memcpy(&pointer_value, sect + i, stride);
      if (O->isLittleEndian() != sys::IsLittleEndianHost)
        sys::swapByteOrder(pointer_value);
      outs() << format("0x%08" PRIx32, pointer_value);
      if (verbose)
        SymbolName = GuessSymbolName(pointer_value, AddrMap);
    }
    if (SymbolName)
      outs() << " " << SymbolName;
    outs() << "\n";
  }
}

static void DumpRawSectionContents(MachOObjectFile *O, const char *sect,
                                   uint32_t size, uint64_t addr) {
  uint32_t cputype = O->getHeader().cputype;
  if (cputype == MachO::CPU_TYPE_I386 || cputype == MachO::CPU_TYPE_X86_64) {
    uint32_t j;
    for (uint32_t i = 0; i < size; i += j, addr += j) {
      if (O->is64Bit())
        outs() << format("%016" PRIx64, addr) << "\t";
      else
        outs() << format("%08" PRIx64, addr) << "\t";
      for (j = 0; j < 16 && i + j < size; j++) {
        uint8_t byte_word = *(sect + i + j);
        outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
      }
      outs() << "\n";
    }
  } else {
    uint32_t j;
    for (uint32_t i = 0; i < size; i += j, addr += j) {
      if (O->is64Bit())
        outs() << format("%016" PRIx64, addr) << "\t";
      else
        outs() << format("%08" PRIx64, sect) << "\t";
      for (j = 0; j < 4 * sizeof(int32_t) && i + j < size;
           j += sizeof(int32_t)) {
        if (i + j + sizeof(int32_t) < size) {
          uint32_t long_word;
          memcpy(&long_word, sect + i + j, sizeof(int32_t));
          if (O->isLittleEndian() != sys::IsLittleEndianHost)
            sys::swapByteOrder(long_word);
          outs() << format("%08" PRIx32, long_word) << " ";
        } else {
          for (uint32_t k = 0; i + j + k < size; k++) {
            uint8_t byte_word = *(sect + i + j);
            outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
          }
        }
      }
      outs() << "\n";
    }
  }
}

static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
                             StringRef DisSegName, StringRef DisSectName);
static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
                                uint32_t size, uint32_t addr);

static void DumpSectionContents(StringRef Filename, MachOObjectFile *O,
                                bool verbose) {
  SymbolAddressMap AddrMap;
  if (verbose)
    CreateSymbolAddressMap(O, &AddrMap);

  for (unsigned i = 0; i < FilterSections.size(); ++i) {
    StringRef DumpSection = FilterSections[i];
    std::pair<StringRef, StringRef> DumpSegSectName;
    DumpSegSectName = DumpSection.split(',');
    StringRef DumpSegName, DumpSectName;
    if (DumpSegSectName.second.size()) {
      DumpSegName = DumpSegSectName.first;
      DumpSectName = DumpSegSectName.second;
    } else {
      DumpSegName = "";
      DumpSectName = DumpSegSectName.first;
    }
    for (const SectionRef &Section : O->sections()) {
      StringRef SectName;
      Section.getName(SectName);
      DataRefImpl Ref = Section.getRawDataRefImpl();
      StringRef SegName = O->getSectionFinalSegmentName(Ref);
      if ((DumpSegName.empty() || SegName == DumpSegName) &&
          (SectName == DumpSectName)) {

        uint32_t section_flags;
        if (O->is64Bit()) {
          const MachO::section_64 Sec = O->getSection64(Ref);
          section_flags = Sec.flags;

        } else {
          const MachO::section Sec = O->getSection(Ref);
          section_flags = Sec.flags;
        }
        uint32_t section_type = section_flags & MachO::SECTION_TYPE;

        StringRef BytesStr;
        Section.getContents(BytesStr);
        const char *sect = reinterpret_cast<const char *>(BytesStr.data());
        uint32_t sect_size = BytesStr.size();
        uint64_t sect_addr = Section.getAddress();

        outs() << "Contents of (" << SegName << "," << SectName
               << ") section\n";

        if (verbose) {
          if ((section_flags & MachO::S_ATTR_PURE_INSTRUCTIONS) ||
              (section_flags & MachO::S_ATTR_SOME_INSTRUCTIONS)) {
            DisassembleMachO(Filename, O, SegName, SectName);
            continue;
          }
          if (SegName == "__TEXT" && SectName == "__info_plist") {
            outs() << sect;
            continue;
          }
          if (SegName == "__OBJC" && SectName == "__protocol") {
            DumpProtocolSection(O, sect, sect_size, sect_addr);
            continue;
          }
          switch (section_type) {
          case MachO::S_REGULAR:
            DumpRawSectionContents(O, sect, sect_size, sect_addr);
            break;
          case MachO::S_ZEROFILL:
            outs() << "zerofill section and has no contents in the file\n";
            break;
          case MachO::S_CSTRING_LITERALS:
            DumpCstringSection(O, sect, sect_size, sect_addr, !NoLeadingAddr);
            break;
          case MachO::S_4BYTE_LITERALS:
            DumpLiteral4Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
            break;
          case MachO::S_8BYTE_LITERALS:
            DumpLiteral8Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
            break;
          case MachO::S_16BYTE_LITERALS:
            DumpLiteral16Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
            break;
          case MachO::S_LITERAL_POINTERS:
            DumpLiteralPointerSection(O, Section, sect, sect_size, sect_addr,
                                      !NoLeadingAddr);
            break;
          case MachO::S_MOD_INIT_FUNC_POINTERS:
          case MachO::S_MOD_TERM_FUNC_POINTERS:
            DumpInitTermPointerSection(O, sect, sect_size, sect_addr, &AddrMap,
                                       verbose);
            break;
          default:
            outs() << "Unknown section type ("
                   << format("0x%08" PRIx32, section_type) << ")\n";
            DumpRawSectionContents(O, sect, sect_size, sect_addr);
            break;
          }
        } else {
          if (section_type == MachO::S_ZEROFILL)
            outs() << "zerofill section and has no contents in the file\n";
          else
            DumpRawSectionContents(O, sect, sect_size, sect_addr);
        }
      }
    }
  }
}

static void DumpInfoPlistSectionContents(StringRef Filename,
                                         MachOObjectFile *O) {
  for (const SectionRef &Section : O->sections()) {
    StringRef SectName;
    Section.getName(SectName);
    DataRefImpl Ref = Section.getRawDataRefImpl();
    StringRef SegName = O->getSectionFinalSegmentName(Ref);
    if (SegName == "__TEXT" && SectName == "__info_plist") {
      outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
      StringRef BytesStr;
      Section.getContents(BytesStr);
      const char *sect = reinterpret_cast<const char *>(BytesStr.data());
      outs() << sect;
      return;
    }
  }
}

// checkMachOAndArchFlags() checks to see if the ObjectFile is a Mach-O file
// and if it is and there is a list of architecture flags is specified then
// check to make sure this Mach-O file is one of those architectures or all
// architectures were specified.  If not then an error is generated and this
// routine returns false.  Else it returns true.
static bool checkMachOAndArchFlags(ObjectFile *O, StringRef Filename) {
  if (isa<MachOObjectFile>(O) && !ArchAll && ArchFlags.size() != 0) {
    MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O);
    bool ArchFound = false;
    MachO::mach_header H;
    MachO::mach_header_64 H_64;
    Triple T;
    if (MachO->is64Bit()) {
      H_64 = MachO->MachOObjectFile::getHeader64();
      T = MachOObjectFile::getArch(H_64.cputype, H_64.cpusubtype);
    } else {
      H = MachO->MachOObjectFile::getHeader();
      T = MachOObjectFile::getArch(H.cputype, H.cpusubtype);
    }
    unsigned i;
    for (i = 0; i < ArchFlags.size(); ++i) {
      if (ArchFlags[i] == T.getArchName())
        ArchFound = true;
      break;
    }
    if (!ArchFound) {
      errs() << "llvm-objdump: file: " + Filename + " does not contain "
             << "architecture: " + ArchFlags[i] + "\n";
      return false;
    }
  }
  return true;
}

static void printObjcMetaData(MachOObjectFile *O, bool verbose);

// ProcessMachO() is passed a single opened Mach-O file, which may be an
// archive member and or in a slice of a universal file.  It prints the
// the file name and header info and then processes it according to the
// command line options.
static void ProcessMachO(StringRef Filename, MachOObjectFile *MachOOF,
                         StringRef ArchiveMemberName = StringRef(),
                         StringRef ArchitectureName = StringRef()) {
  // If we are doing some processing here on the Mach-O file print the header
  // info.  And don't print it otherwise like in the case of printing the
  // UniversalHeaders or ArchiveHeaders.
  if (Disassemble || PrivateHeaders || ExportsTrie || Rebase || Bind ||
      LazyBind || WeakBind || IndirectSymbols || DataInCode || LinkOptHints ||
      DylibsUsed || DylibId || ObjcMetaData || (FilterSections.size() != 0)) {
    outs() << Filename;
    if (!ArchiveMemberName.empty())
      outs() << '(' << ArchiveMemberName << ')';
    if (!ArchitectureName.empty())
      outs() << " (architecture " << ArchitectureName << ")";
    outs() << ":\n";
  }

  if (Disassemble)
    DisassembleMachO(Filename, MachOOF, "__TEXT", "__text");
  if (IndirectSymbols)
    PrintIndirectSymbols(MachOOF, !NonVerbose);
  if (DataInCode)
    PrintDataInCodeTable(MachOOF, !NonVerbose);
  if (LinkOptHints)
    PrintLinkOptHints(MachOOF);
  if (Relocations)
    PrintRelocations(MachOOF);
  if (SectionHeaders)
    PrintSectionHeaders(MachOOF);
  if (SectionContents)
    PrintSectionContents(MachOOF);
  if (FilterSections.size() != 0)
    DumpSectionContents(Filename, MachOOF, !NonVerbose);
  if (InfoPlist)
    DumpInfoPlistSectionContents(Filename, MachOOF);
  if (DylibsUsed)
    PrintDylibs(MachOOF, false);
  if (DylibId)
    PrintDylibs(MachOOF, true);
  if (SymbolTable)
    PrintSymbolTable(MachOOF);
  if (UnwindInfo)
    printMachOUnwindInfo(MachOOF);
  if (PrivateHeaders)
    printMachOFileHeader(MachOOF);
  if (ObjcMetaData)
    printObjcMetaData(MachOOF, !NonVerbose);
  if (ExportsTrie)
    printExportsTrie(MachOOF);
  if (Rebase)
    printRebaseTable(MachOOF);
  if (Bind)
    printBindTable(MachOOF);
  if (LazyBind)
    printLazyBindTable(MachOOF);
  if (WeakBind)
    printWeakBindTable(MachOOF);
}

// printUnknownCPUType() helps print_fat_headers for unknown CPU's.
static void printUnknownCPUType(uint32_t cputype, uint32_t cpusubtype) {
  outs() << "    cputype (" << cputype << ")\n";
  outs() << "    cpusubtype (" << cpusubtype << ")\n";
}

// printCPUType() helps print_fat_headers by printing the cputype and
// pusubtype (symbolically for the one's it knows about).
static void printCPUType(uint32_t cputype, uint32_t cpusubtype) {
  switch (cputype) {
  case MachO::CPU_TYPE_I386:
    switch (cpusubtype) {
    case MachO::CPU_SUBTYPE_I386_ALL:
      outs() << "    cputype CPU_TYPE_I386\n";
      outs() << "    cpusubtype CPU_SUBTYPE_I386_ALL\n";
      break;
    default:
      printUnknownCPUType(cputype, cpusubtype);
      break;
    }
    break;
  case MachO::CPU_TYPE_X86_64:
    switch (cpusubtype) {
    case MachO::CPU_SUBTYPE_X86_64_ALL:
      outs() << "    cputype CPU_TYPE_X86_64\n";
      outs() << "    cpusubtype CPU_SUBTYPE_X86_64_ALL\n";
      break;
    case MachO::CPU_SUBTYPE_X86_64_H:
      outs() << "    cputype CPU_TYPE_X86_64\n";
      outs() << "    cpusubtype CPU_SUBTYPE_X86_64_H\n";
      break;
    default:
      printUnknownCPUType(cputype, cpusubtype);
      break;
    }
    break;
  case MachO::CPU_TYPE_ARM:
    switch (cpusubtype) {
    case MachO::CPU_SUBTYPE_ARM_ALL:
      outs() << "    cputype CPU_TYPE_ARM\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM_ALL\n";
      break;
    case MachO::CPU_SUBTYPE_ARM_V4T:
      outs() << "    cputype CPU_TYPE_ARM\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V4T\n";
      break;
    case MachO::CPU_SUBTYPE_ARM_V5TEJ:
      outs() << "    cputype CPU_TYPE_ARM\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V5TEJ\n";
      break;
    case MachO::CPU_SUBTYPE_ARM_XSCALE:
      outs() << "    cputype CPU_TYPE_ARM\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM_XSCALE\n";
      break;
    case MachO::CPU_SUBTYPE_ARM_V6:
      outs() << "    cputype CPU_TYPE_ARM\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V6\n";
      break;
    case MachO::CPU_SUBTYPE_ARM_V6M:
      outs() << "    cputype CPU_TYPE_ARM\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V6M\n";
      break;
    case MachO::CPU_SUBTYPE_ARM_V7:
      outs() << "    cputype CPU_TYPE_ARM\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7\n";
      break;
    case MachO::CPU_SUBTYPE_ARM_V7EM:
      outs() << "    cputype CPU_TYPE_ARM\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7EM\n";
      break;
    case MachO::CPU_SUBTYPE_ARM_V7K:
      outs() << "    cputype CPU_TYPE_ARM\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7K\n";
      break;
    case MachO::CPU_SUBTYPE_ARM_V7M:
      outs() << "    cputype CPU_TYPE_ARM\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7M\n";
      break;
    case MachO::CPU_SUBTYPE_ARM_V7S:
      outs() << "    cputype CPU_TYPE_ARM\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7S\n";
      break;
    default:
      printUnknownCPUType(cputype, cpusubtype);
      break;
    }
    break;
  case MachO::CPU_TYPE_ARM64:
    switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
    case MachO::CPU_SUBTYPE_ARM64_ALL:
      outs() << "    cputype CPU_TYPE_ARM64\n";
      outs() << "    cpusubtype CPU_SUBTYPE_ARM64_ALL\n";
      break;
    default:
      printUnknownCPUType(cputype, cpusubtype);
      break;
    }
    break;
  default:
    printUnknownCPUType(cputype, cpusubtype);
    break;
  }
}

static void printMachOUniversalHeaders(const object::MachOUniversalBinary *UB,
                                       bool verbose) {
  outs() << "Fat headers\n";
  if (verbose)
    outs() << "fat_magic FAT_MAGIC\n";
  else
    outs() << "fat_magic " << format("0x%" PRIx32, MachO::FAT_MAGIC) << "\n";

  uint32_t nfat_arch = UB->getNumberOfObjects();
  StringRef Buf = UB->getData();
  uint64_t size = Buf.size();
  uint64_t big_size = sizeof(struct MachO::fat_header) +
                      nfat_arch * sizeof(struct MachO::fat_arch);
  outs() << "nfat_arch " << UB->getNumberOfObjects();
  if (nfat_arch == 0)
    outs() << " (malformed, contains zero architecture types)\n";
  else if (big_size > size)
    outs() << " (malformed, architectures past end of file)\n";
  else
    outs() << "\n";

  for (uint32_t i = 0; i < nfat_arch; ++i) {
    MachOUniversalBinary::ObjectForArch OFA(UB, i);
    uint32_t cputype = OFA.getCPUType();
    uint32_t cpusubtype = OFA.getCPUSubType();
    outs() << "architecture ";
    for (uint32_t j = 0; i != 0 && j <= i - 1; j++) {
      MachOUniversalBinary::ObjectForArch other_OFA(UB, j);
      uint32_t other_cputype = other_OFA.getCPUType();
      uint32_t other_cpusubtype = other_OFA.getCPUSubType();
      if (cputype != 0 && cpusubtype != 0 && cputype == other_cputype &&
          (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) ==
              (other_cpusubtype & ~MachO::CPU_SUBTYPE_MASK)) {
        outs() << "(illegal duplicate architecture) ";
        break;
      }
    }
    if (verbose) {
      outs() << OFA.getArchTypeName() << "\n";
      printCPUType(cputype, cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
    } else {
      outs() << i << "\n";
      outs() << "    cputype " << cputype << "\n";
      outs() << "    cpusubtype " << (cpusubtype & ~MachO::CPU_SUBTYPE_MASK)
             << "\n";
    }
    if (verbose &&
        (cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64)
      outs() << "    capabilities CPU_SUBTYPE_LIB64\n";
    else
      outs() << "    capabilities "
             << format("0x%" PRIx32,
                       (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24) << "\n";
    outs() << "    offset " << OFA.getOffset();
    if (OFA.getOffset() > size)
      outs() << " (past end of file)";
    if (OFA.getOffset() % (1 << OFA.getAlign()) != 0)
      outs() << " (not aligned on it's alignment (2^" << OFA.getAlign() << ")";
    outs() << "\n";
    outs() << "    size " << OFA.getSize();
    big_size = OFA.getOffset() + OFA.getSize();
    if (big_size > size)
      outs() << " (past end of file)";
    outs() << "\n";
    outs() << "    align 2^" << OFA.getAlign() << " (" << (1 << OFA.getAlign())
           << ")\n";
  }
}

static void printArchiveChild(const Archive::Child &C, bool verbose,
                              bool print_offset) {
  if (print_offset)
    outs() << C.getChildOffset() << "\t";
  sys::fs::perms Mode = C.getAccessMode();
  if (verbose) {
    // FIXME: this first dash, "-", is for (Mode & S_IFMT) == S_IFREG.
    // But there is nothing in sys::fs::perms for S_IFMT or S_IFREG.
    outs() << "-";
    outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
    outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
    outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
    outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
    outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
    outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
    outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
    outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
    outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
  } else {
    outs() << format("0%o ", Mode);
  }

  unsigned UID = C.getUID();
  outs() << format("%3d/", UID);
  unsigned GID = C.getGID();
  outs() << format("%-3d ", GID);
  ErrorOr<uint64_t> Size = C.getRawSize();
  if (std::error_code EC = Size.getError())
    report_fatal_error(EC.message());
  outs() << format("%5" PRId64, Size.get()) << " ";

  StringRef RawLastModified = C.getRawLastModified();
  if (verbose) {
    unsigned Seconds;
    if (RawLastModified.getAsInteger(10, Seconds))
      outs() << "(date: \"%s\" contains non-decimal chars) " << RawLastModified;
    else {
      // Since cime(3) returns a 26 character string of the form:
      // "Sun Sep 16 01:03:52 1973\n\0"
      // just print 24 characters.
      time_t t = Seconds;
      outs() << format("%.24s ", ctime(&t));
    }
  } else {
    outs() << RawLastModified << " ";
  }

  if (verbose) {
    ErrorOr<StringRef> NameOrErr = C.getName();
    if (NameOrErr.getError()) {
      StringRef RawName = C.getRawName();
      outs() << RawName << "\n";
    } else {
      StringRef Name = NameOrErr.get();
      outs() << Name << "\n";
    }
  } else {
    StringRef RawName = C.getRawName();
    outs() << RawName << "\n";
  }
}

static void printArchiveHeaders(Archive *A, bool verbose, bool print_offset) {
  for (Archive::child_iterator I = A->child_begin(false), E = A->child_end();
       I != E; ++I) {
    if (std::error_code EC = I->getError())
      report_fatal_error(EC.message());
    const Archive::Child &C = **I;
    printArchiveChild(C, verbose, print_offset);
  }
}

// ParseInputMachO() parses the named Mach-O file in Filename and handles the
// -arch flags selecting just those slices as specified by them and also parses
// archive files.  Then for each individual Mach-O file ProcessMachO() is
// called to process the file based on the command line options.
void llvm::ParseInputMachO(StringRef Filename) {
  // Check for -arch all and verifiy the -arch flags are valid.
  for (unsigned i = 0; i < ArchFlags.size(); ++i) {
    if (ArchFlags[i] == "all") {
      ArchAll = true;
    } else {
      if (!MachOObjectFile::isValidArch(ArchFlags[i])) {
        errs() << "llvm-objdump: Unknown architecture named '" + ArchFlags[i] +
                      "'for the -arch option\n";
        return;
      }
    }
  }

  // Attempt to open the binary.
  ErrorOr<OwningBinary<Binary>> BinaryOrErr = createBinary(Filename);
  if (std::error_code EC = BinaryOrErr.getError()) {
    errs() << "llvm-objdump: '" << Filename << "': " << EC.message() << ".\n";
    return;
  }
  Binary &Bin = *BinaryOrErr.get().getBinary();

  if (Archive *A = dyn_cast<Archive>(&Bin)) {
    outs() << "Archive : " << Filename << "\n";
    if (ArchiveHeaders)
      printArchiveHeaders(A, !NonVerbose, ArchiveMemberOffsets);
    for (Archive::child_iterator I = A->child_begin(), E = A->child_end();
         I != E; ++I) {
      if (std::error_code EC = I->getError())
        report_error(Filename, EC);
      auto &C = I->get();
      ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
      if (ChildOrErr.getError())
        continue;
      if (MachOObjectFile *O = dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
        if (!checkMachOAndArchFlags(O, Filename))
          return;
        ProcessMachO(Filename, O, O->getFileName());
      }
    }
    return;
  }
  if (UniversalHeaders) {
    if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin))
      printMachOUniversalHeaders(UB, !NonVerbose);
  }
  if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin)) {
    // If we have a list of architecture flags specified dump only those.
    if (!ArchAll && ArchFlags.size() != 0) {
      // Look for a slice in the universal binary that matches each ArchFlag.
      bool ArchFound;
      for (unsigned i = 0; i < ArchFlags.size(); ++i) {
        ArchFound = false;
        for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
                                                   E = UB->end_objects();
             I != E; ++I) {
          if (ArchFlags[i] == I->getArchTypeName()) {
            ArchFound = true;
            ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr =
                I->getAsObjectFile();
            std::string ArchitectureName = "";
            if (ArchFlags.size() > 1)
              ArchitectureName = I->getArchTypeName();
            if (ObjOrErr) {
              ObjectFile &O = *ObjOrErr.get();
              if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
                ProcessMachO(Filename, MachOOF, "", ArchitectureName);
            } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
                           I->getAsArchive()) {
              std::unique_ptr<Archive> &A = *AOrErr;
              outs() << "Archive : " << Filename;
              if (!ArchitectureName.empty())
                outs() << " (architecture " << ArchitectureName << ")";
              outs() << "\n";
              if (ArchiveHeaders)
                printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
              for (Archive::child_iterator AI = A->child_begin(),
                                           AE = A->child_end();
                   AI != AE; ++AI) {
                if (std::error_code EC = AI->getError())
                  report_error(Filename, EC);
                auto &C = AI->get();
                ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
                if (ChildOrErr.getError())
                  continue;
                if (MachOObjectFile *O =
                        dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
                  ProcessMachO(Filename, O, O->getFileName(), ArchitectureName);
              }
            }
          }
        }
        if (!ArchFound) {
          errs() << "llvm-objdump: file: " + Filename + " does not contain "
                 << "architecture: " + ArchFlags[i] + "\n";
          return;
        }
      }
      return;
    }
    // No architecture flags were specified so if this contains a slice that
    // matches the host architecture dump only that.
    if (!ArchAll) {
      for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
                                                 E = UB->end_objects();
           I != E; ++I) {
        if (MachOObjectFile::getHostArch().getArchName() ==
            I->getArchTypeName()) {
          ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
          std::string ArchiveName;
          ArchiveName.clear();
          if (ObjOrErr) {
            ObjectFile &O = *ObjOrErr.get();
            if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
              ProcessMachO(Filename, MachOOF);
          } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
                         I->getAsArchive()) {
            std::unique_ptr<Archive> &A = *AOrErr;
            outs() << "Archive : " << Filename << "\n";
            if (ArchiveHeaders)
              printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
            for (Archive::child_iterator AI = A->child_begin(),
                                         AE = A->child_end();
                 AI != AE; ++AI) {
              if (std::error_code EC = AI->getError())
                report_error(Filename, EC);
              auto &C = AI->get();
              ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
              if (ChildOrErr.getError())
                continue;
              if (MachOObjectFile *O =
                      dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
                ProcessMachO(Filename, O, O->getFileName());
            }
          }
          return;
        }
      }
    }
    // Either all architectures have been specified or none have been specified
    // and this does not contain the host architecture so dump all the slices.
    bool moreThanOneArch = UB->getNumberOfObjects() > 1;
    for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
                                               E = UB->end_objects();
         I != E; ++I) {
      ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
      std::string ArchitectureName = "";
      if (moreThanOneArch)
        ArchitectureName = I->getArchTypeName();
      if (ObjOrErr) {
        ObjectFile &Obj = *ObjOrErr.get();
        if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&Obj))
          ProcessMachO(Filename, MachOOF, "", ArchitectureName);
      } else if (ErrorOr<std::unique_ptr<Archive>> AOrErr = I->getAsArchive()) {
        std::unique_ptr<Archive> &A = *AOrErr;
        outs() << "Archive : " << Filename;
        if (!ArchitectureName.empty())
          outs() << " (architecture " << ArchitectureName << ")";
        outs() << "\n";
        if (ArchiveHeaders)
          printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
        for (Archive::child_iterator AI = A->child_begin(), AE = A->child_end();
             AI != AE; ++AI) {
          if (std::error_code EC = AI->getError())
            report_error(Filename, EC);
          auto &C = AI->get();
          ErrorOr<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
          if (ChildOrErr.getError())
            continue;
          if (MachOObjectFile *O =
                  dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
            if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(O))
              ProcessMachO(Filename, MachOOF, MachOOF->getFileName(),
                           ArchitectureName);
          }
        }
      }
    }
    return;
  }
  if (ObjectFile *O = dyn_cast<ObjectFile>(&Bin)) {
    if (!checkMachOAndArchFlags(O, Filename))
      return;
    if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*O)) {
      ProcessMachO(Filename, MachOOF);
    } else
      errs() << "llvm-objdump: '" << Filename << "': "
             << "Object is not a Mach-O file type.\n";
  } else
    report_error(Filename, object_error::invalid_file_type);
}

typedef std::pair<uint64_t, const char *> BindInfoEntry;
typedef std::vector<BindInfoEntry> BindTable;
typedef BindTable::iterator bind_table_iterator;

// The block of info used by the Symbolizer call backs.
struct DisassembleInfo {
  bool verbose;
  MachOObjectFile *O;
  SectionRef S;
  SymbolAddressMap *AddrMap;
  std::vector<SectionRef> *Sections;
  const char *class_name;
  const char *selector_name;
  char *method;
  char *demangled_name;
  uint64_t adrp_addr;
  uint32_t adrp_inst;
  BindTable *bindtable;
  uint32_t depth;
};

// SymbolizerGetOpInfo() is the operand information call back function.
// This is called to get the symbolic information for operand(s) of an
// instruction when it is being done.  This routine does this from
// the relocation information, symbol table, etc. That block of information
// is a pointer to the struct DisassembleInfo that was passed when the
// disassembler context was created and passed to back to here when
// called back by the disassembler for instruction operands that could have
// relocation information. The address of the instruction containing operand is
// at the Pc parameter.  The immediate value the operand has is passed in
// op_info->Value and is at Offset past the start of the instruction and has a
// byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the
// LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol
// names and addends of the symbolic expression to add for the operand.  The
// value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic
// information is returned then this function returns 1 else it returns 0.
static int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset,
                               uint64_t Size, int TagType, void *TagBuf) {
  struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
  struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf;
  uint64_t value = op_info->Value;

  // Make sure all fields returned are zero if we don't set them.
  memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1));
  op_info->Value = value;

  // If the TagType is not the value 1 which it code knows about or if no
  // verbose symbolic information is wanted then just return 0, indicating no
  // information is being returned.
  if (TagType != 1 || !info->verbose)
    return 0;

  unsigned int Arch = info->O->getArch();
  if (Arch == Triple::x86) {
    if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
      return 0;
    if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
      // TODO:
      // Search the external relocation entries of a fully linked image
      // (if any) for an entry that matches this segment offset.
      // uint32_t seg_offset = (Pc + Offset);
      return 0;
    }
    // In MH_OBJECT filetypes search the section's relocation entries (if any)
    // for an entry for this section offset.
    uint32_t sect_addr = info->S.getAddress();
    uint32_t sect_offset = (Pc + Offset) - sect_addr;
    bool reloc_found = false;
    DataRefImpl Rel;
    MachO::any_relocation_info RE;
    bool isExtern = false;
    SymbolRef Symbol;
    bool r_scattered = false;
    uint32_t r_value, pair_r_value, r_type;
    for (const RelocationRef &Reloc : info->S.relocations()) {
      uint64_t RelocOffset = Reloc.getOffset();
      if (RelocOffset == sect_offset) {
        Rel = Reloc.getRawDataRefImpl();
        RE = info->O->getRelocation(Rel);
        r_type = info->O->getAnyRelocationType(RE);
        r_scattered = info->O->isRelocationScattered(RE);
        if (r_scattered) {
          r_value = info->O->getScatteredRelocationValue(RE);
          if (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
              r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) {
            DataRefImpl RelNext = Rel;
            info->O->moveRelocationNext(RelNext);
            MachO::any_relocation_info RENext;
            RENext = info->O->getRelocation(RelNext);
            if (info->O->isRelocationScattered(RENext))
              pair_r_value = info->O->getScatteredRelocationValue(RENext);
            else
              return 0;
          }
        } else {
          isExtern = info->O->getPlainRelocationExternal(RE);
          if (isExtern) {
            symbol_iterator RelocSym = Reloc.getSymbol();
            Symbol = *RelocSym;
          }
        }
        reloc_found = true;
        break;
      }
    }
    if (reloc_found && isExtern) {
      ErrorOr<StringRef> SymName = Symbol.getName();
      if (std::error_code EC = SymName.getError())
        report_fatal_error(EC.message());
      const char *name = SymName->data();
      op_info->AddSymbol.Present = 1;
      op_info->AddSymbol.Name = name;
      // For i386 extern relocation entries the value in the instruction is
      // the offset from the symbol, and value is already set in op_info->Value.
      return 1;
    }
    if (reloc_found && (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
                        r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)) {
      const char *add = GuessSymbolName(r_value, info->AddrMap);
      const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
      uint32_t offset = value - (r_value - pair_r_value);
      op_info->AddSymbol.Present = 1;
      if (add != nullptr)
        op_info->AddSymbol.Name = add;
      else
        op_info->AddSymbol.Value = r_value;
      op_info->SubtractSymbol.Present = 1;
      if (sub != nullptr)
        op_info->SubtractSymbol.Name = sub;
      else
        op_info->SubtractSymbol.Value = pair_r_value;
      op_info->Value = offset;
      return 1;
    }
    return 0;
  }
  if (Arch == Triple::x86_64) {
    if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
      return 0;
    if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
      // TODO:
      // Search the external relocation entries of a fully linked image
      // (if any) for an entry that matches this segment offset.
      // uint64_t seg_offset = (Pc + Offset);
      return 0;
    }
    // In MH_OBJECT filetypes search the section's relocation entries (if any)
    // for an entry for this section offset.
    uint64_t sect_addr = info->S.getAddress();
    uint64_t sect_offset = (Pc + Offset) - sect_addr;
    bool reloc_found = false;
    DataRefImpl Rel;
    MachO::any_relocation_info RE;
    bool isExtern = false;
    SymbolRef Symbol;
    for (const RelocationRef &Reloc : info->S.relocations()) {
      uint64_t RelocOffset = Reloc.getOffset();
      if (RelocOffset == sect_offset) {
        Rel = Reloc.getRawDataRefImpl();
        RE = info->O->getRelocation(Rel);
        // NOTE: Scattered relocations don't exist on x86_64.
        isExtern = info->O->getPlainRelocationExternal(RE);
        if (isExtern) {
          symbol_iterator RelocSym = Reloc.getSymbol();
          Symbol = *RelocSym;
        }
        reloc_found = true;
        break;
      }
    }
    if (reloc_found && isExtern) {
      // The Value passed in will be adjusted by the Pc if the instruction
      // adds the Pc.  But for x86_64 external relocation entries the Value
      // is the offset from the external symbol.
      if (info->O->getAnyRelocationPCRel(RE))
        op_info->Value -= Pc + Offset + Size;
      ErrorOr<StringRef> SymName = Symbol.getName();
      if (std::error_code EC = SymName.getError())
        report_fatal_error(EC.message());
      const char *name = SymName->data();
      unsigned Type = info->O->getAnyRelocationType(RE);
      if (Type == MachO::X86_64_RELOC_SUBTRACTOR) {
        DataRefImpl RelNext = Rel;
        info->O->moveRelocationNext(RelNext);
        MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
        unsigned TypeNext = info->O->getAnyRelocationType(RENext);
        bool isExternNext = info->O->getPlainRelocationExternal(RENext);
        unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext);
        if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) {
          op_info->SubtractSymbol.Present = 1;
          op_info->SubtractSymbol.Name = name;
          symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum);
          Symbol = *RelocSymNext;
          ErrorOr<StringRef> SymNameNext = Symbol.getName();
          if (std::error_code EC = SymNameNext.getError())
            report_fatal_error(EC.message());
          name = SymNameNext->data();
        }
      }
      // TODO: add the VariantKinds to op_info->VariantKind for relocation types
      // like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT.
      op_info->AddSymbol.Present = 1;
      op_info->AddSymbol.Name = name;
      return 1;
    }
    return 0;
  }
  if (Arch == Triple::arm) {
    if (Offset != 0 || (Size != 4 && Size != 2))
      return 0;
    if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
      // TODO:
      // Search the external relocation entries of a fully linked image
      // (if any) for an entry that matches this segment offset.
      // uint32_t seg_offset = (Pc + Offset);
      return 0;
    }
    // In MH_OBJECT filetypes search the section's relocation entries (if any)
    // for an entry for this section offset.
    uint32_t sect_addr = info->S.getAddress();
    uint32_t sect_offset = (Pc + Offset) - sect_addr;
    DataRefImpl Rel;
    MachO::any_relocation_info RE;
    bool isExtern = false;
    SymbolRef Symbol;
    bool r_scattered = false;
    uint32_t r_value, pair_r_value, r_type, r_length, other_half;
    auto Reloc =
        std::find_if(info->S.relocations().begin(), info->S.relocations().end(),
                     [&](const RelocationRef &Reloc) {
                       uint64_t RelocOffset = Reloc.getOffset();
                       return RelocOffset == sect_offset;
                     });

    if (Reloc == info->S.relocations().end())
      return 0;

    Rel = Reloc->getRawDataRefImpl();
    RE = info->O->getRelocation(Rel);
    r_length = info->O->getAnyRelocationLength(RE);
    r_scattered = info->O->isRelocationScattered(RE);
    if (r_scattered) {
      r_value = info->O->getScatteredRelocationValue(RE);
      r_type = info->O->getScatteredRelocationType(RE);
    } else {
      r_type = info->O->getAnyRelocationType(RE);
      isExtern = info->O->getPlainRelocationExternal(RE);
      if (isExtern) {
        symbol_iterator RelocSym = Reloc->getSymbol();
        Symbol = *RelocSym;
      }
    }
    if (r_type == MachO::ARM_RELOC_HALF ||
        r_type == MachO::ARM_RELOC_SECTDIFF ||
        r_type == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
        r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
      DataRefImpl RelNext = Rel;
      info->O->moveRelocationNext(RelNext);
      MachO::any_relocation_info RENext;
      RENext = info->O->getRelocation(RelNext);
      other_half = info->O->getAnyRelocationAddress(RENext) & 0xffff;
      if (info->O->isRelocationScattered(RENext))
        pair_r_value = info->O->getScatteredRelocationValue(RENext);
    }

    if (isExtern) {
      ErrorOr<StringRef> SymName = Symbol.getName();
      if (std::error_code EC = SymName.getError())
        report_fatal_error(EC.message());
      const char *name = SymName->data();
      op_info->AddSymbol.Present = 1;
      op_info->AddSymbol.Name = name;
      switch (r_type) {
      case MachO::ARM_RELOC_HALF:
        if ((r_length & 0x1) == 1) {
          op_info->Value = value << 16 | other_half;
          op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
        } else {
          op_info->Value = other_half << 16 | value;
          op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
        }
        break;
      default:
        break;
      }
      return 1;
    }
    // If we have a branch that is not an external relocation entry then
    // return 0 so the code in tryAddingSymbolicOperand() can use the
    // SymbolLookUp call back with the branch target address to look up the
    // symbol and possiblity add an annotation for a symbol stub.
    if (isExtern == 0 && (r_type == MachO::ARM_RELOC_BR24 ||
                          r_type == MachO::ARM_THUMB_RELOC_BR22))
      return 0;

    uint32_t offset = 0;
    if (r_type == MachO::ARM_RELOC_HALF ||
        r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
      if ((r_length & 0x1) == 1)
        value = value << 16 | other_half;
      else
        value = other_half << 16 | value;
    }
    if (r_scattered && (r_type != MachO::ARM_RELOC_HALF &&
                        r_type != MachO::ARM_RELOC_HALF_SECTDIFF)) {
      offset = value - r_value;
      value = r_value;
    }

    if (r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
      if ((r_length & 0x1) == 1)
        op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
      else
        op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
      const char *add = GuessSymbolName(r_value, info->AddrMap);
      const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
      int32_t offset = value - (r_value - pair_r_value);
      op_info->AddSymbol.Present = 1;
      if (add != nullptr)
        op_info->AddSymbol.Name = add;
      else
        op_info->AddSymbol.Value = r_value;
      op_info->SubtractSymbol.Present = 1;
      if (sub != nullptr)
        op_info->SubtractSymbol.Name = sub;
      else
        op_info->SubtractSymbol.Value = pair_r_value;
      op_info->Value = offset;
      return 1;
    }

    op_info->AddSymbol.Present = 1;
    op_info->Value = offset;
    if (r_type == MachO::ARM_RELOC_HALF) {
      if ((r_length & 0x1) == 1)
        op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
      else
        op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
    }
    const char *add = GuessSymbolName(value, info->AddrMap);
    if (add != nullptr) {
      op_info->AddSymbol.Name = add;
      return 1;
    }
    op_info->AddSymbol.Value = value;
    return 1;
  }
  if (Arch == Triple::aarch64) {
    if (Offset != 0 || Size != 4)
      return 0;
    if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
      // TODO:
      // Search the external relocation entries of a fully linked image
      // (if any) for an entry that matches this segment offset.
      // uint64_t seg_offset = (Pc + Offset);
      return 0;
    }
    // In MH_OBJECT filetypes search the section's relocation entries (if any)
    // for an entry for this section offset.
    uint64_t sect_addr = info->S.getAddress();
    uint64_t sect_offset = (Pc + Offset) - sect_addr;
    auto Reloc =
        std::find_if(info->S.relocations().begin(), info->S.relocations().end(),
                     [&](const RelocationRef &Reloc) {
                       uint64_t RelocOffset = Reloc.getOffset();
                       return RelocOffset == sect_offset;
                     });

    if (Reloc == info->S.relocations().end())
      return 0;

    DataRefImpl Rel = Reloc->getRawDataRefImpl();
    MachO::any_relocation_info RE = info->O->getRelocation(Rel);
    uint32_t r_type = info->O->getAnyRelocationType(RE);
    if (r_type == MachO::ARM64_RELOC_ADDEND) {
      DataRefImpl RelNext = Rel;
      info->O->moveRelocationNext(RelNext);
      MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
      if (value == 0) {
        value = info->O->getPlainRelocationSymbolNum(RENext);
        op_info->Value = value;
      }
    }
    // NOTE: Scattered relocations don't exist on arm64.
    if (!info->O->getPlainRelocationExternal(RE))
      return 0;
    ErrorOr<StringRef> SymName = Reloc->getSymbol()->getName();
    if (std::error_code EC = SymName.getError())
      report_fatal_error(EC.message());
    const char *name = SymName->data();
    op_info->AddSymbol.Present = 1;
    op_info->AddSymbol.Name = name;

    switch (r_type) {
    case MachO::ARM64_RELOC_PAGE21:
      /* @page */
      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGE;
      break;
    case MachO::ARM64_RELOC_PAGEOFF12:
      /* @pageoff */
      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGEOFF;
      break;
    case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
      /* @gotpage */
      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGE;
      break;
    case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
      /* @gotpageoff */
      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF;
      break;
    case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
      /* @tvlppage is not implemented in llvm-mc */
      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVP;
      break;
    case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
      /* @tvlppageoff is not implemented in llvm-mc */
      op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVOFF;
      break;
    default:
    case MachO::ARM64_RELOC_BRANCH26:
      op_info->VariantKind = LLVMDisassembler_VariantKind_None;
      break;
    }
    return 1;
  }
  return 0;
}

// GuessCstringPointer is passed the address of what might be a pointer to a
// literal string in a cstring section.  If that address is in a cstring section
// it returns a pointer to that string.  Else it returns nullptr.
static const char *GuessCstringPointer(uint64_t ReferenceValue,
                                       struct DisassembleInfo *info) {
  for (const auto &Load : info->O->load_commands()) {
    if (Load.C.cmd == MachO::LC_SEGMENT_64) {
      MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
      for (unsigned J = 0; J < Seg.nsects; ++J) {
        MachO::section_64 Sec = info->O->getSection64(Load, J);
        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
        if (section_type == MachO::S_CSTRING_LITERALS &&
            ReferenceValue >= Sec.addr &&
            ReferenceValue < Sec.addr + Sec.size) {
          uint64_t sect_offset = ReferenceValue - Sec.addr;
          uint64_t object_offset = Sec.offset + sect_offset;
          StringRef MachOContents = info->O->getData();
          uint64_t object_size = MachOContents.size();
          const char *object_addr = (const char *)MachOContents.data();
          if (object_offset < object_size) {
            const char *name = object_addr + object_offset;
            return name;
          } else {
            return nullptr;
          }
        }
      }
    } else if (Load.C.cmd == MachO::LC_SEGMENT) {
      MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
      for (unsigned J = 0; J < Seg.nsects; ++J) {
        MachO::section Sec = info->O->getSection(Load, J);
        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
        if (section_type == MachO::S_CSTRING_LITERALS &&
            ReferenceValue >= Sec.addr &&
            ReferenceValue < Sec.addr + Sec.size) {
          uint64_t sect_offset = ReferenceValue - Sec.addr;
          uint64_t object_offset = Sec.offset + sect_offset;
          StringRef MachOContents = info->O->getData();
          uint64_t object_size = MachOContents.size();
          const char *object_addr = (const char *)MachOContents.data();
          if (object_offset < object_size) {
            const char *name = object_addr + object_offset;
            return name;
          } else {
            return nullptr;
          }
        }
      }
    }
  }
  return nullptr;
}

// GuessIndirectSymbol returns the name of the indirect symbol for the
// ReferenceValue passed in or nullptr.  This is used when ReferenceValue maybe
// an address of a symbol stub or a lazy or non-lazy pointer to associate the
// symbol name being referenced by the stub or pointer.
static const char *GuessIndirectSymbol(uint64_t ReferenceValue,
                                       struct DisassembleInfo *info) {
  MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand();
  MachO::symtab_command Symtab = info->O->getSymtabLoadCommand();
  for (const auto &Load : info->O->load_commands()) {
    if (Load.C.cmd == MachO::LC_SEGMENT_64) {
      MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
      for (unsigned J = 0; J < Seg.nsects; ++J) {
        MachO::section_64 Sec = info->O->getSection64(Load, J);
        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
        if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
             section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
             section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
             section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
             section_type == MachO::S_SYMBOL_STUBS) &&
            ReferenceValue >= Sec.addr &&
            ReferenceValue < Sec.addr + Sec.size) {
          uint32_t stride;
          if (section_type == MachO::S_SYMBOL_STUBS)
            stride = Sec.reserved2;
          else
            stride = 8;
          if (stride == 0)
            return nullptr;
          uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
          if (index < Dysymtab.nindirectsyms) {
            uint32_t indirect_symbol =
                info->O->getIndirectSymbolTableEntry(Dysymtab, index);
            if (indirect_symbol < Symtab.nsyms) {
              symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
              SymbolRef Symbol = *Sym;
              ErrorOr<StringRef> SymName = Symbol.getName();
              if (std::error_code EC = SymName.getError())
                report_fatal_error(EC.message());
              const char *name = SymName->data();
              return name;
            }
          }
        }
      }
    } else if (Load.C.cmd == MachO::LC_SEGMENT) {
      MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
      for (unsigned J = 0; J < Seg.nsects; ++J) {
        MachO::section Sec = info->O->getSection(Load, J);
        uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
        if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
             section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
             section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
             section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
             section_type == MachO::S_SYMBOL_STUBS) &&
            ReferenceValue >= Sec.addr &&
            ReferenceValue < Sec.addr + Sec.size) {
          uint32_t stride;
          if (section_type == MachO::S_SYMBOL_STUBS)
            stride = Sec.reserved2;
          else
            stride = 4;
          if (stride == 0)
            return nullptr;
          uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
          if (index < Dysymtab.nindirectsyms) {
            uint32_t indirect_symbol =
                info->O->getIndirectSymbolTableEntry(Dysymtab, index);
            if (indirect_symbol < Symtab.nsyms) {
              symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
              SymbolRef Symbol = *Sym;
              ErrorOr<StringRef> SymName = Symbol.getName();
              if (std::error_code EC = SymName.getError())
                report_fatal_error(EC.message());
              const char *name = SymName->data();
              return name;
            }
          }
        }
      }
    }
  }
  return nullptr;
}

// method_reference() is called passing it the ReferenceName that might be
// a reference it to an Objective-C method call.  If so then it allocates and
// assembles a method call string with the values last seen and saved in
// the DisassembleInfo's class_name and selector_name fields.  This is saved
// into the method field of the info and any previous string is free'ed.
// Then the class_name field in the info is set to nullptr.  The method call
// string is set into ReferenceName and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_Objc_Message.  If this not a method call
// then both ReferenceType and ReferenceName are left unchanged.
static void method_reference(struct DisassembleInfo *info,
                             uint64_t *ReferenceType,
                             const char **ReferenceName) {
  unsigned int Arch = info->O->getArch();
  if (*ReferenceName != nullptr) {
    if (strcmp(*ReferenceName, "_objc_msgSend") == 0) {
      if (info->selector_name != nullptr) {
        if (info->method != nullptr)
          free(info->method);
        if (info->class_name != nullptr) {
          info->method = (char *)malloc(5 + strlen(info->class_name) +
                                        strlen(info->selector_name));
          if (info->method != nullptr) {
            strcpy(info->method, "+[");
            strcat(info->method, info->class_name);
            strcat(info->method, " ");
            strcat(info->method, info->selector_name);
            strcat(info->method, "]");
            *ReferenceName = info->method;
            *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
          }
        } else {
          info->method = (char *)malloc(9 + strlen(info->selector_name));
          if (info->method != nullptr) {
            if (Arch == Triple::x86_64)
              strcpy(info->method, "-[%rdi ");
            else if (Arch == Triple::aarch64)
              strcpy(info->method, "-[x0 ");
            else
              strcpy(info->method, "-[r? ");
            strcat(info->method, info->selector_name);
            strcat(info->method, "]");
            *ReferenceName = info->method;
            *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
          }
        }
        info->class_name = nullptr;
      }
    } else if (strcmp(*ReferenceName, "_objc_msgSendSuper2") == 0) {
      if (info->selector_name != nullptr) {
        if (info->method != nullptr)
          free(info->method);
        info->method = (char *)malloc(17 + strlen(info->selector_name));
        if (info->method != nullptr) {
          if (Arch == Triple::x86_64)
            strcpy(info->method, "-[[%rdi super] ");
          else if (Arch == Triple::aarch64)
            strcpy(info->method, "-[[x0 super] ");
          else
            strcpy(info->method, "-[[r? super] ");
          strcat(info->method, info->selector_name);
          strcat(info->method, "]");
          *ReferenceName = info->method;
          *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
        }
        info->class_name = nullptr;
      }
    }
  }
}

// GuessPointerPointer() is passed the address of what might be a pointer to
// a reference to an Objective-C class, selector, message ref or cfstring.
// If so the value of the pointer is returned and one of the booleans are set
// to true.  If not zero is returned and all the booleans are set to false.
static uint64_t GuessPointerPointer(uint64_t ReferenceValue,
                                    struct DisassembleInfo *info,
                                    bool &classref, bool &selref, bool &msgref,
                                    bool &cfstring) {
  classref = false;
  selref = false;
  msgref = false;
  cfstring = false;
  for (const auto &Load : info->O->load_commands()) {
    if (Load.C.cmd == MachO::LC_SEGMENT_64) {
      MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
      for (unsigned J = 0; J < Seg.nsects; ++J) {
        MachO::section_64 Sec = info->O->getSection64(Load, J);
        if ((strncmp(Sec.sectname, "__objc_selrefs", 16) == 0 ||
             strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
             strncmp(Sec.sectname, "__objc_superrefs", 16) == 0 ||
             strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 ||
             strncmp(Sec.sectname, "__cfstring", 16) == 0) &&
            ReferenceValue >= Sec.addr &&
            ReferenceValue < Sec.addr + Sec.size) {
          uint64_t sect_offset = ReferenceValue - Sec.addr;
          uint64_t object_offset = Sec.offset + sect_offset;
          StringRef MachOContents = info->O->getData();
          uint64_t object_size = MachOContents.size();
          const char *object_addr = (const char *)MachOContents.data();
          if (object_offset < object_size) {
            uint64_t pointer_value;
            memcpy(&pointer_value, object_addr + object_offset,
                   sizeof(uint64_t));
            if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
              sys::swapByteOrder(pointer_value);
            if (strncmp(Sec.sectname, "__objc_selrefs", 16) == 0)
              selref = true;
            else if (strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
                     strncmp(Sec.sectname, "__objc_superrefs", 16) == 0)
              classref = true;
            else if (strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 &&
                     ReferenceValue + 8 < Sec.addr + Sec.size) {
              msgref = true;
              memcpy(&pointer_value, object_addr + object_offset + 8,
                     sizeof(uint64_t));
              if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
                sys::swapByteOrder(pointer_value);
            } else if (strncmp(Sec.sectname, "__cfstring", 16) == 0)
              cfstring = true;
            return pointer_value;
          } else {
            return 0;
          }
        }
      }
    }
    // TODO: Look for LC_SEGMENT for 32-bit Mach-O files.
  }
  return 0;
}

// get_pointer_64 returns a pointer to the bytes in the object file at the
// Address from a section in the Mach-O file.  And indirectly returns the
// offset into the section, number of bytes left in the section past the offset
// and which section is was being referenced.  If the Address is not in a
// section nullptr is returned.
static const char *get_pointer_64(uint64_t Address, uint32_t &offset,
                                  uint32_t &left, SectionRef &S,
                                  DisassembleInfo *info,
                                  bool objc_only = false) {
  offset = 0;
  left = 0;
  S = SectionRef();
  for (unsigned SectIdx = 0; SectIdx != info->Sections->size(); SectIdx++) {
    uint64_t SectAddress = ((*(info->Sections))[SectIdx]).getAddress();
    uint64_t SectSize = ((*(info->Sections))[SectIdx]).getSize();
    if (SectSize == 0)
      continue;
    if (objc_only) {
      StringRef SectName;
      ((*(info->Sections))[SectIdx]).getName(SectName);
      DataRefImpl Ref = ((*(info->Sections))[SectIdx]).getRawDataRefImpl();
      StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
      if (SegName != "__OBJC" && SectName != "__cstring")
        continue;
    }
    if (Address >= SectAddress && Address < SectAddress + SectSize) {
      S = (*(info->Sections))[SectIdx];
      offset = Address - SectAddress;
      left = SectSize - offset;
      StringRef SectContents;
      ((*(info->Sections))[SectIdx]).getContents(SectContents);
      return SectContents.data() + offset;
    }
  }
  return nullptr;
}

static const char *get_pointer_32(uint32_t Address, uint32_t &offset,
                                  uint32_t &left, SectionRef &S,
                                  DisassembleInfo *info,
                                  bool objc_only = false) {
  return get_pointer_64(Address, offset, left, S, info, objc_only);
}

// get_symbol_64() returns the name of a symbol (or nullptr) and the address of
// the symbol indirectly through n_value. Based on the relocation information
// for the specified section offset in the specified section reference.
// If no relocation information is found and a non-zero ReferenceValue for the
// symbol is passed, look up that address in the info's AddrMap.
static const char *get_symbol_64(uint32_t sect_offset, SectionRef S,
                                 DisassembleInfo *info, uint64_t &n_value,
                                 uint64_t ReferenceValue = 0) {
  n_value = 0;
  if (!info->verbose)
    return nullptr;

  // See if there is an external relocation entry at the sect_offset.
  bool reloc_found = false;
  DataRefImpl Rel;
  MachO::any_relocation_info RE;
  bool isExtern = false;
  SymbolRef Symbol;
  for (const RelocationRef &Reloc : S.relocations()) {
    uint64_t RelocOffset = Reloc.getOffset();
    if (RelocOffset == sect_offset) {
      Rel = Reloc.getRawDataRefImpl();
      RE = info->O->getRelocation(Rel);
      if (info->O->isRelocationScattered(RE))
        continue;
      isExtern = info->O->getPlainRelocationExternal(RE);
      if (isExtern) {
        symbol_iterator RelocSym = Reloc.getSymbol();
        Symbol = *RelocSym;
      }
      reloc_found = true;
      break;
    }
  }
  // If there is an external relocation entry for a symbol in this section
  // at this section_offset then use that symbol's value for the n_value
  // and return its name.
  const char *SymbolName = nullptr;
  if (reloc_found && isExtern) {
    n_value = Symbol.getValue();
    ErrorOr<StringRef> NameOrError = Symbol.getName();
    if (std::error_code EC = NameOrError.getError())
      report_fatal_error(EC.message());
    StringRef Name = *NameOrError;
    if (!Name.empty()) {
      SymbolName = Name.data();
      return SymbolName;
    }
  }

  // TODO: For fully linked images, look through the external relocation
  // entries off the dynamic symtab command. For these the r_offset is from the
  // start of the first writeable segment in the Mach-O file.  So the offset
  // to this section from that segment is passed to this routine by the caller,
  // as the database_offset. Which is the difference of the section's starting
  // address and the first writable segment.
  //
  // NOTE: need add passing the database_offset to this routine.

  // We did not find an external relocation entry so look up the ReferenceValue
  // as an address of a symbol and if found return that symbol's name.
  SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);

  return SymbolName;
}

static const char *get_symbol_32(uint32_t sect_offset, SectionRef S,
                                 DisassembleInfo *info,
                                 uint32_t ReferenceValue) {
  uint64_t n_value64;
  return get_symbol_64(sect_offset, S, info, n_value64, ReferenceValue);
}

// These are structs in the Objective-C meta data and read to produce the
// comments for disassembly.  While these are part of the ABI they are no
// public defintions.  So the are here not in include/llvm/Support/MachO.h .

// The cfstring object in a 64-bit Mach-O file.
struct cfstring64_t {
  uint64_t isa;        // class64_t * (64-bit pointer)
  uint64_t flags;      // flag bits
  uint64_t characters; // char * (64-bit pointer)
  uint64_t length;     // number of non-NULL characters in above
};

// The class object in a 64-bit Mach-O file.
struct class64_t {
  uint64_t isa;        // class64_t * (64-bit pointer)
  uint64_t superclass; // class64_t * (64-bit pointer)
  uint64_t cache;      // Cache (64-bit pointer)
  uint64_t vtable;     // IMP * (64-bit pointer)
  uint64_t data;       // class_ro64_t * (64-bit pointer)
};

struct class32_t {
  uint32_t isa;        /* class32_t * (32-bit pointer) */
  uint32_t superclass; /* class32_t * (32-bit pointer) */
  uint32_t cache;      /* Cache (32-bit pointer) */
  uint32_t vtable;     /* IMP * (32-bit pointer) */
  uint32_t data;       /* class_ro32_t * (32-bit pointer) */
};

struct class_ro64_t {
  uint32_t flags;
  uint32_t instanceStart;
  uint32_t instanceSize;
  uint32_t reserved;
  uint64_t ivarLayout;     // const uint8_t * (64-bit pointer)
  uint64_t name;           // const char * (64-bit pointer)
  uint64_t baseMethods;    // const method_list_t * (64-bit pointer)
  uint64_t baseProtocols;  // const protocol_list_t * (64-bit pointer)
  uint64_t ivars;          // const ivar_list_t * (64-bit pointer)
  uint64_t weakIvarLayout; // const uint8_t * (64-bit pointer)
  uint64_t baseProperties; // const struct objc_property_list (64-bit pointer)
};

struct class_ro32_t {
  uint32_t flags;
  uint32_t instanceStart;
  uint32_t instanceSize;
  uint32_t ivarLayout;     /* const uint8_t * (32-bit pointer) */
  uint32_t name;           /* const char * (32-bit pointer) */
  uint32_t baseMethods;    /* const method_list_t * (32-bit pointer) */
  uint32_t baseProtocols;  /* const protocol_list_t * (32-bit pointer) */
  uint32_t ivars;          /* const ivar_list_t * (32-bit pointer) */
  uint32_t weakIvarLayout; /* const uint8_t * (32-bit pointer) */
  uint32_t baseProperties; /* const struct objc_property_list *
                                                   (32-bit pointer) */
};

/* Values for class_ro{64,32}_t->flags */
#define RO_META (1 << 0)
#define RO_ROOT (1 << 1)
#define RO_HAS_CXX_STRUCTORS (1 << 2)

struct method_list64_t {
  uint32_t entsize;
  uint32_t count;
  /* struct method64_t first;  These structures follow inline */
};

struct method_list32_t {
  uint32_t entsize;
  uint32_t count;
  /* struct method32_t first;  These structures follow inline */
};

struct method64_t {
  uint64_t name;  /* SEL (64-bit pointer) */
  uint64_t types; /* const char * (64-bit pointer) */
  uint64_t imp;   /* IMP (64-bit pointer) */
};

struct method32_t {
  uint32_t name;  /* SEL (32-bit pointer) */
  uint32_t types; /* const char * (32-bit pointer) */
  uint32_t imp;   /* IMP (32-bit pointer) */
};

struct protocol_list64_t {
  uint64_t count; /* uintptr_t (a 64-bit value) */
  /* struct protocol64_t * list[0];  These pointers follow inline */
};

struct protocol_list32_t {
  uint32_t count; /* uintptr_t (a 32-bit value) */
  /* struct protocol32_t * list[0];  These pointers follow inline */
};

struct protocol64_t {
  uint64_t isa;                     /* id * (64-bit pointer) */
  uint64_t name;                    /* const char * (64-bit pointer) */
  uint64_t protocols;               /* struct protocol_list64_t *
                                                    (64-bit pointer) */
  uint64_t instanceMethods;         /* method_list_t * (64-bit pointer) */
  uint64_t classMethods;            /* method_list_t * (64-bit pointer) */
  uint64_t optionalInstanceMethods; /* method_list_t * (64-bit pointer) */
  uint64_t optionalClassMethods;    /* method_list_t * (64-bit pointer) */
  uint64_t instanceProperties;      /* struct objc_property_list *
                                                       (64-bit pointer) */
};

struct protocol32_t {
  uint32_t isa;                     /* id * (32-bit pointer) */
  uint32_t name;                    /* const char * (32-bit pointer) */
  uint32_t protocols;               /* struct protocol_list_t *
                                                    (32-bit pointer) */
  uint32_t instanceMethods;         /* method_list_t * (32-bit pointer) */
  uint32_t classMethods;            /* method_list_t * (32-bit pointer) */
  uint32_t optionalInstanceMethods; /* method_list_t * (32-bit pointer) */
  uint32_t optionalClassMethods;    /* method_list_t * (32-bit pointer) */
  uint32_t instanceProperties;      /* struct objc_property_list *
                                                       (32-bit pointer) */
};

struct ivar_list64_t {
  uint32_t entsize;
  uint32_t count;
  /* struct ivar64_t first;  These structures follow inline */
};

struct ivar_list32_t {
  uint32_t entsize;
  uint32_t count;
  /* struct ivar32_t first;  These structures follow inline */
};

struct ivar64_t {
  uint64_t offset; /* uintptr_t * (64-bit pointer) */
  uint64_t name;   /* const char * (64-bit pointer) */
  uint64_t type;   /* const char * (64-bit pointer) */
  uint32_t alignment;
  uint32_t size;
};

struct ivar32_t {
  uint32_t offset; /* uintptr_t * (32-bit pointer) */
  uint32_t name;   /* const char * (32-bit pointer) */
  uint32_t type;   /* const char * (32-bit pointer) */
  uint32_t alignment;
  uint32_t size;
};

struct objc_property_list64 {
  uint32_t entsize;
  uint32_t count;
  /* struct objc_property64 first;  These structures follow inline */
};

struct objc_property_list32 {
  uint32_t entsize;
  uint32_t count;
  /* struct objc_property32 first;  These structures follow inline */
};

struct objc_property64 {
  uint64_t name;       /* const char * (64-bit pointer) */
  uint64_t attributes; /* const char * (64-bit pointer) */
};

struct objc_property32 {
  uint32_t name;       /* const char * (32-bit pointer) */
  uint32_t attributes; /* const char * (32-bit pointer) */
};

struct category64_t {
  uint64_t name;               /* const char * (64-bit pointer) */
  uint64_t cls;                /* struct class_t * (64-bit pointer) */
  uint64_t instanceMethods;    /* struct method_list_t * (64-bit pointer) */
  uint64_t classMethods;       /* struct method_list_t * (64-bit pointer) */
  uint64_t protocols;          /* struct protocol_list_t * (64-bit pointer) */
  uint64_t instanceProperties; /* struct objc_property_list *
                                  (64-bit pointer) */
};

struct category32_t {
  uint32_t name;               /* const char * (32-bit pointer) */
  uint32_t cls;                /* struct class_t * (32-bit pointer) */
  uint32_t instanceMethods;    /* struct method_list_t * (32-bit pointer) */
  uint32_t classMethods;       /* struct method_list_t * (32-bit pointer) */
  uint32_t protocols;          /* struct protocol_list_t * (32-bit pointer) */
  uint32_t instanceProperties; /* struct objc_property_list *
                                  (32-bit pointer) */
};

struct objc_image_info64 {
  uint32_t version;
  uint32_t flags;
};
struct objc_image_info32 {
  uint32_t version;
  uint32_t flags;
};
struct imageInfo_t {
  uint32_t version;
  uint32_t flags;
};
/* masks for objc_image_info.flags */
#define OBJC_IMAGE_IS_REPLACEMENT (1 << 0)
#define OBJC_IMAGE_SUPPORTS_GC (1 << 1)

struct message_ref64 {
  uint64_t imp; /* IMP (64-bit pointer) */
  uint64_t sel; /* SEL (64-bit pointer) */
};

struct message_ref32 {
  uint32_t imp; /* IMP (32-bit pointer) */
  uint32_t sel; /* SEL (32-bit pointer) */
};

// Objective-C 1 (32-bit only) meta data structs.

struct objc_module_t {
  uint32_t version;
  uint32_t size;
  uint32_t name;   /* char * (32-bit pointer) */
  uint32_t symtab; /* struct objc_symtab * (32-bit pointer) */
};

struct objc_symtab_t {
  uint32_t sel_ref_cnt;
  uint32_t refs; /* SEL * (32-bit pointer) */
  uint16_t cls_def_cnt;
  uint16_t cat_def_cnt;
  // uint32_t defs[1];        /* void * (32-bit pointer) variable size */
};

struct objc_class_t {
  uint32_t isa;         /* struct objc_class * (32-bit pointer) */
  uint32_t super_class; /* struct objc_class * (32-bit pointer) */
  uint32_t name;        /* const char * (32-bit pointer) */
  int32_t version;
  int32_t info;
  int32_t instance_size;
  uint32_t ivars;       /* struct objc_ivar_list * (32-bit pointer) */
  uint32_t methodLists; /* struct objc_method_list ** (32-bit pointer) */
  uint32_t cache;       /* struct objc_cache * (32-bit pointer) */
  uint32_t protocols;   /* struct objc_protocol_list * (32-bit pointer) */
};

#define CLS_GETINFO(cls, infomask) ((cls)->info & (infomask))
// class is not a metaclass
#define CLS_CLASS 0x1
// class is a metaclass
#define CLS_META 0x2

struct objc_category_t {
  uint32_t category_name;    /* char * (32-bit pointer) */
  uint32_t class_name;       /* char * (32-bit pointer) */
  uint32_t instance_methods; /* struct objc_method_list * (32-bit pointer) */
  uint32_t class_methods;    /* struct objc_method_list * (32-bit pointer) */
  uint32_t protocols;        /* struct objc_protocol_list * (32-bit ptr) */
};

struct objc_ivar_t {
  uint32_t ivar_name; /* char * (32-bit pointer) */
  uint32_t ivar_type; /* char * (32-bit pointer) */
  int32_t ivar_offset;
};

struct objc_ivar_list_t {
  int32_t ivar_count;
  // struct objc_ivar_t ivar_list[1];          /* variable length structure */
};

struct objc_method_list_t {
  uint32_t obsolete; /* struct objc_method_list * (32-bit pointer) */
  int32_t method_count;
  // struct objc_method_t method_list[1];      /* variable length structure */
};

struct objc_method_t {
  uint32_t method_name;  /* SEL, aka struct objc_selector * (32-bit pointer) */
  uint32_t method_types; /* char * (32-bit pointer) */
  uint32_t method_imp;   /* IMP, aka function pointer, (*IMP)(id, SEL, ...)
                            (32-bit pointer) */
};

struct objc_protocol_list_t {
  uint32_t next; /* struct objc_protocol_list * (32-bit pointer) */
  int32_t count;
  // uint32_t list[1];   /* Protocol *, aka struct objc_protocol_t *
  //                        (32-bit pointer) */
};

struct objc_protocol_t {
  uint32_t isa;              /* struct objc_class * (32-bit pointer) */
  uint32_t protocol_name;    /* char * (32-bit pointer) */
  uint32_t protocol_list;    /* struct objc_protocol_list * (32-bit pointer) */
  uint32_t instance_methods; /* struct objc_method_description_list *
                                (32-bit pointer) */
  uint32_t class_methods;    /* struct objc_method_description_list *
                                (32-bit pointer) */
};

struct objc_method_description_list_t {
  int32_t count;
  // struct objc_method_description_t list[1];
};

struct objc_method_description_t {
  uint32_t name;  /* SEL, aka struct objc_selector * (32-bit pointer) */
  uint32_t types; /* char * (32-bit pointer) */
};

inline void swapStruct(struct cfstring64_t &cfs) {
  sys::swapByteOrder(cfs.isa);
  sys::swapByteOrder(cfs.flags);
  sys::swapByteOrder(cfs.characters);
  sys::swapByteOrder(cfs.length);
}

inline void swapStruct(struct class64_t &c) {
  sys::swapByteOrder(c.isa);
  sys::swapByteOrder(c.superclass);
  sys::swapByteOrder(c.cache);
  sys::swapByteOrder(c.vtable);
  sys::swapByteOrder(c.data);
}

inline void swapStruct(struct class32_t &c) {
  sys::swapByteOrder(c.isa);
  sys::swapByteOrder(c.superclass);
  sys::swapByteOrder(c.cache);
  sys::swapByteOrder(c.vtable);
  sys::swapByteOrder(c.data);
}

inline void swapStruct(struct class_ro64_t &cro) {
  sys::swapByteOrder(cro.flags);
  sys::swapByteOrder(cro.instanceStart);
  sys::swapByteOrder(cro.instanceSize);
  sys::swapByteOrder(cro.reserved);
  sys::swapByteOrder(cro.ivarLayout);
  sys::swapByteOrder(cro.name);
  sys::swapByteOrder(cro.baseMethods);
  sys::swapByteOrder(cro.baseProtocols);
  sys::swapByteOrder(cro.ivars);
  sys::swapByteOrder(cro.weakIvarLayout);
  sys::swapByteOrder(cro.baseProperties);
}

inline void swapStruct(struct class_ro32_t &cro) {
  sys::swapByteOrder(cro.flags);
  sys::swapByteOrder(cro.instanceStart);
  sys::swapByteOrder(cro.instanceSize);
  sys::swapByteOrder(cro.ivarLayout);
  sys::swapByteOrder(cro.name);
  sys::swapByteOrder(cro.baseMethods);
  sys::swapByteOrder(cro.baseProtocols);
  sys::swapByteOrder(cro.ivars);
  sys::swapByteOrder(cro.weakIvarLayout);
  sys::swapByteOrder(cro.baseProperties);
}

inline void swapStruct(struct method_list64_t &ml) {
  sys::swapByteOrder(ml.entsize);
  sys::swapByteOrder(ml.count);
}

inline void swapStruct(struct method_list32_t &ml) {
  sys::swapByteOrder(ml.entsize);
  sys::swapByteOrder(ml.count);
}

inline void swapStruct(struct method64_t &m) {
  sys::swapByteOrder(m.name);
  sys::swapByteOrder(m.types);
  sys::swapByteOrder(m.imp);
}

inline void swapStruct(struct method32_t &m) {
  sys::swapByteOrder(m.name);
  sys::swapByteOrder(m.types);
  sys::swapByteOrder(m.imp);
}

inline void swapStruct(struct protocol_list64_t &pl) {
  sys::swapByteOrder(pl.count);
}

inline void swapStruct(struct protocol_list32_t &pl) {
  sys::swapByteOrder(pl.count);
}

inline void swapStruct(struct protocol64_t &p) {
  sys::swapByteOrder(p.isa);
  sys::swapByteOrder(p.name);
  sys::swapByteOrder(p.protocols);
  sys::swapByteOrder(p.instanceMethods);
  sys::swapByteOrder(p.classMethods);
  sys::swapByteOrder(p.optionalInstanceMethods);
  sys::swapByteOrder(p.optionalClassMethods);
  sys::swapByteOrder(p.instanceProperties);
}

inline void swapStruct(struct protocol32_t &p) {
  sys::swapByteOrder(p.isa);
  sys::swapByteOrder(p.name);
  sys::swapByteOrder(p.protocols);
  sys::swapByteOrder(p.instanceMethods);
  sys::swapByteOrder(p.classMethods);
  sys::swapByteOrder(p.optionalInstanceMethods);
  sys::swapByteOrder(p.optionalClassMethods);
  sys::swapByteOrder(p.instanceProperties);
}

inline void swapStruct(struct ivar_list64_t &il) {
  sys::swapByteOrder(il.entsize);
  sys::swapByteOrder(il.count);
}

inline void swapStruct(struct ivar_list32_t &il) {
  sys::swapByteOrder(il.entsize);
  sys::swapByteOrder(il.count);
}

inline void swapStruct(struct ivar64_t &i) {
  sys::swapByteOrder(i.offset);
  sys::swapByteOrder(i.name);
  sys::swapByteOrder(i.type);
  sys::swapByteOrder(i.alignment);
  sys::swapByteOrder(i.size);
}

inline void swapStruct(struct ivar32_t &i) {
  sys::swapByteOrder(i.offset);
  sys::swapByteOrder(i.name);
  sys::swapByteOrder(i.type);
  sys::swapByteOrder(i.alignment);
  sys::swapByteOrder(i.size);
}

inline void swapStruct(struct objc_property_list64 &pl) {
  sys::swapByteOrder(pl.entsize);
  sys::swapByteOrder(pl.count);
}

inline void swapStruct(struct objc_property_list32 &pl) {
  sys::swapByteOrder(pl.entsize);
  sys::swapByteOrder(pl.count);
}

inline void swapStruct(struct objc_property64 &op) {
  sys::swapByteOrder(op.name);
  sys::swapByteOrder(op.attributes);
}

inline void swapStruct(struct objc_property32 &op) {
  sys::swapByteOrder(op.name);
  sys::swapByteOrder(op.attributes);
}

inline void swapStruct(struct category64_t &c) {
  sys::swapByteOrder(c.name);
  sys::swapByteOrder(c.cls);
  sys::swapByteOrder(c.instanceMethods);
  sys::swapByteOrder(c.classMethods);
  sys::swapByteOrder(c.protocols);
  sys::swapByteOrder(c.instanceProperties);
}

inline void swapStruct(struct category32_t &c) {
  sys::swapByteOrder(c.name);
  sys::swapByteOrder(c.cls);
  sys::swapByteOrder(c.instanceMethods);
  sys::swapByteOrder(c.classMethods);
  sys::swapByteOrder(c.protocols);
  sys::swapByteOrder(c.instanceProperties);
}

inline void swapStruct(struct objc_image_info64 &o) {
  sys::swapByteOrder(o.version);
  sys::swapByteOrder(o.flags);
}

inline void swapStruct(struct objc_image_info32 &o) {
  sys::swapByteOrder(o.version);
  sys::swapByteOrder(o.flags);
}

inline void swapStruct(struct imageInfo_t &o) {
  sys::swapByteOrder(o.version);
  sys::swapByteOrder(o.flags);
}

inline void swapStruct(struct message_ref64 &mr) {
  sys::swapByteOrder(mr.imp);
  sys::swapByteOrder(mr.sel);
}

inline void swapStruct(struct message_ref32 &mr) {
  sys::swapByteOrder(mr.imp);
  sys::swapByteOrder(mr.sel);
}

inline void swapStruct(struct objc_module_t &module) {
  sys::swapByteOrder(module.version);
  sys::swapByteOrder(module.size);
  sys::swapByteOrder(module.name);
  sys::swapByteOrder(module.symtab);
}

inline void swapStruct(struct objc_symtab_t &symtab) {
  sys::swapByteOrder(symtab.sel_ref_cnt);
  sys::swapByteOrder(symtab.refs);
  sys::swapByteOrder(symtab.cls_def_cnt);
  sys::swapByteOrder(symtab.cat_def_cnt);
}

inline void swapStruct(struct objc_class_t &objc_class) {
  sys::swapByteOrder(objc_class.isa);
  sys::swapByteOrder(objc_class.super_class);
  sys::swapByteOrder(objc_class.name);
  sys::swapByteOrder(objc_class.version);
  sys::swapByteOrder(objc_class.info);
  sys::swapByteOrder(objc_class.instance_size);
  sys::swapByteOrder(objc_class.ivars);
  sys::swapByteOrder(objc_class.methodLists);
  sys::swapByteOrder(objc_class.cache);
  sys::swapByteOrder(objc_class.protocols);
}

inline void swapStruct(struct objc_category_t &objc_category) {
  sys::swapByteOrder(objc_category.category_name);
  sys::swapByteOrder(objc_category.class_name);
  sys::swapByteOrder(objc_category.instance_methods);
  sys::swapByteOrder(objc_category.class_methods);
  sys::swapByteOrder(objc_category.protocols);
}

inline void swapStruct(struct objc_ivar_list_t &objc_ivar_list) {
  sys::swapByteOrder(objc_ivar_list.ivar_count);
}

inline void swapStruct(struct objc_ivar_t &objc_ivar) {
  sys::swapByteOrder(objc_ivar.ivar_name);
  sys::swapByteOrder(objc_ivar.ivar_type);
  sys::swapByteOrder(objc_ivar.ivar_offset);
}

inline void swapStruct(struct objc_method_list_t &method_list) {
  sys::swapByteOrder(method_list.obsolete);
  sys::swapByteOrder(method_list.method_count);
}

inline void swapStruct(struct objc_method_t &method) {
  sys::swapByteOrder(method.method_name);
  sys::swapByteOrder(method.method_types);
  sys::swapByteOrder(method.method_imp);
}

inline void swapStruct(struct objc_protocol_list_t &protocol_list) {
  sys::swapByteOrder(protocol_list.next);
  sys::swapByteOrder(protocol_list.count);
}

inline void swapStruct(struct objc_protocol_t &protocol) {
  sys::swapByteOrder(protocol.isa);
  sys::swapByteOrder(protocol.protocol_name);
  sys::swapByteOrder(protocol.protocol_list);
  sys::swapByteOrder(protocol.instance_methods);
  sys::swapByteOrder(protocol.class_methods);
}

inline void swapStruct(struct objc_method_description_list_t &mdl) {
  sys::swapByteOrder(mdl.count);
}

inline void swapStruct(struct objc_method_description_t &md) {
  sys::swapByteOrder(md.name);
  sys::swapByteOrder(md.types);
}

static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
                                                 struct DisassembleInfo *info);

// get_objc2_64bit_class_name() is used for disassembly and is passed a pointer
// to an Objective-C class and returns the class name.  It is also passed the
// address of the pointer, so when the pointer is zero as it can be in an .o
// file, that is used to look for an external relocation entry with a symbol
// name.
static const char *get_objc2_64bit_class_name(uint64_t pointer_value,
                                              uint64_t ReferenceValue,
                                              struct DisassembleInfo *info) {
  const char *r;
  uint32_t offset, left;
  SectionRef S;

  // The pointer_value can be 0 in an object file and have a relocation
  // entry for the class symbol at the ReferenceValue (the address of the
  // pointer).
  if (pointer_value == 0) {
    r = get_pointer_64(ReferenceValue, offset, left, S, info);
    if (r == nullptr || left < sizeof(uint64_t))
      return nullptr;
    uint64_t n_value;
    const char *symbol_name = get_symbol_64(offset, S, info, n_value);
    if (symbol_name == nullptr)
      return nullptr;
    const char *class_name = strrchr(symbol_name, '$');
    if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0')
      return class_name + 2;
    else
      return nullptr;
  }

  // The case were the pointer_value is non-zero and points to a class defined
  // in this Mach-O file.
  r = get_pointer_64(pointer_value, offset, left, S, info);
  if (r == nullptr || left < sizeof(struct class64_t))
    return nullptr;
  struct class64_t c;
  memcpy(&c, r, sizeof(struct class64_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(c);
  if (c.data == 0)
    return nullptr;
  r = get_pointer_64(c.data, offset, left, S, info);
  if (r == nullptr || left < sizeof(struct class_ro64_t))
    return nullptr;
  struct class_ro64_t cro;
  memcpy(&cro, r, sizeof(struct class_ro64_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(cro);
  if (cro.name == 0)
    return nullptr;
  const char *name = get_pointer_64(cro.name, offset, left, S, info);
  return name;
}

// get_objc2_64bit_cfstring_name is used for disassembly and is passed a
// pointer to a cfstring and returns its name or nullptr.
static const char *get_objc2_64bit_cfstring_name(uint64_t ReferenceValue,
                                                 struct DisassembleInfo *info) {
  const char *r, *name;
  uint32_t offset, left;
  SectionRef S;
  struct cfstring64_t cfs;
  uint64_t cfs_characters;

  r = get_pointer_64(ReferenceValue, offset, left, S, info);
  if (r == nullptr || left < sizeof(struct cfstring64_t))
    return nullptr;
  memcpy(&cfs, r, sizeof(struct cfstring64_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(cfs);
  if (cfs.characters == 0) {
    uint64_t n_value;
    const char *symbol_name = get_symbol_64(
        offset + offsetof(struct cfstring64_t, characters), S, info, n_value);
    if (symbol_name == nullptr)
      return nullptr;
    cfs_characters = n_value;
  } else
    cfs_characters = cfs.characters;
  name = get_pointer_64(cfs_characters, offset, left, S, info);

  return name;
}

// get_objc2_64bit_selref() is used for disassembly and is passed a the address
// of a pointer to an Objective-C selector reference when the pointer value is
// zero as in a .o file and is likely to have a external relocation entry with
// who's symbol's n_value is the real pointer to the selector name.  If that is
// the case the real pointer to the selector name is returned else 0 is
// returned
static uint64_t get_objc2_64bit_selref(uint64_t ReferenceValue,
                                       struct DisassembleInfo *info) {
  uint32_t offset, left;
  SectionRef S;

  const char *r = get_pointer_64(ReferenceValue, offset, left, S, info);
  if (r == nullptr || left < sizeof(uint64_t))
    return 0;
  uint64_t n_value;
  const char *symbol_name = get_symbol_64(offset, S, info, n_value);
  if (symbol_name == nullptr)
    return 0;
  return n_value;
}

static const SectionRef get_section(MachOObjectFile *O, const char *segname,
                                    const char *sectname) {
  for (const SectionRef &Section : O->sections()) {
    StringRef SectName;
    Section.getName(SectName);
    DataRefImpl Ref = Section.getRawDataRefImpl();
    StringRef SegName = O->getSectionFinalSegmentName(Ref);
    if (SegName == segname && SectName == sectname)
      return Section;
  }
  return SectionRef();
}

static void
walk_pointer_list_64(const char *listname, const SectionRef S,
                     MachOObjectFile *O, struct DisassembleInfo *info,
                     void (*func)(uint64_t, struct DisassembleInfo *info)) {
  if (S == SectionRef())
    return;

  StringRef SectName;
  S.getName(SectName);
  DataRefImpl Ref = S.getRawDataRefImpl();
  StringRef SegName = O->getSectionFinalSegmentName(Ref);
  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";

  StringRef BytesStr;
  S.getContents(BytesStr);
  const char *Contents = reinterpret_cast<const char *>(BytesStr.data());

  for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint64_t)) {
    uint32_t left = S.getSize() - i;
    uint32_t size = left < sizeof(uint64_t) ? left : sizeof(uint64_t);
    uint64_t p = 0;
    memcpy(&p, Contents + i, size);
    if (i + sizeof(uint64_t) > S.getSize())
      outs() << listname << " list pointer extends past end of (" << SegName
             << "," << SectName << ") section\n";
    outs() << format("%016" PRIx64, S.getAddress() + i) << " ";

    if (O->isLittleEndian() != sys::IsLittleEndianHost)
      sys::swapByteOrder(p);

    uint64_t n_value = 0;
    const char *name = get_symbol_64(i, S, info, n_value, p);
    if (name == nullptr)
      name = get_dyld_bind_info_symbolname(S.getAddress() + i, info);

    if (n_value != 0) {
      outs() << format("0x%" PRIx64, n_value);
      if (p != 0)
        outs() << " + " << format("0x%" PRIx64, p);
    } else
      outs() << format("0x%" PRIx64, p);
    if (name != nullptr)
      outs() << " " << name;
    outs() << "\n";

    p += n_value;
    if (func)
      func(p, info);
  }
}

static void
walk_pointer_list_32(const char *listname, const SectionRef S,
                     MachOObjectFile *O, struct DisassembleInfo *info,
                     void (*func)(uint32_t, struct DisassembleInfo *info)) {
  if (S == SectionRef())
    return;

  StringRef SectName;
  S.getName(SectName);
  DataRefImpl Ref = S.getRawDataRefImpl();
  StringRef SegName = O->getSectionFinalSegmentName(Ref);
  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";

  StringRef BytesStr;
  S.getContents(BytesStr);
  const char *Contents = reinterpret_cast<const char *>(BytesStr.data());

  for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint32_t)) {
    uint32_t left = S.getSize() - i;
    uint32_t size = left < sizeof(uint32_t) ? left : sizeof(uint32_t);
    uint32_t p = 0;
    memcpy(&p, Contents + i, size);
    if (i + sizeof(uint32_t) > S.getSize())
      outs() << listname << " list pointer extends past end of (" << SegName
             << "," << SectName << ") section\n";
    uint32_t Address = S.getAddress() + i;
    outs() << format("%08" PRIx32, Address) << " ";

    if (O->isLittleEndian() != sys::IsLittleEndianHost)
      sys::swapByteOrder(p);
    outs() << format("0x%" PRIx32, p);

    const char *name = get_symbol_32(i, S, info, p);
    if (name != nullptr)
      outs() << " " << name;
    outs() << "\n";

    if (func)
      func(p, info);
  }
}

static void print_layout_map(const char *layout_map, uint32_t left) {
  if (layout_map == nullptr)
    return;
  outs() << "                layout map: ";
  do {
    outs() << format("0x%02" PRIx32, (*layout_map) & 0xff) << " ";
    left--;
    layout_map++;
  } while (*layout_map != '\0' && left != 0);
  outs() << "\n";
}

static void print_layout_map64(uint64_t p, struct DisassembleInfo *info) {
  uint32_t offset, left;
  SectionRef S;
  const char *layout_map;

  if (p == 0)
    return;
  layout_map = get_pointer_64(p, offset, left, S, info);
  print_layout_map(layout_map, left);
}

static void print_layout_map32(uint32_t p, struct DisassembleInfo *info) {
  uint32_t offset, left;
  SectionRef S;
  const char *layout_map;

  if (p == 0)
    return;
  layout_map = get_pointer_32(p, offset, left, S, info);
  print_layout_map(layout_map, left);
}

static void print_method_list64_t(uint64_t p, struct DisassembleInfo *info,
                                  const char *indent) {
  struct method_list64_t ml;
  struct method64_t m;
  const char *r;
  uint32_t offset, xoffset, left, i;
  SectionRef S, xS;
  const char *name, *sym_name;
  uint64_t n_value;

  r = get_pointer_64(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&ml, '\0', sizeof(struct method_list64_t));
  if (left < sizeof(struct method_list64_t)) {
    memcpy(&ml, r, left);
    outs() << "   (method_list_t entends past the end of the section)\n";
  } else
    memcpy(&ml, r, sizeof(struct method_list64_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(ml);
  outs() << indent << "\t\t   entsize " << ml.entsize << "\n";
  outs() << indent << "\t\t     count " << ml.count << "\n";

  p += sizeof(struct method_list64_t);
  offset += sizeof(struct method_list64_t);
  for (i = 0; i < ml.count; i++) {
    r = get_pointer_64(p, offset, left, S, info);
    if (r == nullptr)
      return;
    memset(&m, '\0', sizeof(struct method64_t));
    if (left < sizeof(struct method64_t)) {
      memcpy(&m, r, left);
      outs() << indent << "   (method_t extends past the end of the section)\n";
    } else
      memcpy(&m, r, sizeof(struct method64_t));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(m);

    outs() << indent << "\t\t      name ";
    sym_name = get_symbol_64(offset + offsetof(struct method64_t, name), S,
                             info, n_value, m.name);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (m.name != 0)
        outs() << " + " << format("0x%" PRIx64, m.name);
    } else
      outs() << format("0x%" PRIx64, m.name);
    name = get_pointer_64(m.name + n_value, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    outs() << indent << "\t\t     types ";
    sym_name = get_symbol_64(offset + offsetof(struct method64_t, types), S,
                             info, n_value, m.types);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (m.types != 0)
        outs() << " + " << format("0x%" PRIx64, m.types);
    } else
      outs() << format("0x%" PRIx64, m.types);
    name = get_pointer_64(m.types + n_value, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    outs() << indent << "\t\t       imp ";
    name = get_symbol_64(offset + offsetof(struct method64_t, imp), S, info,
                         n_value, m.imp);
    if (info->verbose && name == nullptr) {
      if (n_value != 0) {
        outs() << format("0x%" PRIx64, n_value) << " ";
        if (m.imp != 0)
          outs() << "+ " << format("0x%" PRIx64, m.imp) << " ";
      } else
        outs() << format("0x%" PRIx64, m.imp) << " ";
    }
    if (name != nullptr)
      outs() << name;
    outs() << "\n";

    p += sizeof(struct method64_t);
    offset += sizeof(struct method64_t);
  }
}

static void print_method_list32_t(uint64_t p, struct DisassembleInfo *info,
                                  const char *indent) {
  struct method_list32_t ml;
  struct method32_t m;
  const char *r, *name;
  uint32_t offset, xoffset, left, i;
  SectionRef S, xS;

  r = get_pointer_32(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&ml, '\0', sizeof(struct method_list32_t));
  if (left < sizeof(struct method_list32_t)) {
    memcpy(&ml, r, left);
    outs() << "   (method_list_t entends past the end of the section)\n";
  } else
    memcpy(&ml, r, sizeof(struct method_list32_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(ml);
  outs() << indent << "\t\t   entsize " << ml.entsize << "\n";
  outs() << indent << "\t\t     count " << ml.count << "\n";

  p += sizeof(struct method_list32_t);
  offset += sizeof(struct method_list32_t);
  for (i = 0; i < ml.count; i++) {
    r = get_pointer_32(p, offset, left, S, info);
    if (r == nullptr)
      return;
    memset(&m, '\0', sizeof(struct method32_t));
    if (left < sizeof(struct method32_t)) {
      memcpy(&ml, r, left);
      outs() << indent << "   (method_t entends past the end of the section)\n";
    } else
      memcpy(&m, r, sizeof(struct method32_t));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(m);

    outs() << indent << "\t\t      name " << format("0x%" PRIx32, m.name);
    name = get_pointer_32(m.name, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    outs() << indent << "\t\t     types " << format("0x%" PRIx32, m.types);
    name = get_pointer_32(m.types, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    outs() << indent << "\t\t       imp " << format("0x%" PRIx32, m.imp);
    name = get_symbol_32(offset + offsetof(struct method32_t, imp), S, info,
                         m.imp);
    if (name != nullptr)
      outs() << " " << name;
    outs() << "\n";

    p += sizeof(struct method32_t);
    offset += sizeof(struct method32_t);
  }
}

static bool print_method_list(uint32_t p, struct DisassembleInfo *info) {
  uint32_t offset, left, xleft;
  SectionRef S;
  struct objc_method_list_t method_list;
  struct objc_method_t method;
  const char *r, *methods, *name, *SymbolName;
  int32_t i;

  r = get_pointer_32(p, offset, left, S, info, true);
  if (r == nullptr)
    return true;

  outs() << "\n";
  if (left > sizeof(struct objc_method_list_t)) {
    memcpy(&method_list, r, sizeof(struct objc_method_list_t));
  } else {
    outs() << "\t\t objc_method_list extends past end of the section\n";
    memset(&method_list, '\0', sizeof(struct objc_method_list_t));
    memcpy(&method_list, r, left);
  }
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(method_list);

  outs() << "\t\t         obsolete "
         << format("0x%08" PRIx32, method_list.obsolete) << "\n";
  outs() << "\t\t     method_count " << method_list.method_count << "\n";

  methods = r + sizeof(struct objc_method_list_t);
  for (i = 0; i < method_list.method_count; i++) {
    if ((i + 1) * sizeof(struct objc_method_t) > left) {
      outs() << "\t\t remaining method's extend past the of the section\n";
      break;
    }
    memcpy(&method, methods + i * sizeof(struct objc_method_t),
           sizeof(struct objc_method_t));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(method);

    outs() << "\t\t      method_name "
           << format("0x%08" PRIx32, method.method_name);
    if (info->verbose) {
      name = get_pointer_32(method.method_name, offset, xleft, S, info, true);
      if (name != nullptr)
        outs() << format(" %.*s", xleft, name);
      else
        outs() << " (not in an __OBJC section)";
    }
    outs() << "\n";

    outs() << "\t\t     method_types "
           << format("0x%08" PRIx32, method.method_types);
    if (info->verbose) {
      name = get_pointer_32(method.method_types, offset, xleft, S, info, true);
      if (name != nullptr)
        outs() << format(" %.*s", xleft, name);
      else
        outs() << " (not in an __OBJC section)";
    }
    outs() << "\n";

    outs() << "\t\t       method_imp "
           << format("0x%08" PRIx32, method.method_imp) << " ";
    if (info->verbose) {
      SymbolName = GuessSymbolName(method.method_imp, info->AddrMap);
      if (SymbolName != nullptr)
        outs() << SymbolName;
    }
    outs() << "\n";
  }
  return false;
}

static void print_protocol_list64_t(uint64_t p, struct DisassembleInfo *info) {
  struct protocol_list64_t pl;
  uint64_t q, n_value;
  struct protocol64_t pc;
  const char *r;
  uint32_t offset, xoffset, left, i;
  SectionRef S, xS;
  const char *name, *sym_name;

  r = get_pointer_64(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&pl, '\0', sizeof(struct protocol_list64_t));
  if (left < sizeof(struct protocol_list64_t)) {
    memcpy(&pl, r, left);
    outs() << "   (protocol_list_t entends past the end of the section)\n";
  } else
    memcpy(&pl, r, sizeof(struct protocol_list64_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(pl);
  outs() << "                      count " << pl.count << "\n";

  p += sizeof(struct protocol_list64_t);
  offset += sizeof(struct protocol_list64_t);
  for (i = 0; i < pl.count; i++) {
    r = get_pointer_64(p, offset, left, S, info);
    if (r == nullptr)
      return;
    q = 0;
    if (left < sizeof(uint64_t)) {
      memcpy(&q, r, left);
      outs() << "   (protocol_t * entends past the end of the section)\n";
    } else
      memcpy(&q, r, sizeof(uint64_t));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      sys::swapByteOrder(q);

    outs() << "\t\t      list[" << i << "] ";
    sym_name = get_symbol_64(offset, S, info, n_value, q);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (q != 0)
        outs() << " + " << format("0x%" PRIx64, q);
    } else
      outs() << format("0x%" PRIx64, q);
    outs() << " (struct protocol_t *)\n";

    r = get_pointer_64(q + n_value, offset, left, S, info);
    if (r == nullptr)
      return;
    memset(&pc, '\0', sizeof(struct protocol64_t));
    if (left < sizeof(struct protocol64_t)) {
      memcpy(&pc, r, left);
      outs() << "   (protocol_t entends past the end of the section)\n";
    } else
      memcpy(&pc, r, sizeof(struct protocol64_t));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(pc);

    outs() << "\t\t\t      isa " << format("0x%" PRIx64, pc.isa) << "\n";

    outs() << "\t\t\t     name ";
    sym_name = get_symbol_64(offset + offsetof(struct protocol64_t, name), S,
                             info, n_value, pc.name);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (pc.name != 0)
        outs() << " + " << format("0x%" PRIx64, pc.name);
    } else
      outs() << format("0x%" PRIx64, pc.name);
    name = get_pointer_64(pc.name + n_value, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    outs() << "\t\t\tprotocols " << format("0x%" PRIx64, pc.protocols) << "\n";

    outs() << "\t\t  instanceMethods ";
    sym_name =
        get_symbol_64(offset + offsetof(struct protocol64_t, instanceMethods),
                      S, info, n_value, pc.instanceMethods);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (pc.instanceMethods != 0)
        outs() << " + " << format("0x%" PRIx64, pc.instanceMethods);
    } else
      outs() << format("0x%" PRIx64, pc.instanceMethods);
    outs() << " (struct method_list_t *)\n";
    if (pc.instanceMethods + n_value != 0)
      print_method_list64_t(pc.instanceMethods + n_value, info, "\t");

    outs() << "\t\t     classMethods ";
    sym_name =
        get_symbol_64(offset + offsetof(struct protocol64_t, classMethods), S,
                      info, n_value, pc.classMethods);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (pc.classMethods != 0)
        outs() << " + " << format("0x%" PRIx64, pc.classMethods);
    } else
      outs() << format("0x%" PRIx64, pc.classMethods);
    outs() << " (struct method_list_t *)\n";
    if (pc.classMethods + n_value != 0)
      print_method_list64_t(pc.classMethods + n_value, info, "\t");

    outs() << "\t  optionalInstanceMethods "
           << format("0x%" PRIx64, pc.optionalInstanceMethods) << "\n";
    outs() << "\t     optionalClassMethods "
           << format("0x%" PRIx64, pc.optionalClassMethods) << "\n";
    outs() << "\t       instanceProperties "
           << format("0x%" PRIx64, pc.instanceProperties) << "\n";

    p += sizeof(uint64_t);
    offset += sizeof(uint64_t);
  }
}

static void print_protocol_list32_t(uint32_t p, struct DisassembleInfo *info) {
  struct protocol_list32_t pl;
  uint32_t q;
  struct protocol32_t pc;
  const char *r;
  uint32_t offset, xoffset, left, i;
  SectionRef S, xS;
  const char *name;

  r = get_pointer_32(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&pl, '\0', sizeof(struct protocol_list32_t));
  if (left < sizeof(struct protocol_list32_t)) {
    memcpy(&pl, r, left);
    outs() << "   (protocol_list_t entends past the end of the section)\n";
  } else
    memcpy(&pl, r, sizeof(struct protocol_list32_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(pl);
  outs() << "                      count " << pl.count << "\n";

  p += sizeof(struct protocol_list32_t);
  offset += sizeof(struct protocol_list32_t);
  for (i = 0; i < pl.count; i++) {
    r = get_pointer_32(p, offset, left, S, info);
    if (r == nullptr)
      return;
    q = 0;
    if (left < sizeof(uint32_t)) {
      memcpy(&q, r, left);
      outs() << "   (protocol_t * entends past the end of the section)\n";
    } else
      memcpy(&q, r, sizeof(uint32_t));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      sys::swapByteOrder(q);
    outs() << "\t\t      list[" << i << "] " << format("0x%" PRIx32, q)
           << " (struct protocol_t *)\n";
    r = get_pointer_32(q, offset, left, S, info);
    if (r == nullptr)
      return;
    memset(&pc, '\0', sizeof(struct protocol32_t));
    if (left < sizeof(struct protocol32_t)) {
      memcpy(&pc, r, left);
      outs() << "   (protocol_t entends past the end of the section)\n";
    } else
      memcpy(&pc, r, sizeof(struct protocol32_t));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(pc);
    outs() << "\t\t\t      isa " << format("0x%" PRIx32, pc.isa) << "\n";
    outs() << "\t\t\t     name " << format("0x%" PRIx32, pc.name);
    name = get_pointer_32(pc.name, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";
    outs() << "\t\t\tprotocols " << format("0x%" PRIx32, pc.protocols) << "\n";
    outs() << "\t\t  instanceMethods "
           << format("0x%" PRIx32, pc.instanceMethods)
           << " (struct method_list_t *)\n";
    if (pc.instanceMethods != 0)
      print_method_list32_t(pc.instanceMethods, info, "\t");
    outs() << "\t\t     classMethods " << format("0x%" PRIx32, pc.classMethods)
           << " (struct method_list_t *)\n";
    if (pc.classMethods != 0)
      print_method_list32_t(pc.classMethods, info, "\t");
    outs() << "\t  optionalInstanceMethods "
           << format("0x%" PRIx32, pc.optionalInstanceMethods) << "\n";
    outs() << "\t     optionalClassMethods "
           << format("0x%" PRIx32, pc.optionalClassMethods) << "\n";
    outs() << "\t       instanceProperties "
           << format("0x%" PRIx32, pc.instanceProperties) << "\n";
    p += sizeof(uint32_t);
    offset += sizeof(uint32_t);
  }
}

static void print_indent(uint32_t indent) {
  for (uint32_t i = 0; i < indent;) {
    if (indent - i >= 8) {
      outs() << "\t";
      i += 8;
    } else {
      for (uint32_t j = i; j < indent; j++)
        outs() << " ";
      return;
    }
  }
}

static bool print_method_description_list(uint32_t p, uint32_t indent,
                                          struct DisassembleInfo *info) {
  uint32_t offset, left, xleft;
  SectionRef S;
  struct objc_method_description_list_t mdl;
  struct objc_method_description_t md;
  const char *r, *list, *name;
  int32_t i;

  r = get_pointer_32(p, offset, left, S, info, true);
  if (r == nullptr)
    return true;

  outs() << "\n";
  if (left > sizeof(struct objc_method_description_list_t)) {
    memcpy(&mdl, r, sizeof(struct objc_method_description_list_t));
  } else {
    print_indent(indent);
    outs() << " objc_method_description_list extends past end of the section\n";
    memset(&mdl, '\0', sizeof(struct objc_method_description_list_t));
    memcpy(&mdl, r, left);
  }
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(mdl);

  print_indent(indent);
  outs() << "        count " << mdl.count << "\n";

  list = r + sizeof(struct objc_method_description_list_t);
  for (i = 0; i < mdl.count; i++) {
    if ((i + 1) * sizeof(struct objc_method_description_t) > left) {
      print_indent(indent);
      outs() << " remaining list entries extend past the of the section\n";
      break;
    }
    print_indent(indent);
    outs() << "        list[" << i << "]\n";
    memcpy(&md, list + i * sizeof(struct objc_method_description_t),
           sizeof(struct objc_method_description_t));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(md);

    print_indent(indent);
    outs() << "             name " << format("0x%08" PRIx32, md.name);
    if (info->verbose) {
      name = get_pointer_32(md.name, offset, xleft, S, info, true);
      if (name != nullptr)
        outs() << format(" %.*s", xleft, name);
      else
        outs() << " (not in an __OBJC section)";
    }
    outs() << "\n";

    print_indent(indent);
    outs() << "            types " << format("0x%08" PRIx32, md.types);
    if (info->verbose) {
      name = get_pointer_32(md.types, offset, xleft, S, info, true);
      if (name != nullptr)
        outs() << format(" %.*s", xleft, name);
      else
        outs() << " (not in an __OBJC section)";
    }
    outs() << "\n";
  }
  return false;
}

static bool print_protocol_list(uint32_t p, uint32_t indent,
                                struct DisassembleInfo *info);

static bool print_protocol(uint32_t p, uint32_t indent,
                           struct DisassembleInfo *info) {
  uint32_t offset, left;
  SectionRef S;
  struct objc_protocol_t protocol;
  const char *r, *name;

  r = get_pointer_32(p, offset, left, S, info, true);
  if (r == nullptr)
    return true;

  outs() << "\n";
  if (left >= sizeof(struct objc_protocol_t)) {
    memcpy(&protocol, r, sizeof(struct objc_protocol_t));
  } else {
    print_indent(indent);
    outs() << "            Protocol extends past end of the section\n";
    memset(&protocol, '\0', sizeof(struct objc_protocol_t));
    memcpy(&protocol, r, left);
  }
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(protocol);

  print_indent(indent);
  outs() << "              isa " << format("0x%08" PRIx32, protocol.isa)
         << "\n";

  print_indent(indent);
  outs() << "    protocol_name "
         << format("0x%08" PRIx32, protocol.protocol_name);
  if (info->verbose) {
    name = get_pointer_32(protocol.protocol_name, offset, left, S, info, true);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    else
      outs() << " (not in an __OBJC section)";
  }
  outs() << "\n";

  print_indent(indent);
  outs() << "    protocol_list "
         << format("0x%08" PRIx32, protocol.protocol_list);
  if (print_protocol_list(protocol.protocol_list, indent + 4, info))
    outs() << " (not in an __OBJC section)\n";

  print_indent(indent);
  outs() << " instance_methods "
         << format("0x%08" PRIx32, protocol.instance_methods);
  if (print_method_description_list(protocol.instance_methods, indent, info))
    outs() << " (not in an __OBJC section)\n";

  print_indent(indent);
  outs() << "    class_methods "
         << format("0x%08" PRIx32, protocol.class_methods);
  if (print_method_description_list(protocol.class_methods, indent, info))
    outs() << " (not in an __OBJC section)\n";

  return false;
}

static bool print_protocol_list(uint32_t p, uint32_t indent,
                                struct DisassembleInfo *info) {
  uint32_t offset, left, l;
  SectionRef S;
  struct objc_protocol_list_t protocol_list;
  const char *r, *list;
  int32_t i;

  r = get_pointer_32(p, offset, left, S, info, true);
  if (r == nullptr)
    return true;

  outs() << "\n";
  if (left > sizeof(struct objc_protocol_list_t)) {
    memcpy(&protocol_list, r, sizeof(struct objc_protocol_list_t));
  } else {
    outs() << "\t\t objc_protocol_list_t extends past end of the section\n";
    memset(&protocol_list, '\0', sizeof(struct objc_protocol_list_t));
    memcpy(&protocol_list, r, left);
  }
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(protocol_list);

  print_indent(indent);
  outs() << "         next " << format("0x%08" PRIx32, protocol_list.next)
         << "\n";
  print_indent(indent);
  outs() << "        count " << protocol_list.count << "\n";

  list = r + sizeof(struct objc_protocol_list_t);
  for (i = 0; i < protocol_list.count; i++) {
    if ((i + 1) * sizeof(uint32_t) > left) {
      outs() << "\t\t remaining list entries extend past the of the section\n";
      break;
    }
    memcpy(&l, list + i * sizeof(uint32_t), sizeof(uint32_t));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      sys::swapByteOrder(l);

    print_indent(indent);
    outs() << "      list[" << i << "] " << format("0x%08" PRIx32, l);
    if (print_protocol(l, indent, info))
      outs() << "(not in an __OBJC section)\n";
  }
  return false;
}

static void print_ivar_list64_t(uint64_t p, struct DisassembleInfo *info) {
  struct ivar_list64_t il;
  struct ivar64_t i;
  const char *r;
  uint32_t offset, xoffset, left, j;
  SectionRef S, xS;
  const char *name, *sym_name, *ivar_offset_p;
  uint64_t ivar_offset, n_value;

  r = get_pointer_64(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&il, '\0', sizeof(struct ivar_list64_t));
  if (left < sizeof(struct ivar_list64_t)) {
    memcpy(&il, r, left);
    outs() << "   (ivar_list_t entends past the end of the section)\n";
  } else
    memcpy(&il, r, sizeof(struct ivar_list64_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(il);
  outs() << "                    entsize " << il.entsize << "\n";
  outs() << "                      count " << il.count << "\n";

  p += sizeof(struct ivar_list64_t);
  offset += sizeof(struct ivar_list64_t);
  for (j = 0; j < il.count; j++) {
    r = get_pointer_64(p, offset, left, S, info);
    if (r == nullptr)
      return;
    memset(&i, '\0', sizeof(struct ivar64_t));
    if (left < sizeof(struct ivar64_t)) {
      memcpy(&i, r, left);
      outs() << "   (ivar_t entends past the end of the section)\n";
    } else
      memcpy(&i, r, sizeof(struct ivar64_t));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(i);

    outs() << "\t\t\t   offset ";
    sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, offset), S,
                             info, n_value, i.offset);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (i.offset != 0)
        outs() << " + " << format("0x%" PRIx64, i.offset);
    } else
      outs() << format("0x%" PRIx64, i.offset);
    ivar_offset_p = get_pointer_64(i.offset + n_value, xoffset, left, xS, info);
    if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
      memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
      if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
        sys::swapByteOrder(ivar_offset);
      outs() << " " << ivar_offset << "\n";
    } else
      outs() << "\n";

    outs() << "\t\t\t     name ";
    sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, name), S, info,
                             n_value, i.name);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (i.name != 0)
        outs() << " + " << format("0x%" PRIx64, i.name);
    } else
      outs() << format("0x%" PRIx64, i.name);
    name = get_pointer_64(i.name + n_value, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    outs() << "\t\t\t     type ";
    sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, type), S, info,
                             n_value, i.name);
    name = get_pointer_64(i.type + n_value, xoffset, left, xS, info);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (i.type != 0)
        outs() << " + " << format("0x%" PRIx64, i.type);
    } else
      outs() << format("0x%" PRIx64, i.type);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    outs() << "\t\t\talignment " << i.alignment << "\n";
    outs() << "\t\t\t     size " << i.size << "\n";

    p += sizeof(struct ivar64_t);
    offset += sizeof(struct ivar64_t);
  }
}

static void print_ivar_list32_t(uint32_t p, struct DisassembleInfo *info) {
  struct ivar_list32_t il;
  struct ivar32_t i;
  const char *r;
  uint32_t offset, xoffset, left, j;
  SectionRef S, xS;
  const char *name, *ivar_offset_p;
  uint32_t ivar_offset;

  r = get_pointer_32(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&il, '\0', sizeof(struct ivar_list32_t));
  if (left < sizeof(struct ivar_list32_t)) {
    memcpy(&il, r, left);
    outs() << "   (ivar_list_t entends past the end of the section)\n";
  } else
    memcpy(&il, r, sizeof(struct ivar_list32_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(il);
  outs() << "                    entsize " << il.entsize << "\n";
  outs() << "                      count " << il.count << "\n";

  p += sizeof(struct ivar_list32_t);
  offset += sizeof(struct ivar_list32_t);
  for (j = 0; j < il.count; j++) {
    r = get_pointer_32(p, offset, left, S, info);
    if (r == nullptr)
      return;
    memset(&i, '\0', sizeof(struct ivar32_t));
    if (left < sizeof(struct ivar32_t)) {
      memcpy(&i, r, left);
      outs() << "   (ivar_t entends past the end of the section)\n";
    } else
      memcpy(&i, r, sizeof(struct ivar32_t));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(i);

    outs() << "\t\t\t   offset " << format("0x%" PRIx32, i.offset);
    ivar_offset_p = get_pointer_32(i.offset, xoffset, left, xS, info);
    if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
      memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
      if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
        sys::swapByteOrder(ivar_offset);
      outs() << " " << ivar_offset << "\n";
    } else
      outs() << "\n";

    outs() << "\t\t\t     name " << format("0x%" PRIx32, i.name);
    name = get_pointer_32(i.name, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    outs() << "\t\t\t     type " << format("0x%" PRIx32, i.type);
    name = get_pointer_32(i.type, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    outs() << "\t\t\talignment " << i.alignment << "\n";
    outs() << "\t\t\t     size " << i.size << "\n";

    p += sizeof(struct ivar32_t);
    offset += sizeof(struct ivar32_t);
  }
}

static void print_objc_property_list64(uint64_t p,
                                       struct DisassembleInfo *info) {
  struct objc_property_list64 opl;
  struct objc_property64 op;
  const char *r;
  uint32_t offset, xoffset, left, j;
  SectionRef S, xS;
  const char *name, *sym_name;
  uint64_t n_value;

  r = get_pointer_64(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&opl, '\0', sizeof(struct objc_property_list64));
  if (left < sizeof(struct objc_property_list64)) {
    memcpy(&opl, r, left);
    outs() << "   (objc_property_list entends past the end of the section)\n";
  } else
    memcpy(&opl, r, sizeof(struct objc_property_list64));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(opl);
  outs() << "                    entsize " << opl.entsize << "\n";
  outs() << "                      count " << opl.count << "\n";

  p += sizeof(struct objc_property_list64);
  offset += sizeof(struct objc_property_list64);
  for (j = 0; j < opl.count; j++) {
    r = get_pointer_64(p, offset, left, S, info);
    if (r == nullptr)
      return;
    memset(&op, '\0', sizeof(struct objc_property64));
    if (left < sizeof(struct objc_property64)) {
      memcpy(&op, r, left);
      outs() << "   (objc_property entends past the end of the section)\n";
    } else
      memcpy(&op, r, sizeof(struct objc_property64));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(op);

    outs() << "\t\t\t     name ";
    sym_name = get_symbol_64(offset + offsetof(struct objc_property64, name), S,
                             info, n_value, op.name);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (op.name != 0)
        outs() << " + " << format("0x%" PRIx64, op.name);
    } else
      outs() << format("0x%" PRIx64, op.name);
    name = get_pointer_64(op.name + n_value, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    outs() << "\t\t\tattributes ";
    sym_name =
        get_symbol_64(offset + offsetof(struct objc_property64, attributes), S,
                      info, n_value, op.attributes);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (op.attributes != 0)
        outs() << " + " << format("0x%" PRIx64, op.attributes);
    } else
      outs() << format("0x%" PRIx64, op.attributes);
    name = get_pointer_64(op.attributes + n_value, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    p += sizeof(struct objc_property64);
    offset += sizeof(struct objc_property64);
  }
}

static void print_objc_property_list32(uint32_t p,
                                       struct DisassembleInfo *info) {
  struct objc_property_list32 opl;
  struct objc_property32 op;
  const char *r;
  uint32_t offset, xoffset, left, j;
  SectionRef S, xS;
  const char *name;

  r = get_pointer_32(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&opl, '\0', sizeof(struct objc_property_list32));
  if (left < sizeof(struct objc_property_list32)) {
    memcpy(&opl, r, left);
    outs() << "   (objc_property_list entends past the end of the section)\n";
  } else
    memcpy(&opl, r, sizeof(struct objc_property_list32));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(opl);
  outs() << "                    entsize " << opl.entsize << "\n";
  outs() << "                      count " << opl.count << "\n";

  p += sizeof(struct objc_property_list32);
  offset += sizeof(struct objc_property_list32);
  for (j = 0; j < opl.count; j++) {
    r = get_pointer_32(p, offset, left, S, info);
    if (r == nullptr)
      return;
    memset(&op, '\0', sizeof(struct objc_property32));
    if (left < sizeof(struct objc_property32)) {
      memcpy(&op, r, left);
      outs() << "   (objc_property entends past the end of the section)\n";
    } else
      memcpy(&op, r, sizeof(struct objc_property32));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(op);

    outs() << "\t\t\t     name " << format("0x%" PRIx32, op.name);
    name = get_pointer_32(op.name, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    outs() << "\t\t\tattributes " << format("0x%" PRIx32, op.attributes);
    name = get_pointer_32(op.attributes, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    p += sizeof(struct objc_property32);
    offset += sizeof(struct objc_property32);
  }
}

static bool print_class_ro64_t(uint64_t p, struct DisassembleInfo *info,
                               bool &is_meta_class) {
  struct class_ro64_t cro;
  const char *r;
  uint32_t offset, xoffset, left;
  SectionRef S, xS;
  const char *name, *sym_name;
  uint64_t n_value;

  r = get_pointer_64(p, offset, left, S, info);
  if (r == nullptr || left < sizeof(struct class_ro64_t))
    return false;
  memset(&cro, '\0', sizeof(struct class_ro64_t));
  if (left < sizeof(struct class_ro64_t)) {
    memcpy(&cro, r, left);
    outs() << "   (class_ro_t entends past the end of the section)\n";
  } else
    memcpy(&cro, r, sizeof(struct class_ro64_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(cro);
  outs() << "                    flags " << format("0x%" PRIx32, cro.flags);
  if (cro.flags & RO_META)
    outs() << " RO_META";
  if (cro.flags & RO_ROOT)
    outs() << " RO_ROOT";
  if (cro.flags & RO_HAS_CXX_STRUCTORS)
    outs() << " RO_HAS_CXX_STRUCTORS";
  outs() << "\n";
  outs() << "            instanceStart " << cro.instanceStart << "\n";
  outs() << "             instanceSize " << cro.instanceSize << "\n";
  outs() << "                 reserved " << format("0x%" PRIx32, cro.reserved)
         << "\n";
  outs() << "               ivarLayout " << format("0x%" PRIx64, cro.ivarLayout)
         << "\n";
  print_layout_map64(cro.ivarLayout, info);

  outs() << "                     name ";
  sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, name), S,
                           info, n_value, cro.name);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (cro.name != 0)
      outs() << " + " << format("0x%" PRIx64, cro.name);
  } else
    outs() << format("0x%" PRIx64, cro.name);
  name = get_pointer_64(cro.name + n_value, xoffset, left, xS, info);
  if (name != nullptr)
    outs() << format(" %.*s", left, name);
  outs() << "\n";

  outs() << "              baseMethods ";
  sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, baseMethods),
                           S, info, n_value, cro.baseMethods);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (cro.baseMethods != 0)
      outs() << " + " << format("0x%" PRIx64, cro.baseMethods);
  } else
    outs() << format("0x%" PRIx64, cro.baseMethods);
  outs() << " (struct method_list_t *)\n";
  if (cro.baseMethods + n_value != 0)
    print_method_list64_t(cro.baseMethods + n_value, info, "");

  outs() << "            baseProtocols ";
  sym_name =
      get_symbol_64(offset + offsetof(struct class_ro64_t, baseProtocols), S,
                    info, n_value, cro.baseProtocols);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (cro.baseProtocols != 0)
      outs() << " + " << format("0x%" PRIx64, cro.baseProtocols);
  } else
    outs() << format("0x%" PRIx64, cro.baseProtocols);
  outs() << "\n";
  if (cro.baseProtocols + n_value != 0)
    print_protocol_list64_t(cro.baseProtocols + n_value, info);

  outs() << "                    ivars ";
  sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, ivars), S,
                           info, n_value, cro.ivars);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (cro.ivars != 0)
      outs() << " + " << format("0x%" PRIx64, cro.ivars);
  } else
    outs() << format("0x%" PRIx64, cro.ivars);
  outs() << "\n";
  if (cro.ivars + n_value != 0)
    print_ivar_list64_t(cro.ivars + n_value, info);

  outs() << "           weakIvarLayout ";
  sym_name =
      get_symbol_64(offset + offsetof(struct class_ro64_t, weakIvarLayout), S,
                    info, n_value, cro.weakIvarLayout);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (cro.weakIvarLayout != 0)
      outs() << " + " << format("0x%" PRIx64, cro.weakIvarLayout);
  } else
    outs() << format("0x%" PRIx64, cro.weakIvarLayout);
  outs() << "\n";
  print_layout_map64(cro.weakIvarLayout + n_value, info);

  outs() << "           baseProperties ";
  sym_name =
      get_symbol_64(offset + offsetof(struct class_ro64_t, baseProperties), S,
                    info, n_value, cro.baseProperties);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (cro.baseProperties != 0)
      outs() << " + " << format("0x%" PRIx64, cro.baseProperties);
  } else
    outs() << format("0x%" PRIx64, cro.baseProperties);
  outs() << "\n";
  if (cro.baseProperties + n_value != 0)
    print_objc_property_list64(cro.baseProperties + n_value, info);

  is_meta_class = (cro.flags & RO_META) != 0;
  return true;
}

static bool print_class_ro32_t(uint32_t p, struct DisassembleInfo *info,
                               bool &is_meta_class) {
  struct class_ro32_t cro;
  const char *r;
  uint32_t offset, xoffset, left;
  SectionRef S, xS;
  const char *name;

  r = get_pointer_32(p, offset, left, S, info);
  if (r == nullptr)
    return false;
  memset(&cro, '\0', sizeof(struct class_ro32_t));
  if (left < sizeof(struct class_ro32_t)) {
    memcpy(&cro, r, left);
    outs() << "   (class_ro_t entends past the end of the section)\n";
  } else
    memcpy(&cro, r, sizeof(struct class_ro32_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(cro);
  outs() << "                    flags " << format("0x%" PRIx32, cro.flags);
  if (cro.flags & RO_META)
    outs() << " RO_META";
  if (cro.flags & RO_ROOT)
    outs() << " RO_ROOT";
  if (cro.flags & RO_HAS_CXX_STRUCTORS)
    outs() << " RO_HAS_CXX_STRUCTORS";
  outs() << "\n";
  outs() << "            instanceStart " << cro.instanceStart << "\n";
  outs() << "             instanceSize " << cro.instanceSize << "\n";
  outs() << "               ivarLayout " << format("0x%" PRIx32, cro.ivarLayout)
         << "\n";
  print_layout_map32(cro.ivarLayout, info);

  outs() << "                     name " << format("0x%" PRIx32, cro.name);
  name = get_pointer_32(cro.name, xoffset, left, xS, info);
  if (name != nullptr)
    outs() << format(" %.*s", left, name);
  outs() << "\n";

  outs() << "              baseMethods "
         << format("0x%" PRIx32, cro.baseMethods)
         << " (struct method_list_t *)\n";
  if (cro.baseMethods != 0)
    print_method_list32_t(cro.baseMethods, info, "");

  outs() << "            baseProtocols "
         << format("0x%" PRIx32, cro.baseProtocols) << "\n";
  if (cro.baseProtocols != 0)
    print_protocol_list32_t(cro.baseProtocols, info);
  outs() << "                    ivars " << format("0x%" PRIx32, cro.ivars)
         << "\n";
  if (cro.ivars != 0)
    print_ivar_list32_t(cro.ivars, info);
  outs() << "           weakIvarLayout "
         << format("0x%" PRIx32, cro.weakIvarLayout) << "\n";
  print_layout_map32(cro.weakIvarLayout, info);
  outs() << "           baseProperties "
         << format("0x%" PRIx32, cro.baseProperties) << "\n";
  if (cro.baseProperties != 0)
    print_objc_property_list32(cro.baseProperties, info);
  is_meta_class = (cro.flags & RO_META) != 0;
  return true;
}

static void print_class64_t(uint64_t p, struct DisassembleInfo *info) {
  struct class64_t c;
  const char *r;
  uint32_t offset, left;
  SectionRef S;
  const char *name;
  uint64_t isa_n_value, n_value;

  r = get_pointer_64(p, offset, left, S, info);
  if (r == nullptr || left < sizeof(struct class64_t))
    return;
  memset(&c, '\0', sizeof(struct class64_t));
  if (left < sizeof(struct class64_t)) {
    memcpy(&c, r, left);
    outs() << "   (class_t entends past the end of the section)\n";
  } else
    memcpy(&c, r, sizeof(struct class64_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(c);

  outs() << "           isa " << format("0x%" PRIx64, c.isa);
  name = get_symbol_64(offset + offsetof(struct class64_t, isa), S, info,
                       isa_n_value, c.isa);
  if (name != nullptr)
    outs() << " " << name;
  outs() << "\n";

  outs() << "    superclass " << format("0x%" PRIx64, c.superclass);
  name = get_symbol_64(offset + offsetof(struct class64_t, superclass), S, info,
                       n_value, c.superclass);
  if (name != nullptr)
    outs() << " " << name;
  outs() << "\n";

  outs() << "         cache " << format("0x%" PRIx64, c.cache);
  name = get_symbol_64(offset + offsetof(struct class64_t, cache), S, info,
                       n_value, c.cache);
  if (name != nullptr)
    outs() << " " << name;
  outs() << "\n";

  outs() << "        vtable " << format("0x%" PRIx64, c.vtable);
  name = get_symbol_64(offset + offsetof(struct class64_t, vtable), S, info,
                       n_value, c.vtable);
  if (name != nullptr)
    outs() << " " << name;
  outs() << "\n";

  name = get_symbol_64(offset + offsetof(struct class64_t, data), S, info,
                       n_value, c.data);
  outs() << "          data ";
  if (n_value != 0) {
    if (info->verbose && name != nullptr)
      outs() << name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (c.data != 0)
      outs() << " + " << format("0x%" PRIx64, c.data);
  } else
    outs() << format("0x%" PRIx64, c.data);
  outs() << " (struct class_ro_t *)";

  // This is a Swift class if some of the low bits of the pointer are set.
  if ((c.data + n_value) & 0x7)
    outs() << " Swift class";
  outs() << "\n";
  bool is_meta_class;
  if (!print_class_ro64_t((c.data + n_value) & ~0x7, info, is_meta_class))
    return;

  if (!is_meta_class &&
      c.isa + isa_n_value != p &&
      c.isa + isa_n_value != 0 &&
      info->depth < 100) {
      info->depth++;
      outs() << "Meta Class\n";
      print_class64_t(c.isa + isa_n_value, info);
  }
}

static void print_class32_t(uint32_t p, struct DisassembleInfo *info) {
  struct class32_t c;
  const char *r;
  uint32_t offset, left;
  SectionRef S;
  const char *name;

  r = get_pointer_32(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&c, '\0', sizeof(struct class32_t));
  if (left < sizeof(struct class32_t)) {
    memcpy(&c, r, left);
    outs() << "   (class_t entends past the end of the section)\n";
  } else
    memcpy(&c, r, sizeof(struct class32_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(c);

  outs() << "           isa " << format("0x%" PRIx32, c.isa);
  name =
      get_symbol_32(offset + offsetof(struct class32_t, isa), S, info, c.isa);
  if (name != nullptr)
    outs() << " " << name;
  outs() << "\n";

  outs() << "    superclass " << format("0x%" PRIx32, c.superclass);
  name = get_symbol_32(offset + offsetof(struct class32_t, superclass), S, info,
                       c.superclass);
  if (name != nullptr)
    outs() << " " << name;
  outs() << "\n";

  outs() << "         cache " << format("0x%" PRIx32, c.cache);
  name = get_symbol_32(offset + offsetof(struct class32_t, cache), S, info,
                       c.cache);
  if (name != nullptr)
    outs() << " " << name;
  outs() << "\n";

  outs() << "        vtable " << format("0x%" PRIx32, c.vtable);
  name = get_symbol_32(offset + offsetof(struct class32_t, vtable), S, info,
                       c.vtable);
  if (name != nullptr)
    outs() << " " << name;
  outs() << "\n";

  name =
      get_symbol_32(offset + offsetof(struct class32_t, data), S, info, c.data);
  outs() << "          data " << format("0x%" PRIx32, c.data)
         << " (struct class_ro_t *)";

  // This is a Swift class if some of the low bits of the pointer are set.
  if (c.data & 0x3)
    outs() << " Swift class";
  outs() << "\n";
  bool is_meta_class;
  if (!print_class_ro32_t(c.data & ~0x3, info, is_meta_class))
    return;

  if (!is_meta_class) {
    outs() << "Meta Class\n";
    print_class32_t(c.isa, info);
  }
}

static void print_objc_class_t(struct objc_class_t *objc_class,
                               struct DisassembleInfo *info) {
  uint32_t offset, left, xleft;
  const char *name, *p, *ivar_list;
  SectionRef S;
  int32_t i;
  struct objc_ivar_list_t objc_ivar_list;
  struct objc_ivar_t ivar;

  outs() << "\t\t      isa " << format("0x%08" PRIx32, objc_class->isa);
  if (info->verbose && CLS_GETINFO(objc_class, CLS_META)) {
    name = get_pointer_32(objc_class->isa, offset, left, S, info, true);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    else
      outs() << " (not in an __OBJC section)";
  }
  outs() << "\n";

  outs() << "\t      super_class "
         << format("0x%08" PRIx32, objc_class->super_class);
  if (info->verbose) {
    name = get_pointer_32(objc_class->super_class, offset, left, S, info, true);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    else
      outs() << " (not in an __OBJC section)";
  }
  outs() << "\n";

  outs() << "\t\t     name " << format("0x%08" PRIx32, objc_class->name);
  if (info->verbose) {
    name = get_pointer_32(objc_class->name, offset, left, S, info, true);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    else
      outs() << " (not in an __OBJC section)";
  }
  outs() << "\n";

  outs() << "\t\t  version " << format("0x%08" PRIx32, objc_class->version)
         << "\n";

  outs() << "\t\t     info " << format("0x%08" PRIx32, objc_class->info);
  if (info->verbose) {
    if (CLS_GETINFO(objc_class, CLS_CLASS))
      outs() << " CLS_CLASS";
    else if (CLS_GETINFO(objc_class, CLS_META))
      outs() << " CLS_META";
  }
  outs() << "\n";

  outs() << "\t    instance_size "
         << format("0x%08" PRIx32, objc_class->instance_size) << "\n";

  p = get_pointer_32(objc_class->ivars, offset, left, S, info, true);
  outs() << "\t\t    ivars " << format("0x%08" PRIx32, objc_class->ivars);
  if (p != nullptr) {
    if (left > sizeof(struct objc_ivar_list_t)) {
      outs() << "\n";
      memcpy(&objc_ivar_list, p, sizeof(struct objc_ivar_list_t));
    } else {
      outs() << " (entends past the end of the section)\n";
      memset(&objc_ivar_list, '\0', sizeof(struct objc_ivar_list_t));
      memcpy(&objc_ivar_list, p, left);
    }
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(objc_ivar_list);
    outs() << "\t\t       ivar_count " << objc_ivar_list.ivar_count << "\n";
    ivar_list = p + sizeof(struct objc_ivar_list_t);
    for (i = 0; i < objc_ivar_list.ivar_count; i++) {
      if ((i + 1) * sizeof(struct objc_ivar_t) > left) {
        outs() << "\t\t remaining ivar's extend past the of the section\n";
        break;
      }
      memcpy(&ivar, ivar_list + i * sizeof(struct objc_ivar_t),
             sizeof(struct objc_ivar_t));
      if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
        swapStruct(ivar);

      outs() << "\t\t\tivar_name " << format("0x%08" PRIx32, ivar.ivar_name);
      if (info->verbose) {
        name = get_pointer_32(ivar.ivar_name, offset, xleft, S, info, true);
        if (name != nullptr)
          outs() << format(" %.*s", xleft, name);
        else
          outs() << " (not in an __OBJC section)";
      }
      outs() << "\n";

      outs() << "\t\t\tivar_type " << format("0x%08" PRIx32, ivar.ivar_type);
      if (info->verbose) {
        name = get_pointer_32(ivar.ivar_type, offset, xleft, S, info, true);
        if (name != nullptr)
          outs() << format(" %.*s", xleft, name);
        else
          outs() << " (not in an __OBJC section)";
      }
      outs() << "\n";

      outs() << "\t\t      ivar_offset "
             << format("0x%08" PRIx32, ivar.ivar_offset) << "\n";
    }
  } else {
    outs() << " (not in an __OBJC section)\n";
  }

  outs() << "\t\t  methods " << format("0x%08" PRIx32, objc_class->methodLists);
  if (print_method_list(objc_class->methodLists, info))
    outs() << " (not in an __OBJC section)\n";

  outs() << "\t\t    cache " << format("0x%08" PRIx32, objc_class->cache)
         << "\n";

  outs() << "\t\tprotocols " << format("0x%08" PRIx32, objc_class->protocols);
  if (print_protocol_list(objc_class->protocols, 16, info))
    outs() << " (not in an __OBJC section)\n";
}

static void print_objc_objc_category_t(struct objc_category_t *objc_category,
                                       struct DisassembleInfo *info) {
  uint32_t offset, left;
  const char *name;
  SectionRef S;

  outs() << "\t       category name "
         << format("0x%08" PRIx32, objc_category->category_name);
  if (info->verbose) {
    name = get_pointer_32(objc_category->category_name, offset, left, S, info,
                          true);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    else
      outs() << " (not in an __OBJC section)";
  }
  outs() << "\n";

  outs() << "\t\t  class name "
         << format("0x%08" PRIx32, objc_category->class_name);
  if (info->verbose) {
    name =
        get_pointer_32(objc_category->class_name, offset, left, S, info, true);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    else
      outs() << " (not in an __OBJC section)";
  }
  outs() << "\n";

  outs() << "\t    instance methods "
         << format("0x%08" PRIx32, objc_category->instance_methods);
  if (print_method_list(objc_category->instance_methods, info))
    outs() << " (not in an __OBJC section)\n";

  outs() << "\t       class methods "
         << format("0x%08" PRIx32, objc_category->class_methods);
  if (print_method_list(objc_category->class_methods, info))
    outs() << " (not in an __OBJC section)\n";
}

static void print_category64_t(uint64_t p, struct DisassembleInfo *info) {
  struct category64_t c;
  const char *r;
  uint32_t offset, xoffset, left;
  SectionRef S, xS;
  const char *name, *sym_name;
  uint64_t n_value;

  r = get_pointer_64(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&c, '\0', sizeof(struct category64_t));
  if (left < sizeof(struct category64_t)) {
    memcpy(&c, r, left);
    outs() << "   (category_t entends past the end of the section)\n";
  } else
    memcpy(&c, r, sizeof(struct category64_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(c);

  outs() << "              name ";
  sym_name = get_symbol_64(offset + offsetof(struct category64_t, name), S,
                           info, n_value, c.name);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (c.name != 0)
      outs() << " + " << format("0x%" PRIx64, c.name);
  } else
    outs() << format("0x%" PRIx64, c.name);
  name = get_pointer_64(c.name + n_value, xoffset, left, xS, info);
  if (name != nullptr)
    outs() << format(" %.*s", left, name);
  outs() << "\n";

  outs() << "               cls ";
  sym_name = get_symbol_64(offset + offsetof(struct category64_t, cls), S, info,
                           n_value, c.cls);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (c.cls != 0)
      outs() << " + " << format("0x%" PRIx64, c.cls);
  } else
    outs() << format("0x%" PRIx64, c.cls);
  outs() << "\n";
  if (c.cls + n_value != 0)
    print_class64_t(c.cls + n_value, info);

  outs() << "   instanceMethods ";
  sym_name =
      get_symbol_64(offset + offsetof(struct category64_t, instanceMethods), S,
                    info, n_value, c.instanceMethods);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (c.instanceMethods != 0)
      outs() << " + " << format("0x%" PRIx64, c.instanceMethods);
  } else
    outs() << format("0x%" PRIx64, c.instanceMethods);
  outs() << "\n";
  if (c.instanceMethods + n_value != 0)
    print_method_list64_t(c.instanceMethods + n_value, info, "");

  outs() << "      classMethods ";
  sym_name = get_symbol_64(offset + offsetof(struct category64_t, classMethods),
                           S, info, n_value, c.classMethods);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (c.classMethods != 0)
      outs() << " + " << format("0x%" PRIx64, c.classMethods);
  } else
    outs() << format("0x%" PRIx64, c.classMethods);
  outs() << "\n";
  if (c.classMethods + n_value != 0)
    print_method_list64_t(c.classMethods + n_value, info, "");

  outs() << "         protocols ";
  sym_name = get_symbol_64(offset + offsetof(struct category64_t, protocols), S,
                           info, n_value, c.protocols);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (c.protocols != 0)
      outs() << " + " << format("0x%" PRIx64, c.protocols);
  } else
    outs() << format("0x%" PRIx64, c.protocols);
  outs() << "\n";
  if (c.protocols + n_value != 0)
    print_protocol_list64_t(c.protocols + n_value, info);

  outs() << "instanceProperties ";
  sym_name =
      get_symbol_64(offset + offsetof(struct category64_t, instanceProperties),
                    S, info, n_value, c.instanceProperties);
  if (n_value != 0) {
    if (info->verbose && sym_name != nullptr)
      outs() << sym_name;
    else
      outs() << format("0x%" PRIx64, n_value);
    if (c.instanceProperties != 0)
      outs() << " + " << format("0x%" PRIx64, c.instanceProperties);
  } else
    outs() << format("0x%" PRIx64, c.instanceProperties);
  outs() << "\n";
  if (c.instanceProperties + n_value != 0)
    print_objc_property_list64(c.instanceProperties + n_value, info);
}

static void print_category32_t(uint32_t p, struct DisassembleInfo *info) {
  struct category32_t c;
  const char *r;
  uint32_t offset, left;
  SectionRef S, xS;
  const char *name;

  r = get_pointer_32(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&c, '\0', sizeof(struct category32_t));
  if (left < sizeof(struct category32_t)) {
    memcpy(&c, r, left);
    outs() << "   (category_t entends past the end of the section)\n";
  } else
    memcpy(&c, r, sizeof(struct category32_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(c);

  outs() << "              name " << format("0x%" PRIx32, c.name);
  name = get_symbol_32(offset + offsetof(struct category32_t, name), S, info,
                       c.name);
  if (name)
    outs() << " " << name;
  outs() << "\n";

  outs() << "               cls " << format("0x%" PRIx32, c.cls) << "\n";
  if (c.cls != 0)
    print_class32_t(c.cls, info);
  outs() << "   instanceMethods " << format("0x%" PRIx32, c.instanceMethods)
         << "\n";
  if (c.instanceMethods != 0)
    print_method_list32_t(c.instanceMethods, info, "");
  outs() << "      classMethods " << format("0x%" PRIx32, c.classMethods)
         << "\n";
  if (c.classMethods != 0)
    print_method_list32_t(c.classMethods, info, "");
  outs() << "         protocols " << format("0x%" PRIx32, c.protocols) << "\n";
  if (c.protocols != 0)
    print_protocol_list32_t(c.protocols, info);
  outs() << "instanceProperties " << format("0x%" PRIx32, c.instanceProperties)
         << "\n";
  if (c.instanceProperties != 0)
    print_objc_property_list32(c.instanceProperties, info);
}

static void print_message_refs64(SectionRef S, struct DisassembleInfo *info) {
  uint32_t i, left, offset, xoffset;
  uint64_t p, n_value;
  struct message_ref64 mr;
  const char *name, *sym_name;
  const char *r;
  SectionRef xS;

  if (S == SectionRef())
    return;

  StringRef SectName;
  S.getName(SectName);
  DataRefImpl Ref = S.getRawDataRefImpl();
  StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
  offset = 0;
  for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
    p = S.getAddress() + i;
    r = get_pointer_64(p, offset, left, S, info);
    if (r == nullptr)
      return;
    memset(&mr, '\0', sizeof(struct message_ref64));
    if (left < sizeof(struct message_ref64)) {
      memcpy(&mr, r, left);
      outs() << "   (message_ref entends past the end of the section)\n";
    } else
      memcpy(&mr, r, sizeof(struct message_ref64));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(mr);

    outs() << "  imp ";
    name = get_symbol_64(offset + offsetof(struct message_ref64, imp), S, info,
                         n_value, mr.imp);
    if (n_value != 0) {
      outs() << format("0x%" PRIx64, n_value) << " ";
      if (mr.imp != 0)
        outs() << "+ " << format("0x%" PRIx64, mr.imp) << " ";
    } else
      outs() << format("0x%" PRIx64, mr.imp) << " ";
    if (name != nullptr)
      outs() << " " << name;
    outs() << "\n";

    outs() << "  sel ";
    sym_name = get_symbol_64(offset + offsetof(struct message_ref64, sel), S,
                             info, n_value, mr.sel);
    if (n_value != 0) {
      if (info->verbose && sym_name != nullptr)
        outs() << sym_name;
      else
        outs() << format("0x%" PRIx64, n_value);
      if (mr.sel != 0)
        outs() << " + " << format("0x%" PRIx64, mr.sel);
    } else
      outs() << format("0x%" PRIx64, mr.sel);
    name = get_pointer_64(mr.sel + n_value, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << format(" %.*s", left, name);
    outs() << "\n";

    offset += sizeof(struct message_ref64);
  }
}

static void print_message_refs32(SectionRef S, struct DisassembleInfo *info) {
  uint32_t i, left, offset, xoffset, p;
  struct message_ref32 mr;
  const char *name, *r;
  SectionRef xS;

  if (S == SectionRef())
    return;

  StringRef SectName;
  S.getName(SectName);
  DataRefImpl Ref = S.getRawDataRefImpl();
  StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
  offset = 0;
  for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
    p = S.getAddress() + i;
    r = get_pointer_32(p, offset, left, S, info);
    if (r == nullptr)
      return;
    memset(&mr, '\0', sizeof(struct message_ref32));
    if (left < sizeof(struct message_ref32)) {
      memcpy(&mr, r, left);
      outs() << "   (message_ref entends past the end of the section)\n";
    } else
      memcpy(&mr, r, sizeof(struct message_ref32));
    if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(mr);

    outs() << "  imp " << format("0x%" PRIx32, mr.imp);
    name = get_symbol_32(offset + offsetof(struct message_ref32, imp), S, info,
                         mr.imp);
    if (name != nullptr)
      outs() << " " << name;
    outs() << "\n";

    outs() << "  sel " << format("0x%" PRIx32, mr.sel);
    name = get_pointer_32(mr.sel, xoffset, left, xS, info);
    if (name != nullptr)
      outs() << " " << name;
    outs() << "\n";

    offset += sizeof(struct message_ref32);
  }
}

static void print_image_info64(SectionRef S, struct DisassembleInfo *info) {
  uint32_t left, offset, swift_version;
  uint64_t p;
  struct objc_image_info64 o;
  const char *r;

  if (S == SectionRef())
    return;

  StringRef SectName;
  S.getName(SectName);
  DataRefImpl Ref = S.getRawDataRefImpl();
  StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
  p = S.getAddress();
  r = get_pointer_64(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&o, '\0', sizeof(struct objc_image_info64));
  if (left < sizeof(struct objc_image_info64)) {
    memcpy(&o, r, left);
    outs() << "   (objc_image_info entends past the end of the section)\n";
  } else
    memcpy(&o, r, sizeof(struct objc_image_info64));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(o);
  outs() << "  version " << o.version << "\n";
  outs() << "    flags " << format("0x%" PRIx32, o.flags);
  if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
    outs() << " OBJC_IMAGE_IS_REPLACEMENT";
  if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
    outs() << " OBJC_IMAGE_SUPPORTS_GC";
  swift_version = (o.flags >> 8) & 0xff;
  if (swift_version != 0) {
    if (swift_version == 1)
      outs() << " Swift 1.0";
    else if (swift_version == 2)
      outs() << " Swift 1.1";
    else
      outs() << " unknown future Swift version (" << swift_version << ")";
  }
  outs() << "\n";
}

static void print_image_info32(SectionRef S, struct DisassembleInfo *info) {
  uint32_t left, offset, swift_version, p;
  struct objc_image_info32 o;
  const char *r;

  StringRef SectName;
  S.getName(SectName);
  DataRefImpl Ref = S.getRawDataRefImpl();
  StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
  p = S.getAddress();
  r = get_pointer_32(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&o, '\0', sizeof(struct objc_image_info32));
  if (left < sizeof(struct objc_image_info32)) {
    memcpy(&o, r, left);
    outs() << "   (objc_image_info entends past the end of the section)\n";
  } else
    memcpy(&o, r, sizeof(struct objc_image_info32));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(o);
  outs() << "  version " << o.version << "\n";
  outs() << "    flags " << format("0x%" PRIx32, o.flags);
  if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
    outs() << " OBJC_IMAGE_IS_REPLACEMENT";
  if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
    outs() << " OBJC_IMAGE_SUPPORTS_GC";
  swift_version = (o.flags >> 8) & 0xff;
  if (swift_version != 0) {
    if (swift_version == 1)
      outs() << " Swift 1.0";
    else if (swift_version == 2)
      outs() << " Swift 1.1";
    else
      outs() << " unknown future Swift version (" << swift_version << ")";
  }
  outs() << "\n";
}

static void print_image_info(SectionRef S, struct DisassembleInfo *info) {
  uint32_t left, offset, p;
  struct imageInfo_t o;
  const char *r;

  StringRef SectName;
  S.getName(SectName);
  DataRefImpl Ref = S.getRawDataRefImpl();
  StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
  outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
  p = S.getAddress();
  r = get_pointer_32(p, offset, left, S, info);
  if (r == nullptr)
    return;
  memset(&o, '\0', sizeof(struct imageInfo_t));
  if (left < sizeof(struct imageInfo_t)) {
    memcpy(&o, r, left);
    outs() << " (imageInfo entends past the end of the section)\n";
  } else
    memcpy(&o, r, sizeof(struct imageInfo_t));
  if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
    swapStruct(o);
  outs() << "  version " << o.version << "\n";
  outs() << "    flags " << format("0x%" PRIx32, o.flags);
  if (o.flags & 0x1)
    outs() << "  F&C";
  if (o.flags & 0x2)
    outs() << " GC";
  if (o.flags & 0x4)
    outs() << " GC-only";
  else
    outs() << " RR";
  outs() << "\n";
}

static void printObjc2_64bit_MetaData(MachOObjectFile *O, bool verbose) {
  SymbolAddressMap AddrMap;
  if (verbose)
    CreateSymbolAddressMap(O, &AddrMap);

  std::vector<SectionRef> Sections;
  for (const SectionRef &Section : O->sections()) {
    StringRef SectName;
    Section.getName(SectName);
    Sections.push_back(Section);
  }

  struct DisassembleInfo info;
  // Set up the block of info used by the Symbolizer call backs.
  info.verbose = verbose;
  info.O = O;
  info.AddrMap = &AddrMap;
  info.Sections = &Sections;
  info.class_name = nullptr;
  info.selector_name = nullptr;
  info.method = nullptr;
  info.demangled_name = nullptr;
  info.bindtable = nullptr;
  info.adrp_addr = 0;
  info.adrp_inst = 0;

  info.depth = 0;
  SectionRef CL = get_section(O, "__OBJC2", "__class_list");
  if (CL == SectionRef())
    CL = get_section(O, "__DATA", "__objc_classlist");
  info.S = CL;
  walk_pointer_list_64("class", CL, O, &info, print_class64_t);

  SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
  if (CR == SectionRef())
    CR = get_section(O, "__DATA", "__objc_classrefs");
  info.S = CR;
  walk_pointer_list_64("class refs", CR, O, &info, nullptr);

  SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
  if (SR == SectionRef())
    SR = get_section(O, "__DATA", "__objc_superrefs");
  info.S = SR;
  walk_pointer_list_64("super refs", SR, O, &info, nullptr);

  SectionRef CA = get_section(O, "__OBJC2", "__category_list");
  if (CA == SectionRef())
    CA = get_section(O, "__DATA", "__objc_catlist");
  info.S = CA;
  walk_pointer_list_64("category", CA, O, &info, print_category64_t);

  SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
  if (PL == SectionRef())
    PL = get_section(O, "__DATA", "__objc_protolist");
  info.S = PL;
  walk_pointer_list_64("protocol", PL, O, &info, nullptr);

  SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
  if (MR == SectionRef())
    MR = get_section(O, "__DATA", "__objc_msgrefs");
  info.S = MR;
  print_message_refs64(MR, &info);

  SectionRef II = get_section(O, "__OBJC2", "__image_info");
  if (II == SectionRef())
    II = get_section(O, "__DATA", "__objc_imageinfo");
  info.S = II;
  print_image_info64(II, &info);

  if (info.bindtable != nullptr)
    delete info.bindtable;
}

static void printObjc2_32bit_MetaData(MachOObjectFile *O, bool verbose) {
  SymbolAddressMap AddrMap;
  if (verbose)
    CreateSymbolAddressMap(O, &AddrMap);

  std::vector<SectionRef> Sections;
  for (const SectionRef &Section : O->sections()) {
    StringRef SectName;
    Section.getName(SectName);
    Sections.push_back(Section);
  }

  struct DisassembleInfo info;
  // Set up the block of info used by the Symbolizer call backs.
  info.verbose = verbose;
  info.O = O;
  info.AddrMap = &AddrMap;
  info.Sections = &Sections;
  info.class_name = nullptr;
  info.selector_name = nullptr;
  info.method = nullptr;
  info.demangled_name = nullptr;
  info.bindtable = nullptr;
  info.adrp_addr = 0;
  info.adrp_inst = 0;

  const SectionRef CL = get_section(O, "__OBJC2", "__class_list");
  if (CL != SectionRef()) {
    info.S = CL;
    walk_pointer_list_32("class", CL, O, &info, print_class32_t);
  } else {
    const SectionRef CL = get_section(O, "__DATA", "__objc_classlist");
    info.S = CL;
    walk_pointer_list_32("class", CL, O, &info, print_class32_t);
  }

  const SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
  if (CR != SectionRef()) {
    info.S = CR;
    walk_pointer_list_32("class refs", CR, O, &info, nullptr);
  } else {
    const SectionRef CR = get_section(O, "__DATA", "__objc_classrefs");
    info.S = CR;
    walk_pointer_list_32("class refs", CR, O, &info, nullptr);
  }

  const SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
  if (SR != SectionRef()) {
    info.S = SR;
    walk_pointer_list_32("super refs", SR, O, &info, nullptr);
  } else {
    const SectionRef SR = get_section(O, "__DATA", "__objc_superrefs");
    info.S = SR;
    walk_pointer_list_32("super refs", SR, O, &info, nullptr);
  }

  const SectionRef CA = get_section(O, "__OBJC2", "__category_list");
  if (CA != SectionRef()) {
    info.S = CA;
    walk_pointer_list_32("category", CA, O, &info, print_category32_t);
  } else {
    const SectionRef CA = get_section(O, "__DATA", "__objc_catlist");
    info.S = CA;
    walk_pointer_list_32("category", CA, O, &info, print_category32_t);
  }

  const SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
  if (PL != SectionRef()) {
    info.S = PL;
    walk_pointer_list_32("protocol", PL, O, &info, nullptr);
  } else {
    const SectionRef PL = get_section(O, "__DATA", "__objc_protolist");
    info.S = PL;
    walk_pointer_list_32("protocol", PL, O, &info, nullptr);
  }

  const SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
  if (MR != SectionRef()) {
    info.S = MR;
    print_message_refs32(MR, &info);
  } else {
    const SectionRef MR = get_section(O, "__DATA", "__objc_msgrefs");
    info.S = MR;
    print_message_refs32(MR, &info);
  }

  const SectionRef II = get_section(O, "__OBJC2", "__image_info");
  if (II != SectionRef()) {
    info.S = II;
    print_image_info32(II, &info);
  } else {
    const SectionRef II = get_section(O, "__DATA", "__objc_imageinfo");
    info.S = II;
    print_image_info32(II, &info);
  }
}

static bool printObjc1_32bit_MetaData(MachOObjectFile *O, bool verbose) {
  uint32_t i, j, p, offset, xoffset, left, defs_left, def;
  const char *r, *name, *defs;
  struct objc_module_t module;
  SectionRef S, xS;
  struct objc_symtab_t symtab;
  struct objc_class_t objc_class;
  struct objc_category_t objc_category;

  outs() << "Objective-C segment\n";
  S = get_section(O, "__OBJC", "__module_info");
  if (S == SectionRef())
    return false;

  SymbolAddressMap AddrMap;
  if (verbose)
    CreateSymbolAddressMap(O, &AddrMap);

  std::vector<SectionRef> Sections;
  for (const SectionRef &Section : O->sections()) {
    StringRef SectName;
    Section.getName(SectName);
    Sections.push_back(Section);
  }

  struct DisassembleInfo info;
  // Set up the block of info used by the Symbolizer call backs.
  info.verbose = verbose;
  info.O = O;
  info.AddrMap = &AddrMap;
  info.Sections = &Sections;
  info.class_name = nullptr;
  info.selector_name = nullptr;
  info.method = nullptr;
  info.demangled_name = nullptr;
  info.bindtable = nullptr;
  info.adrp_addr = 0;
  info.adrp_inst = 0;

  for (i = 0; i < S.getSize(); i += sizeof(struct objc_module_t)) {
    p = S.getAddress() + i;
    r = get_pointer_32(p, offset, left, S, &info, true);
    if (r == nullptr)
      return true;
    memset(&module, '\0', sizeof(struct objc_module_t));
    if (left < sizeof(struct objc_module_t)) {
      memcpy(&module, r, left);
      outs() << "   (module extends past end of __module_info section)\n";
    } else
      memcpy(&module, r, sizeof(struct objc_module_t));
    if (O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(module);

    outs() << "Module " << format("0x%" PRIx32, p) << "\n";
    outs() << "    version " << module.version << "\n";
    outs() << "       size " << module.size << "\n";
    outs() << "       name ";
    name = get_pointer_32(module.name, xoffset, left, xS, &info, true);
    if (name != nullptr)
      outs() << format("%.*s", left, name);
    else
      outs() << format("0x%08" PRIx32, module.name)
             << "(not in an __OBJC section)";
    outs() << "\n";

    r = get_pointer_32(module.symtab, xoffset, left, xS, &info, true);
    if (module.symtab == 0 || r == nullptr) {
      outs() << "     symtab " << format("0x%08" PRIx32, module.symtab)
             << " (not in an __OBJC section)\n";
      continue;
    }
    outs() << "     symtab " << format("0x%08" PRIx32, module.symtab) << "\n";
    memset(&symtab, '\0', sizeof(struct objc_symtab_t));
    defs_left = 0;
    defs = nullptr;
    if (left < sizeof(struct objc_symtab_t)) {
      memcpy(&symtab, r, left);
      outs() << "\tsymtab extends past end of an __OBJC section)\n";
    } else {
      memcpy(&symtab, r, sizeof(struct objc_symtab_t));
      if (left > sizeof(struct objc_symtab_t)) {
        defs_left = left - sizeof(struct objc_symtab_t);
        defs = r + sizeof(struct objc_symtab_t);
      }
    }
    if (O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(symtab);

    outs() << "\tsel_ref_cnt " << symtab.sel_ref_cnt << "\n";
    r = get_pointer_32(symtab.refs, xoffset, left, xS, &info, true);
    outs() << "\trefs " << format("0x%08" PRIx32, symtab.refs);
    if (r == nullptr)
      outs() << " (not in an __OBJC section)";
    outs() << "\n";
    outs() << "\tcls_def_cnt " << symtab.cls_def_cnt << "\n";
    outs() << "\tcat_def_cnt " << symtab.cat_def_cnt << "\n";
    if (symtab.cls_def_cnt > 0)
      outs() << "\tClass Definitions\n";
    for (j = 0; j < symtab.cls_def_cnt; j++) {
      if ((j + 1) * sizeof(uint32_t) > defs_left) {
        outs() << "\t(remaining class defs entries entends past the end of the "
               << "section)\n";
        break;
      }
      memcpy(&def, defs + j * sizeof(uint32_t), sizeof(uint32_t));
      if (O->isLittleEndian() != sys::IsLittleEndianHost)
        sys::swapByteOrder(def);

      r = get_pointer_32(def, xoffset, left, xS, &info, true);
      outs() << "\tdefs[" << j << "] " << format("0x%08" PRIx32, def);
      if (r != nullptr) {
        if (left > sizeof(struct objc_class_t)) {
          outs() << "\n";
          memcpy(&objc_class, r, sizeof(struct objc_class_t));
        } else {
          outs() << " (entends past the end of the section)\n";
          memset(&objc_class, '\0', sizeof(struct objc_class_t));
          memcpy(&objc_class, r, left);
        }
        if (O->isLittleEndian() != sys::IsLittleEndianHost)
          swapStruct(objc_class);
        print_objc_class_t(&objc_class, &info);
      } else {
        outs() << "(not in an __OBJC section)\n";
      }

      if (CLS_GETINFO(&objc_class, CLS_CLASS)) {
        outs() << "\tMeta Class";
        r = get_pointer_32(objc_class.isa, xoffset, left, xS, &info, true);
        if (r != nullptr) {
          if (left > sizeof(struct objc_class_t)) {
            outs() << "\n";
            memcpy(&objc_class, r, sizeof(struct objc_class_t));
          } else {
            outs() << " (entends past the end of the section)\n";
            memset(&objc_class, '\0', sizeof(struct objc_class_t));
            memcpy(&objc_class, r, left);
          }
          if (O->isLittleEndian() != sys::IsLittleEndianHost)
            swapStruct(objc_class);
          print_objc_class_t(&objc_class, &info);
        } else {
          outs() << "(not in an __OBJC section)\n";
        }
      }
    }
    if (symtab.cat_def_cnt > 0)
      outs() << "\tCategory Definitions\n";
    for (j = 0; j < symtab.cat_def_cnt; j++) {
      if ((j + symtab.cls_def_cnt + 1) * sizeof(uint32_t) > defs_left) {
        outs() << "\t(remaining category defs entries entends past the end of "
               << "the section)\n";
        break;
      }
      memcpy(&def, defs + (j + symtab.cls_def_cnt) * sizeof(uint32_t),
             sizeof(uint32_t));
      if (O->isLittleEndian() != sys::IsLittleEndianHost)
        sys::swapByteOrder(def);

      r = get_pointer_32(def, xoffset, left, xS, &info, true);
      outs() << "\tdefs[" << j + symtab.cls_def_cnt << "] "
             << format("0x%08" PRIx32, def);
      if (r != nullptr) {
        if (left > sizeof(struct objc_category_t)) {
          outs() << "\n";
          memcpy(&objc_category, r, sizeof(struct objc_category_t));
        } else {
          outs() << " (entends past the end of the section)\n";
          memset(&objc_category, '\0', sizeof(struct objc_category_t));
          memcpy(&objc_category, r, left);
        }
        if (O->isLittleEndian() != sys::IsLittleEndianHost)
          swapStruct(objc_category);
        print_objc_objc_category_t(&objc_category, &info);
      } else {
        outs() << "(not in an __OBJC section)\n";
      }
    }
  }
  const SectionRef II = get_section(O, "__OBJC", "__image_info");
  if (II != SectionRef())
    print_image_info(II, &info);

  return true;
}

static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
                                uint32_t size, uint32_t addr) {
  SymbolAddressMap AddrMap;
  CreateSymbolAddressMap(O, &AddrMap);

  std::vector<SectionRef> Sections;
  for (const SectionRef &Section : O->sections()) {
    StringRef SectName;
    Section.getName(SectName);
    Sections.push_back(Section);
  }

  struct DisassembleInfo info;
  // Set up the block of info used by the Symbolizer call backs.
  info.verbose = true;
  info.O = O;
  info.AddrMap = &AddrMap;
  info.Sections = &Sections;
  info.class_name = nullptr;
  info.selector_name = nullptr;
  info.method = nullptr;
  info.demangled_name = nullptr;
  info.bindtable = nullptr;
  info.adrp_addr = 0;
  info.adrp_inst = 0;

  const char *p;
  struct objc_protocol_t protocol;
  uint32_t left, paddr;
  for (p = sect; p < sect + size; p += sizeof(struct objc_protocol_t)) {
    memset(&protocol, '\0', sizeof(struct objc_protocol_t));
    left = size - (p - sect);
    if (left < sizeof(struct objc_protocol_t)) {
      outs() << "Protocol extends past end of __protocol section\n";
      memcpy(&protocol, p, left);
    } else
      memcpy(&protocol, p, sizeof(struct objc_protocol_t));
    if (O->isLittleEndian() != sys::IsLittleEndianHost)
      swapStruct(protocol);
    paddr = addr + (p - sect);
    outs() << "Protocol " << format("0x%" PRIx32, paddr);
    if (print_protocol(paddr, 0, &info))
      outs() << "(not in an __OBJC section)\n";
  }
}

static void printObjcMetaData(MachOObjectFile *O, bool verbose) {
  if (O->is64Bit())
    printObjc2_64bit_MetaData(O, verbose);
  else {
    MachO::mach_header H;
    H = O->getHeader();
    if (H.cputype == MachO::CPU_TYPE_ARM)
      printObjc2_32bit_MetaData(O, verbose);
    else {
      // This is the 32-bit non-arm cputype case.  Which is normally
      // the first Objective-C ABI.  But it may be the case of a
      // binary for the iOS simulator which is the second Objective-C
      // ABI.  In that case printObjc1_32bit_MetaData() will determine that
      // and return false.
      if (!printObjc1_32bit_MetaData(O, verbose))
        printObjc2_32bit_MetaData(O, verbose);
    }
  }
}

// GuessLiteralPointer returns a string which for the item in the Mach-O file
// for the address passed in as ReferenceValue for printing as a comment with
// the instruction and also returns the corresponding type of that item
// indirectly through ReferenceType.
//
// If ReferenceValue is an address of literal cstring then a pointer to the
// cstring is returned and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr .
//
// If ReferenceValue is an address of an Objective-C CFString, Selector ref or
// Class ref that name is returned and the ReferenceType is set accordingly.
//
// Lastly, literals which are Symbol address in a literal pool are looked for
// and if found the symbol name is returned and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr .
//
// If there is no item in the Mach-O file for the address passed in as
// ReferenceValue nullptr is returned and ReferenceType is unchanged.
static const char *GuessLiteralPointer(uint64_t ReferenceValue,
                                       uint64_t ReferencePC,
                                       uint64_t *ReferenceType,
                                       struct DisassembleInfo *info) {
  // First see if there is an external relocation entry at the ReferencePC.
  if (info->O->getHeader().filetype == MachO::MH_OBJECT) {
    uint64_t sect_addr = info->S.getAddress();
    uint64_t sect_offset = ReferencePC - sect_addr;
    bool reloc_found = false;
    DataRefImpl Rel;
    MachO::any_relocation_info RE;
    bool isExtern = false;
    SymbolRef Symbol;
    for (const RelocationRef &Reloc : info->S.relocations()) {
      uint64_t RelocOffset = Reloc.getOffset();
      if (RelocOffset == sect_offset) {
        Rel = Reloc.getRawDataRefImpl();
        RE = info->O->getRelocation(Rel);
        if (info->O->isRelocationScattered(RE))
          continue;
        isExtern = info->O->getPlainRelocationExternal(RE);
        if (isExtern) {
          symbol_iterator RelocSym = Reloc.getSymbol();
          Symbol = *RelocSym;
        }
        reloc_found = true;
        break;
      }
    }
    // If there is an external relocation entry for a symbol in a section
    // then used that symbol's value for the value of the reference.
    if (reloc_found && isExtern) {
      if (info->O->getAnyRelocationPCRel(RE)) {
        unsigned Type = info->O->getAnyRelocationType(RE);
        if (Type == MachO::X86_64_RELOC_SIGNED) {
          ReferenceValue = Symbol.getValue();
        }
      }
    }
  }

  // Look for literals such as Objective-C CFStrings refs, Selector refs,
  // Message refs and Class refs.
  bool classref, selref, msgref, cfstring;
  uint64_t pointer_value = GuessPointerPointer(ReferenceValue, info, classref,
                                               selref, msgref, cfstring);
  if (classref && pointer_value == 0) {
    // Note the ReferenceValue is a pointer into the __objc_classrefs section.
    // And the pointer_value in that section is typically zero as it will be
    // set by dyld as part of the "bind information".
    const char *name = get_dyld_bind_info_symbolname(ReferenceValue, info);
    if (name != nullptr) {
      *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
      const char *class_name = strrchr(name, '$');
      if (class_name != nullptr && class_name[1] == '_' &&
          class_name[2] != '\0') {
        info->class_name = class_name + 2;
        return name;
      }
    }
  }

  if (classref) {
    *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
    const char *name =
        get_objc2_64bit_class_name(pointer_value, ReferenceValue, info);
    if (name != nullptr)
      info->class_name = name;
    else
      name = "bad class ref";
    return name;
  }

  if (cfstring) {
    *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref;
    const char *name = get_objc2_64bit_cfstring_name(ReferenceValue, info);
    return name;
  }

  if (selref && pointer_value == 0)
    pointer_value = get_objc2_64bit_selref(ReferenceValue, info);

  if (pointer_value != 0)
    ReferenceValue = pointer_value;

  const char *name = GuessCstringPointer(ReferenceValue, info);
  if (name) {
    if (pointer_value != 0 && selref) {
      *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref;
      info->selector_name = name;
    } else if (pointer_value != 0 && msgref) {
      info->class_name = nullptr;
      *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref;
      info->selector_name = name;
    } else
      *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr;
    return name;
  }

  // Lastly look for an indirect symbol with this ReferenceValue which is in
  // a literal pool.  If found return that symbol name.
  name = GuessIndirectSymbol(ReferenceValue, info);
  if (name) {
    *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr;
    return name;
  }

  return nullptr;
}

// SymbolizerSymbolLookUp is the symbol lookup function passed when creating
// the Symbolizer.  It looks up the ReferenceValue using the info passed via the
// pointer to the struct DisassembleInfo that was passed when MCSymbolizer
// is created and returns the symbol name that matches the ReferenceValue or
// nullptr if none.  The ReferenceType is passed in for the IN type of
// reference the instruction is making from the values in defined in the header
// "llvm-c/Disassembler.h".  On return the ReferenceType can set to a specific
// Out type and the ReferenceName will also be set which is added as a comment
// to the disassembled instruction.
//
#if HAVE_CXXABI_H
// If the symbol name is a C++ mangled name then the demangled name is
// returned through ReferenceName and ReferenceType is set to
// LLVMDisassembler_ReferenceType_DeMangled_Name .
#endif
//
// When this is called to get a symbol name for a branch target then the
// ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then
// SymbolValue will be looked for in the indirect symbol table to determine if
// it is an address for a symbol stub.  If so then the symbol name for that
// stub is returned indirectly through ReferenceName and then ReferenceType is
// set to LLVMDisassembler_ReferenceType_Out_SymbolStub.
//
// When this is called with an value loaded via a PC relative load then
// ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the
// SymbolValue is checked to be an address of literal pointer, symbol pointer,
// or an Objective-C meta data reference.  If so the output ReferenceType is
// set to correspond to that as well as setting the ReferenceName.
static const char *SymbolizerSymbolLookUp(void *DisInfo,
                                          uint64_t ReferenceValue,
                                          uint64_t *ReferenceType,
                                          uint64_t ReferencePC,
                                          const char **ReferenceName) {
  struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
  // If no verbose symbolic information is wanted then just return nullptr.
  if (!info->verbose) {
    *ReferenceName = nullptr;
    *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
    return nullptr;
  }

  const char *SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);

  if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch) {
    *ReferenceName = GuessIndirectSymbol(ReferenceValue, info);
    if (*ReferenceName != nullptr) {
      method_reference(info, ReferenceType, ReferenceName);
      if (*ReferenceType != LLVMDisassembler_ReferenceType_Out_Objc_Message)
        *ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub;
    } else
#if HAVE_CXXABI_H
        if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
      if (info->demangled_name != nullptr)
        free(info->demangled_name);
      int status;
      info->demangled_name =
          abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
      if (info->demangled_name != nullptr) {
        *ReferenceName = info->demangled_name;
        *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
      } else
        *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
    } else
#endif
      *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
  } else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load) {
    *ReferenceName =
        GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
    if (*ReferenceName)
      method_reference(info, ReferenceType, ReferenceName);
    else
      *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
    // If this is arm64 and the reference is an adrp instruction save the
    // instruction, passed in ReferenceValue and the address of the instruction
    // for use later if we see and add immediate instruction.
  } else if (info->O->getArch() == Triple::aarch64 &&
             *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) {
    info->adrp_inst = ReferenceValue;
    info->adrp_addr = ReferencePC;
    SymbolName = nullptr;
    *ReferenceName = nullptr;
    *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
    // If this is arm64 and reference is an add immediate instruction and we
    // have
    // seen an adrp instruction just before it and the adrp's Xd register
    // matches
    // this add's Xn register reconstruct the value being referenced and look to
    // see if it is a literal pointer.  Note the add immediate instruction is
    // passed in ReferenceValue.
  } else if (info->O->getArch() == Triple::aarch64 &&
             *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri &&
             ReferencePC - 4 == info->adrp_addr &&
             (info->adrp_inst & 0x9f000000) == 0x90000000 &&
             (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
    uint32_t addxri_inst;
    uint64_t adrp_imm, addxri_imm;

    adrp_imm =
        ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
    if (info->adrp_inst & 0x0200000)
      adrp_imm |= 0xfffffffffc000000LL;

    addxri_inst = ReferenceValue;
    addxri_imm = (addxri_inst >> 10) & 0xfff;
    if (((addxri_inst >> 22) & 0x3) == 1)
      addxri_imm <<= 12;

    ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
                     (adrp_imm << 12) + addxri_imm;

    *ReferenceName =
        GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
    if (*ReferenceName == nullptr)
      *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
    // If this is arm64 and the reference is a load register instruction and we
    // have seen an adrp instruction just before it and the adrp's Xd register
    // matches this add's Xn register reconstruct the value being referenced and
    // look to see if it is a literal pointer.  Note the load register
    // instruction is passed in ReferenceValue.
  } else if (info->O->getArch() == Triple::aarch64 &&
             *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXui &&
             ReferencePC - 4 == info->adrp_addr &&
             (info->adrp_inst & 0x9f000000) == 0x90000000 &&
             (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
    uint32_t ldrxui_inst;
    uint64_t adrp_imm, ldrxui_imm;

    adrp_imm =
        ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
    if (info->adrp_inst & 0x0200000)
      adrp_imm |= 0xfffffffffc000000LL;

    ldrxui_inst = ReferenceValue;
    ldrxui_imm = (ldrxui_inst >> 10) & 0xfff;

    ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
                     (adrp_imm << 12) + (ldrxui_imm << 3);

    *ReferenceName =
        GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
    if (*ReferenceName == nullptr)
      *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
  }
  // If this arm64 and is an load register (PC-relative) instruction the
  // ReferenceValue is the PC plus the immediate value.
  else if (info->O->getArch() == Triple::aarch64 &&
           (*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXl ||
            *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADR)) {
    *ReferenceName =
        GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
    if (*ReferenceName == nullptr)
      *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
  }
#if HAVE_CXXABI_H
  else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
    if (info->demangled_name != nullptr)
      free(info->demangled_name);
    int status;
    info->demangled_name =
        abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
    if (info->demangled_name != nullptr) {
      *ReferenceName = info->demangled_name;
      *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
    }
  }
#endif
  else {
    *ReferenceName = nullptr;
    *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
  }

  return SymbolName;
}

/// \brief Emits the comments that are stored in the CommentStream.
/// Each comment in the CommentStream must end with a newline.
static void emitComments(raw_svector_ostream &CommentStream,
                         SmallString<128> &CommentsToEmit,
                         formatted_raw_ostream &FormattedOS,
                         const MCAsmInfo &MAI) {
  // Flush the stream before taking its content.
  StringRef Comments = CommentsToEmit.str();
  // Get the default information for printing a comment.
  const char *CommentBegin = MAI.getCommentString();
  unsigned CommentColumn = MAI.getCommentColumn();
  bool IsFirst = true;
  while (!Comments.empty()) {
    if (!IsFirst)
      FormattedOS << '\n';
    // Emit a line of comments.
    FormattedOS.PadToColumn(CommentColumn);
    size_t Position = Comments.find('\n');
    FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position);
    // Move after the newline character.
    Comments = Comments.substr(Position + 1);
    IsFirst = false;
  }
  FormattedOS.flush();

  // Tell the comment stream that the vector changed underneath it.
  CommentsToEmit.clear();
}

static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
                             StringRef DisSegName, StringRef DisSectName) {
  const char *McpuDefault = nullptr;
  const Target *ThumbTarget = nullptr;
  const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget);
  if (!TheTarget) {
    // GetTarget prints out stuff.
    return;
  }
  if (MCPU.empty() && McpuDefault)
    MCPU = McpuDefault;

  std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
  std::unique_ptr<const MCInstrInfo> ThumbInstrInfo;
  if (ThumbTarget)
    ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo());

  // Package up features to be passed to target/subtarget
  std::string FeaturesStr;
  if (MAttrs.size()) {
    SubtargetFeatures Features;
    for (unsigned i = 0; i != MAttrs.size(); ++i)
      Features.AddFeature(MAttrs[i]);
    FeaturesStr = Features.getString();
  }

  // Set up disassembler.
  std::unique_ptr<const MCRegisterInfo> MRI(
      TheTarget->createMCRegInfo(TripleName));
  std::unique_ptr<const MCAsmInfo> AsmInfo(
      TheTarget->createMCAsmInfo(*MRI, TripleName));
  std::unique_ptr<const MCSubtargetInfo> STI(
      TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
  MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr);
  std::unique_ptr<MCDisassembler> DisAsm(
      TheTarget->createMCDisassembler(*STI, Ctx));
  std::unique_ptr<MCSymbolizer> Symbolizer;
  struct DisassembleInfo SymbolizerInfo;
  std::unique_ptr<MCRelocationInfo> RelInfo(
      TheTarget->createMCRelocationInfo(TripleName, Ctx));
  if (RelInfo) {
    Symbolizer.reset(TheTarget->createMCSymbolizer(
        TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
        &SymbolizerInfo, &Ctx, std::move(RelInfo)));
    DisAsm->setSymbolizer(std::move(Symbolizer));
  }
  int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
  std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
      Triple(TripleName), AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI));
  // Set the display preference for hex vs. decimal immediates.
  IP->setPrintImmHex(PrintImmHex);
  // Comment stream and backing vector.
  SmallString<128> CommentsToEmit;
  raw_svector_ostream CommentStream(CommentsToEmit);
  // FIXME: Setting the CommentStream in the InstPrinter is problematic in that
  // if it is done then arm64 comments for string literals don't get printed
  // and some constant get printed instead and not setting it causes intel
  // (32-bit and 64-bit) comments printed with different spacing before the
  // comment causing different diffs with the 'C' disassembler library API.
  // IP->setCommentStream(CommentStream);

  if (!AsmInfo || !STI || !DisAsm || !IP) {
    errs() << "error: couldn't initialize disassembler for target "
           << TripleName << '\n';
    return;
  }

  // Set up thumb disassembler.
  std::unique_ptr<const MCRegisterInfo> ThumbMRI;
  std::unique_ptr<const MCAsmInfo> ThumbAsmInfo;
  std::unique_ptr<const MCSubtargetInfo> ThumbSTI;
  std::unique_ptr<MCDisassembler> ThumbDisAsm;
  std::unique_ptr<MCInstPrinter> ThumbIP;
  std::unique_ptr<MCContext> ThumbCtx;
  std::unique_ptr<MCSymbolizer> ThumbSymbolizer;
  struct DisassembleInfo ThumbSymbolizerInfo;
  std::unique_ptr<MCRelocationInfo> ThumbRelInfo;
  if (ThumbTarget) {
    ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName));
    ThumbAsmInfo.reset(
        ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName));
    ThumbSTI.reset(
        ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr));
    ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr));
    ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx));
    MCContext *PtrThumbCtx = ThumbCtx.get();
    ThumbRelInfo.reset(
        ThumbTarget->createMCRelocationInfo(ThumbTripleName, *PtrThumbCtx));
    if (ThumbRelInfo) {
      ThumbSymbolizer.reset(ThumbTarget->createMCSymbolizer(
          ThumbTripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
          &ThumbSymbolizerInfo, PtrThumbCtx, std::move(ThumbRelInfo)));
      ThumbDisAsm->setSymbolizer(std::move(ThumbSymbolizer));
    }
    int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect();
    ThumbIP.reset(ThumbTarget->createMCInstPrinter(
        Triple(ThumbTripleName), ThumbAsmPrinterVariant, *ThumbAsmInfo,
        *ThumbInstrInfo, *ThumbMRI));
    // Set the display preference for hex vs. decimal immediates.
    ThumbIP->setPrintImmHex(PrintImmHex);
  }

  if (ThumbTarget && (!ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) {
    errs() << "error: couldn't initialize disassembler for target "
           << ThumbTripleName << '\n';
    return;
  }

  MachO::mach_header Header = MachOOF->getHeader();

  // FIXME: Using the -cfg command line option, this code used to be able to
  // annotate relocations with the referenced symbol's name, and if this was
  // inside a __[cf]string section, the data it points to. This is now replaced
  // by the upcoming MCSymbolizer, which needs the appropriate setup done above.
  std::vector<SectionRef> Sections;
  std::vector<SymbolRef> Symbols;
  SmallVector<uint64_t, 8> FoundFns;
  uint64_t BaseSegmentAddress;

  getSectionsAndSymbols(MachOOF, Sections, Symbols, FoundFns,
                        BaseSegmentAddress);

  // Sort the symbols by address, just in case they didn't come in that way.
  std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());

  // Build a data in code table that is sorted on by the address of each entry.
  uint64_t BaseAddress = 0;
  if (Header.filetype == MachO::MH_OBJECT)
    BaseAddress = Sections[0].getAddress();
  else
    BaseAddress = BaseSegmentAddress;
  DiceTable Dices;
  for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
       DI != DE; ++DI) {
    uint32_t Offset;
    DI->getOffset(Offset);
    Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
  }
  array_pod_sort(Dices.begin(), Dices.end());

#ifndef NDEBUG
  raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
#else
  raw_ostream &DebugOut = nulls();
#endif

  std::unique_ptr<DIContext> diContext;
  ObjectFile *DbgObj = MachOOF;
  // Try to find debug info and set up the DIContext for it.
  if (UseDbg) {
    // A separate DSym file path was specified, parse it as a macho file,
    // get the sections and supply it to the section name parsing machinery.
    if (!DSYMFile.empty()) {
      ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
          MemoryBuffer::getFileOrSTDIN(DSYMFile);
      if (std::error_code EC = BufOrErr.getError()) {
        errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n';
        return;
      }
      DbgObj =
          ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef())
              .get()
              .release();
    }

    // Setup the DIContext
    diContext.reset(new DWARFContextInMemory(*DbgObj));
  }

  if (FilterSections.size() == 0)
    outs() << "(" << DisSegName << "," << DisSectName << ") section\n";

  for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
    StringRef SectName;
    if (Sections[SectIdx].getName(SectName) || SectName != DisSectName)
      continue;

    DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();

    StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
    if (SegmentName != DisSegName)
      continue;

    StringRef BytesStr;
    Sections[SectIdx].getContents(BytesStr);
    ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
                            BytesStr.size());
    uint64_t SectAddress = Sections[SectIdx].getAddress();

    bool symbolTableWorked = false;

    // Create a map of symbol addresses to symbol names for use by
    // the SymbolizerSymbolLookUp() routine.
    SymbolAddressMap AddrMap;
    bool DisSymNameFound = false;
    for (const SymbolRef &Symbol : MachOOF->symbols()) {
      SymbolRef::Type ST = Symbol.getType();
      if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
          ST == SymbolRef::ST_Other) {
        uint64_t Address = Symbol.getValue();
        ErrorOr<StringRef> SymNameOrErr = Symbol.getName();
        if (std::error_code EC = SymNameOrErr.getError())
          report_fatal_error(EC.message());
        StringRef SymName = *SymNameOrErr;
        AddrMap[Address] = SymName;
        if (!DisSymName.empty() && DisSymName == SymName)
          DisSymNameFound = true;
      }
    }
    if (!DisSymName.empty() && !DisSymNameFound) {
      outs() << "Can't find -dis-symname: " << DisSymName << "\n";
      return;
    }
    // Set up the block of info used by the Symbolizer call backs.
    SymbolizerInfo.verbose = !NoSymbolicOperands;
    SymbolizerInfo.O = MachOOF;
    SymbolizerInfo.S = Sections[SectIdx];
    SymbolizerInfo.AddrMap = &AddrMap;
    SymbolizerInfo.Sections = &Sections;
    SymbolizerInfo.class_name = nullptr;
    SymbolizerInfo.selector_name = nullptr;
    SymbolizerInfo.method = nullptr;
    SymbolizerInfo.demangled_name = nullptr;
    SymbolizerInfo.bindtable = nullptr;
    SymbolizerInfo.adrp_addr = 0;
    SymbolizerInfo.adrp_inst = 0;
    // Same for the ThumbSymbolizer
    ThumbSymbolizerInfo.verbose = !NoSymbolicOperands;
    ThumbSymbolizerInfo.O = MachOOF;
    ThumbSymbolizerInfo.S = Sections[SectIdx];
    ThumbSymbolizerInfo.AddrMap = &AddrMap;
    ThumbSymbolizerInfo.Sections = &Sections;
    ThumbSymbolizerInfo.class_name = nullptr;
    ThumbSymbolizerInfo.selector_name = nullptr;
    ThumbSymbolizerInfo.method = nullptr;
    ThumbSymbolizerInfo.demangled_name = nullptr;
    ThumbSymbolizerInfo.bindtable = nullptr;
    ThumbSymbolizerInfo.adrp_addr = 0;
    ThumbSymbolizerInfo.adrp_inst = 0;

    // Disassemble symbol by symbol.
    for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
      ErrorOr<StringRef> SymNameOrErr = Symbols[SymIdx].getName();
      if (std::error_code EC = SymNameOrErr.getError())
        report_fatal_error(EC.message());
      StringRef SymName = *SymNameOrErr;

      SymbolRef::Type ST = Symbols[SymIdx].getType();
      if (ST != SymbolRef::ST_Function && ST != SymbolRef::ST_Data)
        continue;

      // Make sure the symbol is defined in this section.
      bool containsSym = Sections[SectIdx].containsSymbol(Symbols[SymIdx]);
      if (!containsSym)
        continue;

      // If we are only disassembling one symbol see if this is that symbol.
      if (!DisSymName.empty() && DisSymName != SymName)
        continue;

      // Start at the address of the symbol relative to the section's address.
      uint64_t Start = Symbols[SymIdx].getValue();
      uint64_t SectionAddress = Sections[SectIdx].getAddress();
      Start -= SectionAddress;

      // Stop disassembling either at the beginning of the next symbol or at
      // the end of the section.
      bool containsNextSym = false;
      uint64_t NextSym = 0;
      uint64_t NextSymIdx = SymIdx + 1;
      while (Symbols.size() > NextSymIdx) {
        SymbolRef::Type NextSymType = Symbols[NextSymIdx].getType();
        if (NextSymType == SymbolRef::ST_Function) {
          containsNextSym =
              Sections[SectIdx].containsSymbol(Symbols[NextSymIdx]);
          NextSym = Symbols[NextSymIdx].getValue();
          NextSym -= SectionAddress;
          break;
        }
        ++NextSymIdx;
      }

      uint64_t SectSize = Sections[SectIdx].getSize();
      uint64_t End = containsNextSym ? NextSym : SectSize;
      uint64_t Size;

      symbolTableWorked = true;

      DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl();
      bool isThumb =
          (MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb) && ThumbTarget;

      outs() << SymName << ":\n";
      DILineInfo lastLine;
      for (uint64_t Index = Start; Index < End; Index += Size) {
        MCInst Inst;

        uint64_t PC = SectAddress + Index;
        if (!NoLeadingAddr) {
          if (FullLeadingAddr) {
            if (MachOOF->is64Bit())
              outs() << format("%016" PRIx64, PC);
            else
              outs() << format("%08" PRIx64, PC);
          } else {
            outs() << format("%8" PRIx64 ":", PC);
          }
        }
        if (!NoShowRawInsn)
          outs() << "\t";

        // Check the data in code table here to see if this is data not an
        // instruction to be disassembled.
        DiceTable Dice;
        Dice.push_back(std::make_pair(PC, DiceRef()));
        dice_table_iterator DTI =
            std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(),
                        compareDiceTableEntries);
        if (DTI != Dices.end()) {
          uint16_t Length;
          DTI->second.getLength(Length);
          uint16_t Kind;
          DTI->second.getKind(Kind);
          Size = DumpDataInCode(Bytes.data() + Index, Length, Kind);
          if ((Kind == MachO::DICE_KIND_JUMP_TABLE8) &&
              (PC == (DTI->first + Length - 1)) && (Length & 1))
            Size++;
          continue;
        }

        SmallVector<char, 64> AnnotationsBytes;
        raw_svector_ostream Annotations(AnnotationsBytes);

        bool gotInst;
        if (isThumb)
          gotInst = ThumbDisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
                                                PC, DebugOut, Annotations);
        else
          gotInst = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC,
                                           DebugOut, Annotations);
        if (gotInst) {
          if (!NoShowRawInsn) {
            dumpBytes(makeArrayRef(Bytes.data() + Index, Size), outs());
          }
          formatted_raw_ostream FormattedOS(outs());
          StringRef AnnotationsStr = Annotations.str();
          if (isThumb)
            ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr, *ThumbSTI);
          else
            IP->printInst(&Inst, FormattedOS, AnnotationsStr, *STI);
          emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo);

          // Print debug info.
          if (diContext) {
            DILineInfo dli = diContext->getLineInfoForAddress(PC);
            // Print valid line info if it changed.
            if (dli != lastLine && dli.Line != 0)
              outs() << "\t## " << dli.FileName << ':' << dli.Line << ':'
                     << dli.Column;
            lastLine = dli;
          }
          outs() << "\n";
        } else {
          unsigned int Arch = MachOOF->getArch();
          if (Arch == Triple::x86_64 || Arch == Triple::x86) {
            outs() << format("\t.byte 0x%02x #bad opcode\n",
                             *(Bytes.data() + Index) & 0xff);
            Size = 1; // skip exactly one illegible byte and move on.
          } else if (Arch == Triple::aarch64) {
            uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
                              (*(Bytes.data() + Index + 1) & 0xff) << 8 |
                              (*(Bytes.data() + Index + 2) & 0xff) << 16 |
                              (*(Bytes.data() + Index + 3) & 0xff) << 24;
            outs() << format("\t.long\t0x%08x\n", opcode);
            Size = 4;
          } else {
            errs() << "llvm-objdump: warning: invalid instruction encoding\n";
            if (Size == 0)
              Size = 1; // skip illegible bytes
          }
        }
      }
    }
    if (!symbolTableWorked) {
      // Reading the symbol table didn't work, disassemble the whole section.
      uint64_t SectAddress = Sections[SectIdx].getAddress();
      uint64_t SectSize = Sections[SectIdx].getSize();
      uint64_t InstSize;
      for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
        MCInst Inst;

        uint64_t PC = SectAddress + Index;
        if (DisAsm->getInstruction(Inst, InstSize, Bytes.slice(Index), PC,
                                   DebugOut, nulls())) {
          if (!NoLeadingAddr) {
            if (FullLeadingAddr) {
              if (MachOOF->is64Bit())
                outs() << format("%016" PRIx64, PC);
              else
                outs() << format("%08" PRIx64, PC);
            } else {
              outs() << format("%8" PRIx64 ":", PC);
            }
          }
          if (!NoShowRawInsn) {
            outs() << "\t";
            dumpBytes(makeArrayRef(Bytes.data() + Index, InstSize), outs());
          }
          IP->printInst(&Inst, outs(), "", *STI);
          outs() << "\n";
        } else {
          unsigned int Arch = MachOOF->getArch();
          if (Arch == Triple::x86_64 || Arch == Triple::x86) {
            outs() << format("\t.byte 0x%02x #bad opcode\n",
                             *(Bytes.data() + Index) & 0xff);
            InstSize = 1; // skip exactly one illegible byte and move on.
          } else {
            errs() << "llvm-objdump: warning: invalid instruction encoding\n";
            if (InstSize == 0)
              InstSize = 1; // skip illegible bytes
          }
        }
      }
    }
    // The TripleName's need to be reset if we are called again for a different
    // archtecture.
    TripleName = "";
    ThumbTripleName = "";

    if (SymbolizerInfo.method != nullptr)
      free(SymbolizerInfo.method);
    if (SymbolizerInfo.demangled_name != nullptr)
      free(SymbolizerInfo.demangled_name);
    if (SymbolizerInfo.bindtable != nullptr)
      delete SymbolizerInfo.bindtable;
    if (ThumbSymbolizerInfo.method != nullptr)
      free(ThumbSymbolizerInfo.method);
    if (ThumbSymbolizerInfo.demangled_name != nullptr)
      free(ThumbSymbolizerInfo.demangled_name);
    if (ThumbSymbolizerInfo.bindtable != nullptr)
      delete ThumbSymbolizerInfo.bindtable;
  }
}

//===----------------------------------------------------------------------===//
// __compact_unwind section dumping
//===----------------------------------------------------------------------===//

namespace {

template <typename T> static uint64_t readNext(const char *&Buf) {
  using llvm::support::little;
  using llvm::support::unaligned;

  uint64_t Val = support::endian::read<T, little, unaligned>(Buf);
  Buf += sizeof(T);
  return Val;
}

struct CompactUnwindEntry {
  uint32_t OffsetInSection;

  uint64_t FunctionAddr;
  uint32_t Length;
  uint32_t CompactEncoding;
  uint64_t PersonalityAddr;
  uint64_t LSDAAddr;

  RelocationRef FunctionReloc;
  RelocationRef PersonalityReloc;
  RelocationRef LSDAReloc;

  CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64)
      : OffsetInSection(Offset) {
    if (Is64)
      read<uint64_t>(Contents.data() + Offset);
    else
      read<uint32_t>(Contents.data() + Offset);
  }

private:
  template <typename UIntPtr> void read(const char *Buf) {
    FunctionAddr = readNext<UIntPtr>(Buf);
    Length = readNext<uint32_t>(Buf);
    CompactEncoding = readNext<uint32_t>(Buf);
    PersonalityAddr = readNext<UIntPtr>(Buf);
    LSDAAddr = readNext<UIntPtr>(Buf);
  }
};
}

/// Given a relocation from __compact_unwind, consisting of the RelocationRef
/// and data being relocated, determine the best base Name and Addend to use for
/// display purposes.
///
/// 1. An Extern relocation will directly reference a symbol (and the data is
///    then already an addend), so use that.
/// 2. Otherwise the data is an offset in the object file's layout; try to find
//     a symbol before it in the same section, and use the offset from there.
/// 3. Finally, if all that fails, fall back to an offset from the start of the
///    referenced section.
static void findUnwindRelocNameAddend(const MachOObjectFile *Obj,
                                      std::map<uint64_t, SymbolRef> &Symbols,
                                      const RelocationRef &Reloc, uint64_t Addr,
                                      StringRef &Name, uint64_t &Addend) {
  if (Reloc.getSymbol() != Obj->symbol_end()) {
    ErrorOr<StringRef> NameOrErr = Reloc.getSymbol()->getName();
    if (std::error_code EC = NameOrErr.getError())
      report_fatal_error(EC.message());
    Name = *NameOrErr;
    Addend = Addr;
    return;
  }

  auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl());
  SectionRef RelocSection = Obj->getAnyRelocationSection(RE);

  uint64_t SectionAddr = RelocSection.getAddress();

  auto Sym = Symbols.upper_bound(Addr);
  if (Sym == Symbols.begin()) {
    // The first symbol in the object is after this reference, the best we can
    // do is section-relative notation.
    RelocSection.getName(Name);
    Addend = Addr - SectionAddr;
    return;
  }

  // Go back one so that SymbolAddress <= Addr.
  --Sym;

  section_iterator SymSection = *Sym->second.getSection();
  if (RelocSection == *SymSection) {
    // There's a valid symbol in the same section before this reference.
    ErrorOr<StringRef> NameOrErr = Sym->second.getName();
    if (std::error_code EC = NameOrErr.getError())
      report_fatal_error(EC.message());
    Name = *NameOrErr;
    Addend = Addr - Sym->first;
    return;
  }

  // There is a symbol before this reference, but it's in a different
  // section. Probably not helpful to mention it, so use the section name.
  RelocSection.getName(Name);
  Addend = Addr - SectionAddr;
}

static void printUnwindRelocDest(const MachOObjectFile *Obj,
                                 std::map<uint64_t, SymbolRef> &Symbols,
                                 const RelocationRef &Reloc, uint64_t Addr) {
  StringRef Name;
  uint64_t Addend;

  if (!Reloc.getObject())
    return;

  findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend);

  outs() << Name;
  if (Addend)
    outs() << " + " << format("0x%" PRIx64, Addend);
}

static void
printMachOCompactUnwindSection(const MachOObjectFile *Obj,
                               std::map<uint64_t, SymbolRef> &Symbols,
                               const SectionRef &CompactUnwind) {

  assert(Obj->isLittleEndian() &&
         "There should not be a big-endian .o with __compact_unwind");

  bool Is64 = Obj->is64Bit();
  uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t);
  uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t);

  StringRef Contents;
  CompactUnwind.getContents(Contents);

  SmallVector<CompactUnwindEntry, 4> CompactUnwinds;

  // First populate the initial raw offsets, encodings and so on from the entry.
  for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) {
    CompactUnwindEntry Entry(Contents.data(), Offset, Is64);
    CompactUnwinds.push_back(Entry);
  }

  // Next we need to look at the relocations to find out what objects are
  // actually being referred to.
  for (const RelocationRef &Reloc : CompactUnwind.relocations()) {
    uint64_t RelocAddress = Reloc.getOffset();

    uint32_t EntryIdx = RelocAddress / EntrySize;
    uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize;
    CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx];

    if (OffsetInEntry == 0)
      Entry.FunctionReloc = Reloc;
    else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t))
      Entry.PersonalityReloc = Reloc;
    else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t))
      Entry.LSDAReloc = Reloc;
    else
      llvm_unreachable("Unexpected relocation in __compact_unwind section");
  }

  // Finally, we're ready to print the data we've gathered.
  outs() << "Contents of __compact_unwind section:\n";
  for (auto &Entry : CompactUnwinds) {
    outs() << "  Entry at offset "
           << format("0x%" PRIx32, Entry.OffsetInSection) << ":\n";

    // 1. Start of the region this entry applies to.
    outs() << "    start:                " << format("0x%" PRIx64,
                                                     Entry.FunctionAddr) << ' ';
    printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr);
    outs() << '\n';

    // 2. Length of the region this entry applies to.
    outs() << "    length:               " << format("0x%" PRIx32, Entry.Length)
           << '\n';
    // 3. The 32-bit compact encoding.
    outs() << "    compact encoding:     "
           << format("0x%08" PRIx32, Entry.CompactEncoding) << '\n';

    // 4. The personality function, if present.
    if (Entry.PersonalityReloc.getObject()) {
      outs() << "    personality function: "
             << format("0x%" PRIx64, Entry.PersonalityAddr) << ' ';
      printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc,
                           Entry.PersonalityAddr);
      outs() << '\n';
    }

    // 5. This entry's language-specific data area.
    if (Entry.LSDAReloc.getObject()) {
      outs() << "    LSDA:                 " << format("0x%" PRIx64,
                                                       Entry.LSDAAddr) << ' ';
      printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr);
      outs() << '\n';
    }
  }
}

//===----------------------------------------------------------------------===//
// __unwind_info section dumping
//===----------------------------------------------------------------------===//

static void printRegularSecondLevelUnwindPage(const char *PageStart) {
  const char *Pos = PageStart;
  uint32_t Kind = readNext<uint32_t>(Pos);
  (void)Kind;
  assert(Kind == 2 && "kind for a regular 2nd level index should be 2");

  uint16_t EntriesStart = readNext<uint16_t>(Pos);
  uint16_t NumEntries = readNext<uint16_t>(Pos);

  Pos = PageStart + EntriesStart;
  for (unsigned i = 0; i < NumEntries; ++i) {
    uint32_t FunctionOffset = readNext<uint32_t>(Pos);
    uint32_t Encoding = readNext<uint32_t>(Pos);

    outs() << "      [" << i << "]: "
           << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
           << ", "
           << "encoding=" << format("0x%08" PRIx32, Encoding) << '\n';
  }
}

static void printCompressedSecondLevelUnwindPage(
    const char *PageStart, uint32_t FunctionBase,
    const SmallVectorImpl<uint32_t> &CommonEncodings) {
  const char *Pos = PageStart;
  uint32_t Kind = readNext<uint32_t>(Pos);
  (void)Kind;
  assert(Kind == 3 && "kind for a compressed 2nd level index should be 3");

  uint16_t EntriesStart = readNext<uint16_t>(Pos);
  uint16_t NumEntries = readNext<uint16_t>(Pos);

  uint16_t EncodingsStart = readNext<uint16_t>(Pos);
  readNext<uint16_t>(Pos);
  const auto *PageEncodings = reinterpret_cast<const support::ulittle32_t *>(
      PageStart + EncodingsStart);

  Pos = PageStart + EntriesStart;
  for (unsigned i = 0; i < NumEntries; ++i) {
    uint32_t Entry = readNext<uint32_t>(Pos);
    uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff);
    uint32_t EncodingIdx = Entry >> 24;

    uint32_t Encoding;
    if (EncodingIdx < CommonEncodings.size())
      Encoding = CommonEncodings[EncodingIdx];
    else
      Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()];

    outs() << "      [" << i << "]: "
           << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
           << ", "
           << "encoding[" << EncodingIdx
           << "]=" << format("0x%08" PRIx32, Encoding) << '\n';
  }
}

static void printMachOUnwindInfoSection(const MachOObjectFile *Obj,
                                        std::map<uint64_t, SymbolRef> &Symbols,
                                        const SectionRef &UnwindInfo) {

  assert(Obj->isLittleEndian() &&
         "There should not be a big-endian .o with __unwind_info");

  outs() << "Contents of __unwind_info section:\n";

  StringRef Contents;
  UnwindInfo.getContents(Contents);
  const char *Pos = Contents.data();

  //===----------------------------------
  // Section header
  //===----------------------------------

  uint32_t Version = readNext<uint32_t>(Pos);
  outs() << "  Version:                                   "
         << format("0x%" PRIx32, Version) << '\n';
  assert(Version == 1 && "only understand version 1");

  uint32_t CommonEncodingsStart = readNext<uint32_t>(Pos);
  outs() << "  Common encodings array section offset:     "
         << format("0x%" PRIx32, CommonEncodingsStart) << '\n';
  uint32_t NumCommonEncodings = readNext<uint32_t>(Pos);
  outs() << "  Number of common encodings in array:       "
         << format("0x%" PRIx32, NumCommonEncodings) << '\n';

  uint32_t PersonalitiesStart = readNext<uint32_t>(Pos);
  outs() << "  Personality function array section offset: "
         << format("0x%" PRIx32, PersonalitiesStart) << '\n';
  uint32_t NumPersonalities = readNext<uint32_t>(Pos);
  outs() << "  Number of personality functions in array:  "
         << format("0x%" PRIx32, NumPersonalities) << '\n';

  uint32_t IndicesStart = readNext<uint32_t>(Pos);
  outs() << "  Index array section offset:                "
         << format("0x%" PRIx32, IndicesStart) << '\n';
  uint32_t NumIndices = readNext<uint32_t>(Pos);
  outs() << "  Number of indices in array:                "
         << format("0x%" PRIx32, NumIndices) << '\n';

  //===----------------------------------
  // A shared list of common encodings
  //===----------------------------------

  // These occupy indices in the range [0, N] whenever an encoding is referenced
  // from a compressed 2nd level index table. In practice the linker only
  // creates ~128 of these, so that indices are available to embed encodings in
  // the 2nd level index.

  SmallVector<uint32_t, 64> CommonEncodings;
  outs() << "  Common encodings: (count = " << NumCommonEncodings << ")\n";
  Pos = Contents.data() + CommonEncodingsStart;
  for (unsigned i = 0; i < NumCommonEncodings; ++i) {
    uint32_t Encoding = readNext<uint32_t>(Pos);
    CommonEncodings.push_back(Encoding);

    outs() << "    encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding)
           << '\n';
  }

  //===----------------------------------
  // Personality functions used in this executable
  //===----------------------------------

  // There should be only a handful of these (one per source language,
  // roughly). Particularly since they only get 2 bits in the compact encoding.

  outs() << "  Personality functions: (count = " << NumPersonalities << ")\n";
  Pos = Contents.data() + PersonalitiesStart;
  for (unsigned i = 0; i < NumPersonalities; ++i) {
    uint32_t PersonalityFn = readNext<uint32_t>(Pos);
    outs() << "    personality[" << i + 1
           << "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n';
  }

  //===----------------------------------
  // The level 1 index entries
  //===----------------------------------

  // These specify an approximate place to start searching for the more detailed
  // information, sorted by PC.

  struct IndexEntry {
    uint32_t FunctionOffset;
    uint32_t SecondLevelPageStart;
    uint32_t LSDAStart;
  };

  SmallVector<IndexEntry, 4> IndexEntries;

  outs() << "  Top level indices: (count = " << NumIndices << ")\n";
  Pos = Contents.data() + IndicesStart;
  for (unsigned i = 0; i < NumIndices; ++i) {
    IndexEntry Entry;

    Entry.FunctionOffset = readNext<uint32_t>(Pos);
    Entry.SecondLevelPageStart = readNext<uint32_t>(Pos);
    Entry.LSDAStart = readNext<uint32_t>(Pos);
    IndexEntries.push_back(Entry);

    outs() << "    [" << i << "]: "
           << "function offset=" << format("0x%08" PRIx32, Entry.FunctionOffset)
           << ", "
           << "2nd level page offset="
           << format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", "
           << "LSDA offset=" << format("0x%08" PRIx32, Entry.LSDAStart) << '\n';
  }

  //===----------------------------------
  // Next come the LSDA tables
  //===----------------------------------

  // The LSDA layout is rather implicit: it's a contiguous array of entries from
  // the first top-level index's LSDAOffset to the last (sentinel).

  outs() << "  LSDA descriptors:\n";
  Pos = Contents.data() + IndexEntries[0].LSDAStart;
  int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) /
                 (2 * sizeof(uint32_t));
  for (int i = 0; i < NumLSDAs; ++i) {
    uint32_t FunctionOffset = readNext<uint32_t>(Pos);
    uint32_t LSDAOffset = readNext<uint32_t>(Pos);
    outs() << "    [" << i << "]: "
           << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
           << ", "
           << "LSDA offset=" << format("0x%08" PRIx32, LSDAOffset) << '\n';
  }

  //===----------------------------------
  // Finally, the 2nd level indices
  //===----------------------------------

  // Generally these are 4K in size, and have 2 possible forms:
  //   + Regular stores up to 511 entries with disparate encodings
  //   + Compressed stores up to 1021 entries if few enough compact encoding
  //     values are used.
  outs() << "  Second level indices:\n";
  for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) {
    // The final sentinel top-level index has no associated 2nd level page
    if (IndexEntries[i].SecondLevelPageStart == 0)
      break;

    outs() << "    Second level index[" << i << "]: "
           << "offset in section="
           << format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart)
           << ", "
           << "base function offset="
           << format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n';

    Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart;
    uint32_t Kind = *reinterpret_cast<const support::ulittle32_t *>(Pos);
    if (Kind == 2)
      printRegularSecondLevelUnwindPage(Pos);
    else if (Kind == 3)
      printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset,
                                           CommonEncodings);
    else
      llvm_unreachable("Do not know how to print this kind of 2nd level page");
  }
}

static unsigned getSizeForEncoding(bool is64Bit,
                                   unsigned symbolEncoding) {
  unsigned format = symbolEncoding & 0x0f;
  switch (format) {
    default: llvm_unreachable("Unknown Encoding");
    case dwarf::DW_EH_PE_absptr:
    case dwarf::DW_EH_PE_signed:
      return is64Bit ? 8 : 4;
    case dwarf::DW_EH_PE_udata2:
    case dwarf::DW_EH_PE_sdata2:
      return 2;
    case dwarf::DW_EH_PE_udata4:
    case dwarf::DW_EH_PE_sdata4:
      return 4;
    case dwarf::DW_EH_PE_udata8:
    case dwarf::DW_EH_PE_sdata8:
      return 8;
  }
}

static uint64_t readPointer(const char *&Pos, bool is64Bit, unsigned Encoding) {
  switch (getSizeForEncoding(is64Bit, Encoding)) {
    case 2:
      return readNext<uint16_t>(Pos);
      break;
    case 4:
      return readNext<uint32_t>(Pos);
      break;
    case 8:
      return readNext<uint64_t>(Pos);
      break;
    default:
      llvm_unreachable("Illegal data size");
  }
}

static void printMachOEHFrameSection(const MachOObjectFile *Obj,
                                     std::map<uint64_t, SymbolRef> &Symbols,
                                     const SectionRef &EHFrame) {
  if (!Obj->isLittleEndian()) {
    outs() << "warning: cannot handle big endian __eh_frame section\n";
    return;
  }

  bool is64Bit = Obj->is64Bit();

  outs() << "Contents of __eh_frame section:\n";

  StringRef Contents;
  EHFrame.getContents(Contents);

  /// A few fields of the CIE are used when decoding the FDE's.  This struct
  /// will cache those fields we need so that we don't have to decode it
  /// repeatedly for each FDE that references it.
  struct DecodedCIE {
    Optional<uint32_t> FDEPointerEncoding;
    Optional<uint32_t> LSDAPointerEncoding;
    bool hasAugmentationLength;
  };

  // Map from the start offset of the CIE to the cached data for that CIE.
  DenseMap<uint64_t, DecodedCIE> CachedCIEs;

  for (const char *Pos = Contents.data(), *End = Contents.end(); Pos != End; ) {

    const char *EntryStartPos = Pos;

    uint64_t Length = readNext<uint32_t>(Pos);
    if (Length == 0xffffffff)
      Length = readNext<uint64_t>(Pos);

    // Save the Pos so that we can check the length we encoded against what we
    // end up decoding.
    const char *PosAfterLength = Pos;
    const char *EntryEndPos = PosAfterLength + Length;

    assert(EntryEndPos <= End &&
           "__eh_frame entry length exceeds section size");

    uint32_t ID = readNext<uint32_t>(Pos);
    if (ID == 0) {
      // This is a CIE.

      uint32_t Version = readNext<uint8_t>(Pos);

      // Parse a null terminated augmentation string
      SmallString<8> AugmentationString;
      for (uint8_t Char = readNext<uint8_t>(Pos); Char;
           Char = readNext<uint8_t>(Pos))
        AugmentationString.push_back(Char);

      // Optionally parse the EH data if the augmentation string says it's there.
      Optional<uint64_t> EHData;
      if (StringRef(AugmentationString).count("eh"))
        EHData = is64Bit ? readNext<uint64_t>(Pos) : readNext<uint32_t>(Pos);

      unsigned ULEBByteCount;
      uint64_t CodeAlignmentFactor = decodeULEB128((const uint8_t *)Pos,
                                                   &ULEBByteCount);
      Pos += ULEBByteCount;

      int64_t DataAlignmentFactor = decodeSLEB128((const uint8_t *)Pos,
                                                   &ULEBByteCount);
      Pos += ULEBByteCount;

      uint32_t ReturnAddressRegister = readNext<uint8_t>(Pos);

      Optional<uint64_t> AugmentationLength;
      Optional<uint32_t> LSDAPointerEncoding;
      Optional<uint32_t> PersonalityEncoding;
      Optional<uint64_t> Personality;
      Optional<uint32_t> FDEPointerEncoding;
      if (!AugmentationString.empty() && AugmentationString.front() == 'z') {
        AugmentationLength = decodeULEB128((const uint8_t *)Pos,
                                           &ULEBByteCount);
        Pos += ULEBByteCount;

        // Walk the augmentation string to get all the augmentation data.
        for (unsigned i = 1, e = AugmentationString.size(); i != e; ++i) {
          char Char = AugmentationString[i];
          switch (Char) {
            case 'e':
              assert((i + 1) != e && AugmentationString[i + 1] == 'h' &&
                     "Expected 'eh' in augmentation string");
              break;
            case 'L':
              assert(!LSDAPointerEncoding && "Duplicate LSDA encoding");
              LSDAPointerEncoding = readNext<uint8_t>(Pos);
              break;
            case 'P': {
              assert(!Personality && "Duplicate personality");
              PersonalityEncoding = readNext<uint8_t>(Pos);
              Personality = readPointer(Pos, is64Bit, *PersonalityEncoding);
              break;
            }
            case 'R':
              assert(!FDEPointerEncoding && "Duplicate FDE encoding");
              FDEPointerEncoding = readNext<uint8_t>(Pos);
              break;
            case 'z':
              llvm_unreachable("'z' must be first in the augmentation string");
          }
        }
      }

      outs() << "CIE:\n";
      outs() << "  Length: " << Length << "\n";
      outs() << "  CIE ID: " << ID << "\n";
      outs() << "  Version: " << Version << "\n";
      outs() << "  Augmentation String: " << AugmentationString << "\n";
      if (EHData)
        outs() << "  EHData: " << *EHData << "\n";
      outs() << "  Code Alignment Factor: " << CodeAlignmentFactor << "\n";
      outs() << "  Data Alignment Factor: " << DataAlignmentFactor << "\n";
      outs() << "  Return Address Register: " << ReturnAddressRegister << "\n";
      if (AugmentationLength) {
        outs() << "  Augmentation Data Length: " << *AugmentationLength << "\n";
        if (LSDAPointerEncoding) {
          outs() << "  FDE LSDA Pointer Encoding: "
                 << *LSDAPointerEncoding << "\n";
        }
        if (Personality) {
          outs() << "  Personality Encoding: " << *PersonalityEncoding << "\n";
          outs() << "  Personality: " << *Personality << "\n";
        }
        if (FDEPointerEncoding) {
          outs() << "  FDE Address Pointer Encoding: "
                 << *FDEPointerEncoding << "\n";
        }
      }
      // FIXME: Handle instructions.
      // For now just emit some bytes
      outs() << "  Instructions:\n  ";
      dumpBytes(makeArrayRef((const uint8_t*)Pos, (const uint8_t*)EntryEndPos),
                outs());
      outs() << "\n";
      Pos = EntryEndPos;

      // Cache this entry.
      uint64_t Offset = EntryStartPos - Contents.data();
      CachedCIEs[Offset] = { FDEPointerEncoding, LSDAPointerEncoding,
                             AugmentationLength.hasValue() };
      continue;
    }

    // This is an FDE.
    // The CIE pointer for an FDE is the same location as the ID which we
    // already read.
    uint32_t CIEPointer = ID;

    const char *CIEStart = PosAfterLength - CIEPointer;
    assert(CIEStart >= Contents.data() &&
           "FDE points to CIE before the __eh_frame start");

    uint64_t CIEOffset = CIEStart - Contents.data();
    auto CIEIt = CachedCIEs.find(CIEOffset);
    if (CIEIt == CachedCIEs.end())
      llvm_unreachable("Couldn't find CIE at offset in to __eh_frame section");

    const DecodedCIE &CIE = CIEIt->getSecond();
    assert(CIE.FDEPointerEncoding &&
           "FDE references CIE which did not set pointer encoding");

    uint64_t PCPointerSize = getSizeForEncoding(is64Bit,
                                                *CIE.FDEPointerEncoding);

    uint64_t PCBegin = readPointer(Pos, is64Bit, *CIE.FDEPointerEncoding);
    uint64_t PCRange = readPointer(Pos, is64Bit, *CIE.FDEPointerEncoding);

    Optional<uint64_t> AugmentationLength;
    uint32_t LSDAPointerSize;
    Optional<uint64_t> LSDAPointer;
    if (CIE.hasAugmentationLength) {
      unsigned ULEBByteCount;
      AugmentationLength = decodeULEB128((const uint8_t *)Pos,
                                         &ULEBByteCount);
      Pos += ULEBByteCount;

      // Decode the LSDA if the CIE augmentation string said we should.
      if (CIE.LSDAPointerEncoding) {
        LSDAPointerSize = getSizeForEncoding(is64Bit, *CIE.LSDAPointerEncoding);
        LSDAPointer = readPointer(Pos, is64Bit, *CIE.LSDAPointerEncoding);
      }
    }

    outs() << "FDE:\n";
    outs() << "  Length: " << Length << "\n";
    outs() << "  CIE Offset: " << CIEOffset << "\n";

    if (PCPointerSize == 8) {
      outs() << format("  PC Begin: %016" PRIx64, PCBegin) << "\n";
      outs() << format("  PC Range: %016" PRIx64, PCRange) << "\n";
    } else {
      outs() << format("  PC Begin: %08" PRIx64, PCBegin) << "\n";
      outs() << format("  PC Range: %08" PRIx64, PCRange) << "\n";
    }
    if (AugmentationLength) {
      outs() << "  Augmentation Data Length: " << *AugmentationLength << "\n";
      if (LSDAPointer) {
        if (LSDAPointerSize == 8)
          outs() << format("  LSDA Pointer: %016\n" PRIx64, *LSDAPointer);
        else
          outs() << format("  LSDA Pointer: %08\n" PRIx64, *LSDAPointer);
      }
    }

    // FIXME: Handle instructions.
    // For now just emit some bytes
    outs() << "  Instructions:\n  ";
    dumpBytes(makeArrayRef((const uint8_t*)Pos, (const uint8_t*)EntryEndPos),
              outs());
    outs() << "\n";
    Pos = EntryEndPos;
  }
}

void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) {
  std::map<uint64_t, SymbolRef> Symbols;
  for (const SymbolRef &SymRef : Obj->symbols()) {
    // Discard any undefined or absolute symbols. They're not going to take part
    // in the convenience lookup for unwind info and just take up resources.
    section_iterator Section = *SymRef.getSection();
    if (Section == Obj->section_end())
      continue;

    uint64_t Addr = SymRef.getValue();
    Symbols.insert(std::make_pair(Addr, SymRef));
  }

  for (const SectionRef &Section : Obj->sections()) {
    StringRef SectName;
    Section.getName(SectName);
    if (SectName == "__compact_unwind")
      printMachOCompactUnwindSection(Obj, Symbols, Section);
    else if (SectName == "__unwind_info")
      printMachOUnwindInfoSection(Obj, Symbols, Section);
    else if (SectName == "__eh_frame")
      printMachOEHFrameSection(Obj, Symbols, Section);
  }
}

static void PrintMachHeader(uint32_t magic, uint32_t cputype,
                            uint32_t cpusubtype, uint32_t filetype,
                            uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags,
                            bool verbose) {
  outs() << "Mach header\n";
  outs() << "      magic cputype cpusubtype  caps    filetype ncmds "
            "sizeofcmds      flags\n";
  if (verbose) {
    if (magic == MachO::MH_MAGIC)
      outs() << "   MH_MAGIC";
    else if (magic == MachO::MH_MAGIC_64)
      outs() << "MH_MAGIC_64";
    else
      outs() << format(" 0x%08" PRIx32, magic);
    switch (cputype) {
    case MachO::CPU_TYPE_I386:
      outs() << "    I386";
      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
      case MachO::CPU_SUBTYPE_I386_ALL:
        outs() << "        ALL";
        break;
      default:
        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
        break;
      }
      break;
    case MachO::CPU_TYPE_X86_64:
      outs() << "  X86_64";
      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
      case MachO::CPU_SUBTYPE_X86_64_ALL:
        outs() << "        ALL";
        break;
      case MachO::CPU_SUBTYPE_X86_64_H:
        outs() << "    Haswell";
        break;
      default:
        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
        break;
      }
      break;
    case MachO::CPU_TYPE_ARM:
      outs() << "     ARM";
      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
      case MachO::CPU_SUBTYPE_ARM_ALL:
        outs() << "        ALL";
        break;
      case MachO::CPU_SUBTYPE_ARM_V4T:
        outs() << "        V4T";
        break;
      case MachO::CPU_SUBTYPE_ARM_V5TEJ:
        outs() << "      V5TEJ";
        break;
      case MachO::CPU_SUBTYPE_ARM_XSCALE:
        outs() << "     XSCALE";
        break;
      case MachO::CPU_SUBTYPE_ARM_V6:
        outs() << "         V6";
        break;
      case MachO::CPU_SUBTYPE_ARM_V6M:
        outs() << "        V6M";
        break;
      case MachO::CPU_SUBTYPE_ARM_V7:
        outs() << "         V7";
        break;
      case MachO::CPU_SUBTYPE_ARM_V7EM:
        outs() << "       V7EM";
        break;
      case MachO::CPU_SUBTYPE_ARM_V7K:
        outs() << "        V7K";
        break;
      case MachO::CPU_SUBTYPE_ARM_V7M:
        outs() << "        V7M";
        break;
      case MachO::CPU_SUBTYPE_ARM_V7S:
        outs() << "        V7S";
        break;
      default:
        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
        break;
      }
      break;
    case MachO::CPU_TYPE_ARM64:
      outs() << "   ARM64";
      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
      case MachO::CPU_SUBTYPE_ARM64_ALL:
        outs() << "        ALL";
        break;
      default:
        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
        break;
      }
      break;
    case MachO::CPU_TYPE_POWERPC:
      outs() << "     PPC";
      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
      case MachO::CPU_SUBTYPE_POWERPC_ALL:
        outs() << "        ALL";
        break;
      default:
        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
        break;
      }
      break;
    case MachO::CPU_TYPE_POWERPC64:
      outs() << "   PPC64";
      switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
      case MachO::CPU_SUBTYPE_POWERPC_ALL:
        outs() << "        ALL";
        break;
      default:
        outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
        break;
      }
      break;
    }
    if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) {
      outs() << " LIB64";
    } else {
      outs() << format("  0x%02" PRIx32,
                       (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
    }
    switch (filetype) {
    case MachO::MH_OBJECT:
      outs() << "      OBJECT";
      break;
    case MachO::MH_EXECUTE:
      outs() << "     EXECUTE";
      break;
    case MachO::MH_FVMLIB:
      outs() << "      FVMLIB";
      break;
    case MachO::MH_CORE:
      outs() << "        CORE";
      break;
    case MachO::MH_PRELOAD:
      outs() << "     PRELOAD";
      break;
    case MachO::MH_DYLIB:
      outs() << "       DYLIB";
      break;
    case MachO::MH_DYLIB_STUB:
      outs() << "  DYLIB_STUB";
      break;
    case MachO::MH_DYLINKER:
      outs() << "    DYLINKER";
      break;
    case MachO::MH_BUNDLE:
      outs() << "      BUNDLE";
      break;
    case MachO::MH_DSYM:
      outs() << "        DSYM";
      break;
    case MachO::MH_KEXT_BUNDLE:
      outs() << "  KEXTBUNDLE";
      break;
    default:
      outs() << format("  %10u", filetype);
      break;
    }
    outs() << format(" %5u", ncmds);
    outs() << format(" %10u", sizeofcmds);
    uint32_t f = flags;
    if (f & MachO::MH_NOUNDEFS) {
      outs() << "   NOUNDEFS";
      f &= ~MachO::MH_NOUNDEFS;
    }
    if (f & MachO::MH_INCRLINK) {
      outs() << " INCRLINK";
      f &= ~MachO::MH_INCRLINK;
    }
    if (f & MachO::MH_DYLDLINK) {
      outs() << " DYLDLINK";
      f &= ~MachO::MH_DYLDLINK;
    }
    if (f & MachO::MH_BINDATLOAD) {
      outs() << " BINDATLOAD";
      f &= ~MachO::MH_BINDATLOAD;
    }
    if (f & MachO::MH_PREBOUND) {
      outs() << " PREBOUND";
      f &= ~MachO::MH_PREBOUND;
    }
    if (f & MachO::MH_SPLIT_SEGS) {
      outs() << " SPLIT_SEGS";
      f &= ~MachO::MH_SPLIT_SEGS;
    }
    if (f & MachO::MH_LAZY_INIT) {
      outs() << " LAZY_INIT";
      f &= ~MachO::MH_LAZY_INIT;
    }
    if (f & MachO::MH_TWOLEVEL) {
      outs() << " TWOLEVEL";
      f &= ~MachO::MH_TWOLEVEL;
    }
    if (f & MachO::MH_FORCE_FLAT) {
      outs() << " FORCE_FLAT";
      f &= ~MachO::MH_FORCE_FLAT;
    }
    if (f & MachO::MH_NOMULTIDEFS) {
      outs() << " NOMULTIDEFS";
      f &= ~MachO::MH_NOMULTIDEFS;
    }
    if (f & MachO::MH_NOFIXPREBINDING) {
      outs() << " NOFIXPREBINDING";
      f &= ~MachO::MH_NOFIXPREBINDING;
    }
    if (f & MachO::MH_PREBINDABLE) {
      outs() << " PREBINDABLE";
      f &= ~MachO::MH_PREBINDABLE;
    }
    if (f & MachO::MH_ALLMODSBOUND) {
      outs() << " ALLMODSBOUND";
      f &= ~MachO::MH_ALLMODSBOUND;
    }
    if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) {
      outs() << " SUBSECTIONS_VIA_SYMBOLS";
      f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS;
    }
    if (f & MachO::MH_CANONICAL) {
      outs() << " CANONICAL";
      f &= ~MachO::MH_CANONICAL;
    }
    if (f & MachO::MH_WEAK_DEFINES) {
      outs() << " WEAK_DEFINES";
      f &= ~MachO::MH_WEAK_DEFINES;
    }
    if (f & MachO::MH_BINDS_TO_WEAK) {
      outs() << " BINDS_TO_WEAK";
      f &= ~MachO::MH_BINDS_TO_WEAK;
    }
    if (f & MachO::MH_ALLOW_STACK_EXECUTION) {
      outs() << " ALLOW_STACK_EXECUTION";
      f &= ~MachO::MH_ALLOW_STACK_EXECUTION;
    }
    if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) {
      outs() << " DEAD_STRIPPABLE_DYLIB";
      f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB;
    }
    if (f & MachO::MH_PIE) {
      outs() << " PIE";
      f &= ~MachO::MH_PIE;
    }
    if (f & MachO::MH_NO_REEXPORTED_DYLIBS) {
      outs() << " NO_REEXPORTED_DYLIBS";
      f &= ~MachO::MH_NO_REEXPORTED_DYLIBS;
    }
    if (f & MachO::MH_HAS_TLV_DESCRIPTORS) {
      outs() << " MH_HAS_TLV_DESCRIPTORS";
      f &= ~MachO::MH_HAS_TLV_DESCRIPTORS;
    }
    if (f & MachO::MH_NO_HEAP_EXECUTION) {
      outs() << " MH_NO_HEAP_EXECUTION";
      f &= ~MachO::MH_NO_HEAP_EXECUTION;
    }
    if (f & MachO::MH_APP_EXTENSION_SAFE) {
      outs() << " APP_EXTENSION_SAFE";
      f &= ~MachO::MH_APP_EXTENSION_SAFE;
    }
    if (f != 0 || flags == 0)
      outs() << format(" 0x%08" PRIx32, f);
  } else {
    outs() << format(" 0x%08" PRIx32, magic);
    outs() << format(" %7d", cputype);
    outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
    outs() << format("  0x%02" PRIx32,
                     (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
    outs() << format("  %10u", filetype);
    outs() << format(" %5u", ncmds);
    outs() << format(" %10u", sizeofcmds);
    outs() << format(" 0x%08" PRIx32, flags);
  }
  outs() << "\n";
}

static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize,
                                StringRef SegName, uint64_t vmaddr,
                                uint64_t vmsize, uint64_t fileoff,
                                uint64_t filesize, uint32_t maxprot,
                                uint32_t initprot, uint32_t nsects,
                                uint32_t flags, uint32_t object_size,
                                bool verbose) {
  uint64_t expected_cmdsize;
  if (cmd == MachO::LC_SEGMENT) {
    outs() << "      cmd LC_SEGMENT\n";
    expected_cmdsize = nsects;
    expected_cmdsize *= sizeof(struct MachO::section);
    expected_cmdsize += sizeof(struct MachO::segment_command);
  } else {
    outs() << "      cmd LC_SEGMENT_64\n";
    expected_cmdsize = nsects;
    expected_cmdsize *= sizeof(struct MachO::section_64);
    expected_cmdsize += sizeof(struct MachO::segment_command_64);
  }
  outs() << "  cmdsize " << cmdsize;
  if (cmdsize != expected_cmdsize)
    outs() << " Inconsistent size\n";
  else
    outs() << "\n";
  outs() << "  segname " << SegName << "\n";
  if (cmd == MachO::LC_SEGMENT_64) {
    outs() << "   vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n";
    outs() << "   vmsize " << format("0x%016" PRIx64, vmsize) << "\n";
  } else {
    outs() << "   vmaddr " << format("0x%08" PRIx64, vmaddr) << "\n";
    outs() << "   vmsize " << format("0x%08" PRIx64, vmsize) << "\n";
  }
  outs() << "  fileoff " << fileoff;
  if (fileoff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << " filesize " << filesize;
  if (fileoff + filesize > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  if (verbose) {
    if ((maxprot &
         ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
           MachO::VM_PROT_EXECUTE)) != 0)
      outs() << "  maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n";
    else {
      outs() << "  maxprot ";
      outs() << ((maxprot & MachO::VM_PROT_READ) ? "r" : "-");
      outs() << ((maxprot & MachO::VM_PROT_WRITE) ? "w" : "-");
      outs() << ((maxprot & MachO::VM_PROT_EXECUTE) ? "x\n" : "-\n");
    }
    if ((initprot &
         ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
           MachO::VM_PROT_EXECUTE)) != 0)
      outs() << "  initprot ?" << format("0x%08" PRIx32, initprot) << "\n";
    else {
      outs() << "  initprot ";
      outs() << ((initprot & MachO::VM_PROT_READ) ? "r" : "-");
      outs() << ((initprot & MachO::VM_PROT_WRITE) ? "w" : "-");
      outs() << ((initprot & MachO::VM_PROT_EXECUTE) ? "x\n" : "-\n");
    }
  } else {
    outs() << "  maxprot " << format("0x%08" PRIx32, maxprot) << "\n";
    outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n";
  }
  outs() << "   nsects " << nsects << "\n";
  if (verbose) {
    outs() << "    flags";
    if (flags == 0)
      outs() << " (none)\n";
    else {
      if (flags & MachO::SG_HIGHVM) {
        outs() << " HIGHVM";
        flags &= ~MachO::SG_HIGHVM;
      }
      if (flags & MachO::SG_FVMLIB) {
        outs() << " FVMLIB";
        flags &= ~MachO::SG_FVMLIB;
      }
      if (flags & MachO::SG_NORELOC) {
        outs() << " NORELOC";
        flags &= ~MachO::SG_NORELOC;
      }
      if (flags & MachO::SG_PROTECTED_VERSION_1) {
        outs() << " PROTECTED_VERSION_1";
        flags &= ~MachO::SG_PROTECTED_VERSION_1;
      }
      if (flags)
        outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n";
      else
        outs() << "\n";
    }
  } else {
    outs() << "    flags " << format("0x%" PRIx32, flags) << "\n";
  }
}

static void PrintSection(const char *sectname, const char *segname,
                         uint64_t addr, uint64_t size, uint32_t offset,
                         uint32_t align, uint32_t reloff, uint32_t nreloc,
                         uint32_t flags, uint32_t reserved1, uint32_t reserved2,
                         uint32_t cmd, const char *sg_segname,
                         uint32_t filetype, uint32_t object_size,
                         bool verbose) {
  outs() << "Section\n";
  outs() << "  sectname " << format("%.16s\n", sectname);
  outs() << "   segname " << format("%.16s", segname);
  if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0)
    outs() << " (does not match segment)\n";
  else
    outs() << "\n";
  if (cmd == MachO::LC_SEGMENT_64) {
    outs() << "      addr " << format("0x%016" PRIx64, addr) << "\n";
    outs() << "      size " << format("0x%016" PRIx64, size);
  } else {
    outs() << "      addr " << format("0x%08" PRIx64, addr) << "\n";
    outs() << "      size " << format("0x%08" PRIx64, size);
  }
  if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "    offset " << offset;
  if (offset > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  uint32_t align_shifted = 1 << align;
  outs() << "     align 2^" << align << " (" << align_shifted << ")\n";
  outs() << "    reloff " << reloff;
  if (reloff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "    nreloc " << nreloc;
  if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  uint32_t section_type = flags & MachO::SECTION_TYPE;
  if (verbose) {
    outs() << "      type";
    if (section_type == MachO::S_REGULAR)
      outs() << " S_REGULAR\n";
    else if (section_type == MachO::S_ZEROFILL)
      outs() << " S_ZEROFILL\n";
    else if (section_type == MachO::S_CSTRING_LITERALS)
      outs() << " S_CSTRING_LITERALS\n";
    else if (section_type == MachO::S_4BYTE_LITERALS)
      outs() << " S_4BYTE_LITERALS\n";
    else if (section_type == MachO::S_8BYTE_LITERALS)
      outs() << " S_8BYTE_LITERALS\n";
    else if (section_type == MachO::S_16BYTE_LITERALS)
      outs() << " S_16BYTE_LITERALS\n";
    else if (section_type == MachO::S_LITERAL_POINTERS)
      outs() << " S_LITERAL_POINTERS\n";
    else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS)
      outs() << " S_NON_LAZY_SYMBOL_POINTERS\n";
    else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS)
      outs() << " S_LAZY_SYMBOL_POINTERS\n";
    else if (section_type == MachO::S_SYMBOL_STUBS)
      outs() << " S_SYMBOL_STUBS\n";
    else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS)
      outs() << " S_MOD_INIT_FUNC_POINTERS\n";
    else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS)
      outs() << " S_MOD_TERM_FUNC_POINTERS\n";
    else if (section_type == MachO::S_COALESCED)
      outs() << " S_COALESCED\n";
    else if (section_type == MachO::S_INTERPOSING)
      outs() << " S_INTERPOSING\n";
    else if (section_type == MachO::S_DTRACE_DOF)
      outs() << " S_DTRACE_DOF\n";
    else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS)
      outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n";
    else if (section_type == MachO::S_THREAD_LOCAL_REGULAR)
      outs() << " S_THREAD_LOCAL_REGULAR\n";
    else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL)
      outs() << " S_THREAD_LOCAL_ZEROFILL\n";
    else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES)
      outs() << " S_THREAD_LOCAL_VARIABLES\n";
    else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
      outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n";
    else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS)
      outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n";
    else
      outs() << format("0x%08" PRIx32, section_type) << "\n";
    outs() << "attributes";
    uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES;
    if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS)
      outs() << " PURE_INSTRUCTIONS";
    if (section_attributes & MachO::S_ATTR_NO_TOC)
      outs() << " NO_TOC";
    if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS)
      outs() << " STRIP_STATIC_SYMS";
    if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP)
      outs() << " NO_DEAD_STRIP";
    if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT)
      outs() << " LIVE_SUPPORT";
    if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE)
      outs() << " SELF_MODIFYING_CODE";
    if (section_attributes & MachO::S_ATTR_DEBUG)
      outs() << " DEBUG";
    if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS)
      outs() << " SOME_INSTRUCTIONS";
    if (section_attributes & MachO::S_ATTR_EXT_RELOC)
      outs() << " EXT_RELOC";
    if (section_attributes & MachO::S_ATTR_LOC_RELOC)
      outs() << " LOC_RELOC";
    if (section_attributes == 0)
      outs() << " (none)";
    outs() << "\n";
  } else
    outs() << "     flags " << format("0x%08" PRIx32, flags) << "\n";
  outs() << " reserved1 " << reserved1;
  if (section_type == MachO::S_SYMBOL_STUBS ||
      section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
      section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
      section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
      section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
    outs() << " (index into indirect symbol table)\n";
  else
    outs() << "\n";
  outs() << " reserved2 " << reserved2;
  if (section_type == MachO::S_SYMBOL_STUBS)
    outs() << " (size of stubs)\n";
  else
    outs() << "\n";
}

static void PrintSymtabLoadCommand(MachO::symtab_command st, bool Is64Bit,
                                   uint32_t object_size) {
  outs() << "     cmd LC_SYMTAB\n";
  outs() << " cmdsize " << st.cmdsize;
  if (st.cmdsize != sizeof(struct MachO::symtab_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << "  symoff " << st.symoff;
  if (st.symoff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "   nsyms " << st.nsyms;
  uint64_t big_size;
  if (Is64Bit) {
    big_size = st.nsyms;
    big_size *= sizeof(struct MachO::nlist_64);
    big_size += st.symoff;
    if (big_size > object_size)
      outs() << " (past end of file)\n";
    else
      outs() << "\n";
  } else {
    big_size = st.nsyms;
    big_size *= sizeof(struct MachO::nlist);
    big_size += st.symoff;
    if (big_size > object_size)
      outs() << " (past end of file)\n";
    else
      outs() << "\n";
  }
  outs() << "  stroff " << st.stroff;
  if (st.stroff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << " strsize " << st.strsize;
  big_size = st.stroff;
  big_size += st.strsize;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
}

static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst,
                                     uint32_t nsyms, uint32_t object_size,
                                     bool Is64Bit) {
  outs() << "            cmd LC_DYSYMTAB\n";
  outs() << "        cmdsize " << dyst.cmdsize;
  if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << "      ilocalsym " << dyst.ilocalsym;
  if (dyst.ilocalsym > nsyms)
    outs() << " (greater than the number of symbols)\n";
  else
    outs() << "\n";
  outs() << "      nlocalsym " << dyst.nlocalsym;
  uint64_t big_size;
  big_size = dyst.ilocalsym;
  big_size += dyst.nlocalsym;
  if (big_size > nsyms)
    outs() << " (past the end of the symbol table)\n";
  else
    outs() << "\n";
  outs() << "     iextdefsym " << dyst.iextdefsym;
  if (dyst.iextdefsym > nsyms)
    outs() << " (greater than the number of symbols)\n";
  else
    outs() << "\n";
  outs() << "     nextdefsym " << dyst.nextdefsym;
  big_size = dyst.iextdefsym;
  big_size += dyst.nextdefsym;
  if (big_size > nsyms)
    outs() << " (past the end of the symbol table)\n";
  else
    outs() << "\n";
  outs() << "      iundefsym " << dyst.iundefsym;
  if (dyst.iundefsym > nsyms)
    outs() << " (greater than the number of symbols)\n";
  else
    outs() << "\n";
  outs() << "      nundefsym " << dyst.nundefsym;
  big_size = dyst.iundefsym;
  big_size += dyst.nundefsym;
  if (big_size > nsyms)
    outs() << " (past the end of the symbol table)\n";
  else
    outs() << "\n";
  outs() << "         tocoff " << dyst.tocoff;
  if (dyst.tocoff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "           ntoc " << dyst.ntoc;
  big_size = dyst.ntoc;
  big_size *= sizeof(struct MachO::dylib_table_of_contents);
  big_size += dyst.tocoff;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "      modtaboff " << dyst.modtaboff;
  if (dyst.modtaboff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "        nmodtab " << dyst.nmodtab;
  uint64_t modtabend;
  if (Is64Bit) {
    modtabend = dyst.nmodtab;
    modtabend *= sizeof(struct MachO::dylib_module_64);
    modtabend += dyst.modtaboff;
  } else {
    modtabend = dyst.nmodtab;
    modtabend *= sizeof(struct MachO::dylib_module);
    modtabend += dyst.modtaboff;
  }
  if (modtabend > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "   extrefsymoff " << dyst.extrefsymoff;
  if (dyst.extrefsymoff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "    nextrefsyms " << dyst.nextrefsyms;
  big_size = dyst.nextrefsyms;
  big_size *= sizeof(struct MachO::dylib_reference);
  big_size += dyst.extrefsymoff;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << " indirectsymoff " << dyst.indirectsymoff;
  if (dyst.indirectsymoff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "  nindirectsyms " << dyst.nindirectsyms;
  big_size = dyst.nindirectsyms;
  big_size *= sizeof(uint32_t);
  big_size += dyst.indirectsymoff;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "      extreloff " << dyst.extreloff;
  if (dyst.extreloff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "        nextrel " << dyst.nextrel;
  big_size = dyst.nextrel;
  big_size *= sizeof(struct MachO::relocation_info);
  big_size += dyst.extreloff;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "      locreloff " << dyst.locreloff;
  if (dyst.locreloff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "        nlocrel " << dyst.nlocrel;
  big_size = dyst.nlocrel;
  big_size *= sizeof(struct MachO::relocation_info);
  big_size += dyst.locreloff;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
}

static void PrintDyldInfoLoadCommand(MachO::dyld_info_command dc,
                                     uint32_t object_size) {
  if (dc.cmd == MachO::LC_DYLD_INFO)
    outs() << "            cmd LC_DYLD_INFO\n";
  else
    outs() << "            cmd LC_DYLD_INFO_ONLY\n";
  outs() << "        cmdsize " << dc.cmdsize;
  if (dc.cmdsize != sizeof(struct MachO::dyld_info_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << "     rebase_off " << dc.rebase_off;
  if (dc.rebase_off > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "    rebase_size " << dc.rebase_size;
  uint64_t big_size;
  big_size = dc.rebase_off;
  big_size += dc.rebase_size;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "       bind_off " << dc.bind_off;
  if (dc.bind_off > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "      bind_size " << dc.bind_size;
  big_size = dc.bind_off;
  big_size += dc.bind_size;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "  weak_bind_off " << dc.weak_bind_off;
  if (dc.weak_bind_off > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << " weak_bind_size " << dc.weak_bind_size;
  big_size = dc.weak_bind_off;
  big_size += dc.weak_bind_size;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "  lazy_bind_off " << dc.lazy_bind_off;
  if (dc.lazy_bind_off > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << " lazy_bind_size " << dc.lazy_bind_size;
  big_size = dc.lazy_bind_off;
  big_size += dc.lazy_bind_size;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "     export_off " << dc.export_off;
  if (dc.export_off > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "    export_size " << dc.export_size;
  big_size = dc.export_off;
  big_size += dc.export_size;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
}

static void PrintDyldLoadCommand(MachO::dylinker_command dyld,
                                 const char *Ptr) {
  if (dyld.cmd == MachO::LC_ID_DYLINKER)
    outs() << "          cmd LC_ID_DYLINKER\n";
  else if (dyld.cmd == MachO::LC_LOAD_DYLINKER)
    outs() << "          cmd LC_LOAD_DYLINKER\n";
  else if (dyld.cmd == MachO::LC_DYLD_ENVIRONMENT)
    outs() << "          cmd LC_DYLD_ENVIRONMENT\n";
  else
    outs() << "          cmd ?(" << dyld.cmd << ")\n";
  outs() << "      cmdsize " << dyld.cmdsize;
  if (dyld.cmdsize < sizeof(struct MachO::dylinker_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  if (dyld.name >= dyld.cmdsize)
    outs() << "         name ?(bad offset " << dyld.name << ")\n";
  else {
    const char *P = (const char *)(Ptr) + dyld.name;
    outs() << "         name " << P << " (offset " << dyld.name << ")\n";
  }
}

static void PrintUuidLoadCommand(MachO::uuid_command uuid) {
  outs() << "     cmd LC_UUID\n";
  outs() << " cmdsize " << uuid.cmdsize;
  if (uuid.cmdsize != sizeof(struct MachO::uuid_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << "    uuid ";
  for (int i = 0; i < 16; ++i) {
    outs() << format("%02" PRIX32, uuid.uuid[i]);
    if (i == 3 || i == 5 || i == 7 || i == 9)
      outs() << "-";
  }
  outs() << "\n";
}

static void PrintRpathLoadCommand(MachO::rpath_command rpath, const char *Ptr) {
  outs() << "          cmd LC_RPATH\n";
  outs() << "      cmdsize " << rpath.cmdsize;
  if (rpath.cmdsize < sizeof(struct MachO::rpath_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  if (rpath.path >= rpath.cmdsize)
    outs() << "         path ?(bad offset " << rpath.path << ")\n";
  else {
    const char *P = (const char *)(Ptr) + rpath.path;
    outs() << "         path " << P << " (offset " << rpath.path << ")\n";
  }
}

static void PrintVersionMinLoadCommand(MachO::version_min_command vd) {
  StringRef LoadCmdName;
  switch (vd.cmd) {
  case MachO::LC_VERSION_MIN_MACOSX:
    LoadCmdName = "LC_VERSION_MIN_MACOSX";
    break;
  case MachO::LC_VERSION_MIN_IPHONEOS:
    LoadCmdName = "LC_VERSION_MIN_IPHONEOS";
    break;
  case MachO::LC_VERSION_MIN_TVOS:
    LoadCmdName = "LC_VERSION_MIN_TVOS";
    break;
  case MachO::LC_VERSION_MIN_WATCHOS:
    LoadCmdName = "LC_VERSION_MIN_WATCHOS";
    break;
  default:
    llvm_unreachable("Unknown version min load command");
  }

  outs() << "      cmd " << LoadCmdName << '\n';
  outs() << "  cmdsize " << vd.cmdsize;
  if (vd.cmdsize != sizeof(struct MachO::version_min_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << "  version "
         << MachOObjectFile::getVersionMinMajor(vd, false) << "."
         << MachOObjectFile::getVersionMinMinor(vd, false);
  uint32_t Update = MachOObjectFile::getVersionMinUpdate(vd, false);
  if (Update != 0)
    outs() << "." << Update;
  outs() << "\n";
  if (vd.sdk == 0)
    outs() << "      sdk n/a";
  else {
    outs() << "      sdk "
           << MachOObjectFile::getVersionMinMajor(vd, true) << "."
           << MachOObjectFile::getVersionMinMinor(vd, true);
  }
  Update = MachOObjectFile::getVersionMinUpdate(vd, true);
  if (Update != 0)
    outs() << "." << Update;
  outs() << "\n";
}

static void PrintSourceVersionCommand(MachO::source_version_command sd) {
  outs() << "      cmd LC_SOURCE_VERSION\n";
  outs() << "  cmdsize " << sd.cmdsize;
  if (sd.cmdsize != sizeof(struct MachO::source_version_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  uint64_t a = (sd.version >> 40) & 0xffffff;
  uint64_t b = (sd.version >> 30) & 0x3ff;
  uint64_t c = (sd.version >> 20) & 0x3ff;
  uint64_t d = (sd.version >> 10) & 0x3ff;
  uint64_t e = sd.version & 0x3ff;
  outs() << "  version " << a << "." << b;
  if (e != 0)
    outs() << "." << c << "." << d << "." << e;
  else if (d != 0)
    outs() << "." << c << "." << d;
  else if (c != 0)
    outs() << "." << c;
  outs() << "\n";
}

static void PrintEntryPointCommand(MachO::entry_point_command ep) {
  outs() << "       cmd LC_MAIN\n";
  outs() << "   cmdsize " << ep.cmdsize;
  if (ep.cmdsize != sizeof(struct MachO::entry_point_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << "  entryoff " << ep.entryoff << "\n";
  outs() << " stacksize " << ep.stacksize << "\n";
}

static void PrintEncryptionInfoCommand(MachO::encryption_info_command ec,
                                       uint32_t object_size) {
  outs() << "          cmd LC_ENCRYPTION_INFO\n";
  outs() << "      cmdsize " << ec.cmdsize;
  if (ec.cmdsize != sizeof(struct MachO::encryption_info_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << "     cryptoff " << ec.cryptoff;
  if (ec.cryptoff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "    cryptsize " << ec.cryptsize;
  if (ec.cryptsize > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "      cryptid " << ec.cryptid << "\n";
}

static void PrintEncryptionInfoCommand64(MachO::encryption_info_command_64 ec,
                                         uint32_t object_size) {
  outs() << "          cmd LC_ENCRYPTION_INFO_64\n";
  outs() << "      cmdsize " << ec.cmdsize;
  if (ec.cmdsize != sizeof(struct MachO::encryption_info_command_64))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << "     cryptoff " << ec.cryptoff;
  if (ec.cryptoff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "    cryptsize " << ec.cryptsize;
  if (ec.cryptsize > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << "      cryptid " << ec.cryptid << "\n";
  outs() << "          pad " << ec.pad << "\n";
}

static void PrintLinkerOptionCommand(MachO::linker_option_command lo,
                                     const char *Ptr) {
  outs() << "     cmd LC_LINKER_OPTION\n";
  outs() << " cmdsize " << lo.cmdsize;
  if (lo.cmdsize < sizeof(struct MachO::linker_option_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << "   count " << lo.count << "\n";
  const char *string = Ptr + sizeof(struct MachO::linker_option_command);
  uint32_t left = lo.cmdsize - sizeof(struct MachO::linker_option_command);
  uint32_t i = 0;
  while (left > 0) {
    while (*string == '\0' && left > 0) {
      string++;
      left--;
    }
    if (left > 0) {
      i++;
      outs() << "  string #" << i << " " << format("%.*s\n", left, string);
      uint32_t NullPos = StringRef(string, left).find('\0');
      uint32_t len = std::min(NullPos, left) + 1;
      string += len;
      left -= len;
    }
  }
  if (lo.count != i)
    outs() << "   count " << lo.count << " does not match number of strings "
           << i << "\n";
}

static void PrintSubFrameworkCommand(MachO::sub_framework_command sub,
                                     const char *Ptr) {
  outs() << "          cmd LC_SUB_FRAMEWORK\n";
  outs() << "      cmdsize " << sub.cmdsize;
  if (sub.cmdsize < sizeof(struct MachO::sub_framework_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  if (sub.umbrella < sub.cmdsize) {
    const char *P = Ptr + sub.umbrella;
    outs() << "     umbrella " << P << " (offset " << sub.umbrella << ")\n";
  } else {
    outs() << "     umbrella ?(bad offset " << sub.umbrella << ")\n";
  }
}

static void PrintSubUmbrellaCommand(MachO::sub_umbrella_command sub,
                                    const char *Ptr) {
  outs() << "          cmd LC_SUB_UMBRELLA\n";
  outs() << "      cmdsize " << sub.cmdsize;
  if (sub.cmdsize < sizeof(struct MachO::sub_umbrella_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  if (sub.sub_umbrella < sub.cmdsize) {
    const char *P = Ptr + sub.sub_umbrella;
    outs() << " sub_umbrella " << P << " (offset " << sub.sub_umbrella << ")\n";
  } else {
    outs() << " sub_umbrella ?(bad offset " << sub.sub_umbrella << ")\n";
  }
}

static void PrintSubLibraryCommand(MachO::sub_library_command sub,
                                   const char *Ptr) {
  outs() << "          cmd LC_SUB_LIBRARY\n";
  outs() << "      cmdsize " << sub.cmdsize;
  if (sub.cmdsize < sizeof(struct MachO::sub_library_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  if (sub.sub_library < sub.cmdsize) {
    const char *P = Ptr + sub.sub_library;
    outs() << "  sub_library " << P << " (offset " << sub.sub_library << ")\n";
  } else {
    outs() << "  sub_library ?(bad offset " << sub.sub_library << ")\n";
  }
}

static void PrintSubClientCommand(MachO::sub_client_command sub,
                                  const char *Ptr) {
  outs() << "          cmd LC_SUB_CLIENT\n";
  outs() << "      cmdsize " << sub.cmdsize;
  if (sub.cmdsize < sizeof(struct MachO::sub_client_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  if (sub.client < sub.cmdsize) {
    const char *P = Ptr + sub.client;
    outs() << "       client " << P << " (offset " << sub.client << ")\n";
  } else {
    outs() << "       client ?(bad offset " << sub.client << ")\n";
  }
}

static void PrintRoutinesCommand(MachO::routines_command r) {
  outs() << "          cmd LC_ROUTINES\n";
  outs() << "      cmdsize " << r.cmdsize;
  if (r.cmdsize != sizeof(struct MachO::routines_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << " init_address " << format("0x%08" PRIx32, r.init_address) << "\n";
  outs() << "  init_module " << r.init_module << "\n";
  outs() << "    reserved1 " << r.reserved1 << "\n";
  outs() << "    reserved2 " << r.reserved2 << "\n";
  outs() << "    reserved3 " << r.reserved3 << "\n";
  outs() << "    reserved4 " << r.reserved4 << "\n";
  outs() << "    reserved5 " << r.reserved5 << "\n";
  outs() << "    reserved6 " << r.reserved6 << "\n";
}

static void PrintRoutinesCommand64(MachO::routines_command_64 r) {
  outs() << "          cmd LC_ROUTINES_64\n";
  outs() << "      cmdsize " << r.cmdsize;
  if (r.cmdsize != sizeof(struct MachO::routines_command_64))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << " init_address " << format("0x%016" PRIx64, r.init_address) << "\n";
  outs() << "  init_module " << r.init_module << "\n";
  outs() << "    reserved1 " << r.reserved1 << "\n";
  outs() << "    reserved2 " << r.reserved2 << "\n";
  outs() << "    reserved3 " << r.reserved3 << "\n";
  outs() << "    reserved4 " << r.reserved4 << "\n";
  outs() << "    reserved5 " << r.reserved5 << "\n";
  outs() << "    reserved6 " << r.reserved6 << "\n";
}

static void Print_x86_thread_state64_t(MachO::x86_thread_state64_t &cpu64) {
  outs() << "   rax  " << format("0x%016" PRIx64, cpu64.rax);
  outs() << " rbx " << format("0x%016" PRIx64, cpu64.rbx);
  outs() << " rcx  " << format("0x%016" PRIx64, cpu64.rcx) << "\n";
  outs() << "   rdx  " << format("0x%016" PRIx64, cpu64.rdx);
  outs() << " rdi " << format("0x%016" PRIx64, cpu64.rdi);
  outs() << " rsi  " << format("0x%016" PRIx64, cpu64.rsi) << "\n";
  outs() << "   rbp  " << format("0x%016" PRIx64, cpu64.rbp);
  outs() << " rsp " << format("0x%016" PRIx64, cpu64.rsp);
  outs() << " r8   " << format("0x%016" PRIx64, cpu64.r8) << "\n";
  outs() << "    r9  " << format("0x%016" PRIx64, cpu64.r9);
  outs() << " r10 " << format("0x%016" PRIx64, cpu64.r10);
  outs() << " r11  " << format("0x%016" PRIx64, cpu64.r11) << "\n";
  outs() << "   r12  " << format("0x%016" PRIx64, cpu64.r12);
  outs() << " r13 " << format("0x%016" PRIx64, cpu64.r13);
  outs() << " r14  " << format("0x%016" PRIx64, cpu64.r14) << "\n";
  outs() << "   r15  " << format("0x%016" PRIx64, cpu64.r15);
  outs() << " rip " << format("0x%016" PRIx64, cpu64.rip) << "\n";
  outs() << "rflags  " << format("0x%016" PRIx64, cpu64.rflags);
  outs() << " cs  " << format("0x%016" PRIx64, cpu64.cs);
  outs() << " fs   " << format("0x%016" PRIx64, cpu64.fs) << "\n";
  outs() << "    gs  " << format("0x%016" PRIx64, cpu64.gs) << "\n";
}

static void Print_mmst_reg(MachO::mmst_reg_t &r) {
  uint32_t f;
  outs() << "\t      mmst_reg  ";
  for (f = 0; f < 10; f++)
    outs() << format("%02" PRIx32, (r.mmst_reg[f] & 0xff)) << " ";
  outs() << "\n";
  outs() << "\t      mmst_rsrv ";
  for (f = 0; f < 6; f++)
    outs() << format("%02" PRIx32, (r.mmst_rsrv[f] & 0xff)) << " ";
  outs() << "\n";
}

static void Print_xmm_reg(MachO::xmm_reg_t &r) {
  uint32_t f;
  outs() << "\t      xmm_reg ";
  for (f = 0; f < 16; f++)
    outs() << format("%02" PRIx32, (r.xmm_reg[f] & 0xff)) << " ";
  outs() << "\n";
}

static void Print_x86_float_state_t(MachO::x86_float_state64_t &fpu) {
  outs() << "\t    fpu_reserved[0] " << fpu.fpu_reserved[0];
  outs() << " fpu_reserved[1] " << fpu.fpu_reserved[1] << "\n";
  outs() << "\t    control: invalid " << fpu.fpu_fcw.invalid;
  outs() << " denorm " << fpu.fpu_fcw.denorm;
  outs() << " zdiv " << fpu.fpu_fcw.zdiv;
  outs() << " ovrfl " << fpu.fpu_fcw.ovrfl;
  outs() << " undfl " << fpu.fpu_fcw.undfl;
  outs() << " precis " << fpu.fpu_fcw.precis << "\n";
  outs() << "\t\t     pc ";
  if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_24B)
    outs() << "FP_PREC_24B ";
  else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_53B)
    outs() << "FP_PREC_53B ";
  else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_64B)
    outs() << "FP_PREC_64B ";
  else
    outs() << fpu.fpu_fcw.pc << " ";
  outs() << "rc ";
  if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_NEAR)
    outs() << "FP_RND_NEAR ";
  else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_DOWN)
    outs() << "FP_RND_DOWN ";
  else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_UP)
    outs() << "FP_RND_UP ";
  else if (fpu.fpu_fcw.rc == MachO::x86_FP_CHOP)
    outs() << "FP_CHOP ";
  outs() << "\n";
  outs() << "\t    status: invalid " << fpu.fpu_fsw.invalid;
  outs() << " denorm " << fpu.fpu_fsw.denorm;
  outs() << " zdiv " << fpu.fpu_fsw.zdiv;
  outs() << " ovrfl " << fpu.fpu_fsw.ovrfl;
  outs() << " undfl " << fpu.fpu_fsw.undfl;
  outs() << " precis " << fpu.fpu_fsw.precis;
  outs() << " stkflt " << fpu.fpu_fsw.stkflt << "\n";
  outs() << "\t            errsumm " << fpu.fpu_fsw.errsumm;
  outs() << " c0 " << fpu.fpu_fsw.c0;
  outs() << " c1 " << fpu.fpu_fsw.c1;
  outs() << " c2 " << fpu.fpu_fsw.c2;
  outs() << " tos " << fpu.fpu_fsw.tos;
  outs() << " c3 " << fpu.fpu_fsw.c3;
  outs() << " busy " << fpu.fpu_fsw.busy << "\n";
  outs() << "\t    fpu_ftw " << format("0x%02" PRIx32, fpu.fpu_ftw);
  outs() << " fpu_rsrv1 " << format("0x%02" PRIx32, fpu.fpu_rsrv1);
  outs() << " fpu_fop " << format("0x%04" PRIx32, fpu.fpu_fop);
  outs() << " fpu_ip " << format("0x%08" PRIx32, fpu.fpu_ip) << "\n";
  outs() << "\t    fpu_cs " << format("0x%04" PRIx32, fpu.fpu_cs);
  outs() << " fpu_rsrv2 " << format("0x%04" PRIx32, fpu.fpu_rsrv2);
  outs() << " fpu_dp " << format("0x%08" PRIx32, fpu.fpu_dp);
  outs() << " fpu_ds " << format("0x%04" PRIx32, fpu.fpu_ds) << "\n";
  outs() << "\t    fpu_rsrv3 " << format("0x%04" PRIx32, fpu.fpu_rsrv3);
  outs() << " fpu_mxcsr " << format("0x%08" PRIx32, fpu.fpu_mxcsr);
  outs() << " fpu_mxcsrmask " << format("0x%08" PRIx32, fpu.fpu_mxcsrmask);
  outs() << "\n";
  outs() << "\t    fpu_stmm0:\n";
  Print_mmst_reg(fpu.fpu_stmm0);
  outs() << "\t    fpu_stmm1:\n";
  Print_mmst_reg(fpu.fpu_stmm1);
  outs() << "\t    fpu_stmm2:\n";
  Print_mmst_reg(fpu.fpu_stmm2);
  outs() << "\t    fpu_stmm3:\n";
  Print_mmst_reg(fpu.fpu_stmm3);
  outs() << "\t    fpu_stmm4:\n";
  Print_mmst_reg(fpu.fpu_stmm4);
  outs() << "\t    fpu_stmm5:\n";
  Print_mmst_reg(fpu.fpu_stmm5);
  outs() << "\t    fpu_stmm6:\n";
  Print_mmst_reg(fpu.fpu_stmm6);
  outs() << "\t    fpu_stmm7:\n";
  Print_mmst_reg(fpu.fpu_stmm7);
  outs() << "\t    fpu_xmm0:\n";
  Print_xmm_reg(fpu.fpu_xmm0);
  outs() << "\t    fpu_xmm1:\n";
  Print_xmm_reg(fpu.fpu_xmm1);
  outs() << "\t    fpu_xmm2:\n";
  Print_xmm_reg(fpu.fpu_xmm2);
  outs() << "\t    fpu_xmm3:\n";
  Print_xmm_reg(fpu.fpu_xmm3);
  outs() << "\t    fpu_xmm4:\n";
  Print_xmm_reg(fpu.fpu_xmm4);
  outs() << "\t    fpu_xmm5:\n";
  Print_xmm_reg(fpu.fpu_xmm5);
  outs() << "\t    fpu_xmm6:\n";
  Print_xmm_reg(fpu.fpu_xmm6);
  outs() << "\t    fpu_xmm7:\n";
  Print_xmm_reg(fpu.fpu_xmm7);
  outs() << "\t    fpu_xmm8:\n";
  Print_xmm_reg(fpu.fpu_xmm8);
  outs() << "\t    fpu_xmm9:\n";
  Print_xmm_reg(fpu.fpu_xmm9);
  outs() << "\t    fpu_xmm10:\n";
  Print_xmm_reg(fpu.fpu_xmm10);
  outs() << "\t    fpu_xmm11:\n";
  Print_xmm_reg(fpu.fpu_xmm11);
  outs() << "\t    fpu_xmm12:\n";
  Print_xmm_reg(fpu.fpu_xmm12);
  outs() << "\t    fpu_xmm13:\n";
  Print_xmm_reg(fpu.fpu_xmm13);
  outs() << "\t    fpu_xmm14:\n";
  Print_xmm_reg(fpu.fpu_xmm14);
  outs() << "\t    fpu_xmm15:\n";
  Print_xmm_reg(fpu.fpu_xmm15);
  outs() << "\t    fpu_rsrv4:\n";
  for (uint32_t f = 0; f < 6; f++) {
    outs() << "\t            ";
    for (uint32_t g = 0; g < 16; g++)
      outs() << format("%02" PRIx32, fpu.fpu_rsrv4[f * g]) << " ";
    outs() << "\n";
  }
  outs() << "\t    fpu_reserved1 " << format("0x%08" PRIx32, fpu.fpu_reserved1);
  outs() << "\n";
}

static void Print_x86_exception_state_t(MachO::x86_exception_state64_t &exc64) {
  outs() << "\t    trapno " << format("0x%08" PRIx32, exc64.trapno);
  outs() << " err " << format("0x%08" PRIx32, exc64.err);
  outs() << " faultvaddr " << format("0x%016" PRIx64, exc64.faultvaddr) << "\n";
}

static void PrintThreadCommand(MachO::thread_command t, const char *Ptr,
                               bool isLittleEndian, uint32_t cputype) {
  if (t.cmd == MachO::LC_THREAD)
    outs() << "        cmd LC_THREAD\n";
  else if (t.cmd == MachO::LC_UNIXTHREAD)
    outs() << "        cmd LC_UNIXTHREAD\n";
  else
    outs() << "        cmd " << t.cmd << " (unknown)\n";
  outs() << "    cmdsize " << t.cmdsize;
  if (t.cmdsize < sizeof(struct MachO::thread_command) + 2 * sizeof(uint32_t))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";

  const char *begin = Ptr + sizeof(struct MachO::thread_command);
  const char *end = Ptr + t.cmdsize;
  uint32_t flavor, count, left;
  if (cputype == MachO::CPU_TYPE_X86_64) {
    while (begin < end) {
      if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
        memcpy((char *)&flavor, begin, sizeof(uint32_t));
        begin += sizeof(uint32_t);
      } else {
        flavor = 0;
        begin = end;
      }
      if (isLittleEndian != sys::IsLittleEndianHost)
        sys::swapByteOrder(flavor);
      if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
        memcpy((char *)&count, begin, sizeof(uint32_t));
        begin += sizeof(uint32_t);
      } else {
        count = 0;
        begin = end;
      }
      if (isLittleEndian != sys::IsLittleEndianHost)
        sys::swapByteOrder(count);
      if (flavor == MachO::x86_THREAD_STATE64) {
        outs() << "     flavor x86_THREAD_STATE64\n";
        if (count == MachO::x86_THREAD_STATE64_COUNT)
          outs() << "      count x86_THREAD_STATE64_COUNT\n";
        else
          outs() << "      count " << count
                 << " (not x86_THREAD_STATE64_COUNT)\n";
        MachO::x86_thread_state64_t cpu64;
        left = end - begin;
        if (left >= sizeof(MachO::x86_thread_state64_t)) {
          memcpy(&cpu64, begin, sizeof(MachO::x86_thread_state64_t));
          begin += sizeof(MachO::x86_thread_state64_t);
        } else {
          memset(&cpu64, '\0', sizeof(MachO::x86_thread_state64_t));
          memcpy(&cpu64, begin, left);
          begin += left;
        }
        if (isLittleEndian != sys::IsLittleEndianHost)
          swapStruct(cpu64);
        Print_x86_thread_state64_t(cpu64);
      } else if (flavor == MachO::x86_THREAD_STATE) {
        outs() << "     flavor x86_THREAD_STATE\n";
        if (count == MachO::x86_THREAD_STATE_COUNT)
          outs() << "      count x86_THREAD_STATE_COUNT\n";
        else
          outs() << "      count " << count
                 << " (not x86_THREAD_STATE_COUNT)\n";
        struct MachO::x86_thread_state_t ts;
        left = end - begin;
        if (left >= sizeof(MachO::x86_thread_state_t)) {
          memcpy(&ts, begin, sizeof(MachO::x86_thread_state_t));
          begin += sizeof(MachO::x86_thread_state_t);
        } else {
          memset(&ts, '\0', sizeof(MachO::x86_thread_state_t));
          memcpy(&ts, begin, left);
          begin += left;
        }
        if (isLittleEndian != sys::IsLittleEndianHost)
          swapStruct(ts);
        if (ts.tsh.flavor == MachO::x86_THREAD_STATE64) {
          outs() << "\t    tsh.flavor x86_THREAD_STATE64 ";
          if (ts.tsh.count == MachO::x86_THREAD_STATE64_COUNT)
            outs() << "tsh.count x86_THREAD_STATE64_COUNT\n";
          else
            outs() << "tsh.count " << ts.tsh.count
                   << " (not x86_THREAD_STATE64_COUNT\n";
          Print_x86_thread_state64_t(ts.uts.ts64);
        } else {
          outs() << "\t    tsh.flavor " << ts.tsh.flavor << "  tsh.count "
                 << ts.tsh.count << "\n";
        }
      } else if (flavor == MachO::x86_FLOAT_STATE) {
        outs() << "     flavor x86_FLOAT_STATE\n";
        if (count == MachO::x86_FLOAT_STATE_COUNT)
          outs() << "      count x86_FLOAT_STATE_COUNT\n";
        else
          outs() << "      count " << count << " (not x86_FLOAT_STATE_COUNT)\n";
        struct MachO::x86_float_state_t fs;
        left = end - begin;
        if (left >= sizeof(MachO::x86_float_state_t)) {
          memcpy(&fs, begin, sizeof(MachO::x86_float_state_t));
          begin += sizeof(MachO::x86_float_state_t);
        } else {
          memset(&fs, '\0', sizeof(MachO::x86_float_state_t));
          memcpy(&fs, begin, left);
          begin += left;
        }
        if (isLittleEndian != sys::IsLittleEndianHost)
          swapStruct(fs);
        if (fs.fsh.flavor == MachO::x86_FLOAT_STATE64) {
          outs() << "\t    fsh.flavor x86_FLOAT_STATE64 ";
          if (fs.fsh.count == MachO::x86_FLOAT_STATE64_COUNT)
            outs() << "fsh.count x86_FLOAT_STATE64_COUNT\n";
          else
            outs() << "fsh.count " << fs.fsh.count
                   << " (not x86_FLOAT_STATE64_COUNT\n";
          Print_x86_float_state_t(fs.ufs.fs64);
        } else {
          outs() << "\t    fsh.flavor " << fs.fsh.flavor << "  fsh.count "
                 << fs.fsh.count << "\n";
        }
      } else if (flavor == MachO::x86_EXCEPTION_STATE) {
        outs() << "     flavor x86_EXCEPTION_STATE\n";
        if (count == MachO::x86_EXCEPTION_STATE_COUNT)
          outs() << "      count x86_EXCEPTION_STATE_COUNT\n";
        else
          outs() << "      count " << count
                 << " (not x86_EXCEPTION_STATE_COUNT)\n";
        struct MachO::x86_exception_state_t es;
        left = end - begin;
        if (left >= sizeof(MachO::x86_exception_state_t)) {
          memcpy(&es, begin, sizeof(MachO::x86_exception_state_t));
          begin += sizeof(MachO::x86_exception_state_t);
        } else {
          memset(&es, '\0', sizeof(MachO::x86_exception_state_t));
          memcpy(&es, begin, left);
          begin += left;
        }
        if (isLittleEndian != sys::IsLittleEndianHost)
          swapStruct(es);
        if (es.esh.flavor == MachO::x86_EXCEPTION_STATE64) {
          outs() << "\t    esh.flavor x86_EXCEPTION_STATE64\n";
          if (es.esh.count == MachO::x86_EXCEPTION_STATE64_COUNT)
            outs() << "\t    esh.count x86_EXCEPTION_STATE64_COUNT\n";
          else
            outs() << "\t    esh.count " << es.esh.count
                   << " (not x86_EXCEPTION_STATE64_COUNT\n";
          Print_x86_exception_state_t(es.ues.es64);
        } else {
          outs() << "\t    esh.flavor " << es.esh.flavor << "  esh.count "
                 << es.esh.count << "\n";
        }
      } else {
        outs() << "     flavor " << flavor << " (unknown)\n";
        outs() << "      count " << count << "\n";
        outs() << "      state (unknown)\n";
        begin += count * sizeof(uint32_t);
      }
    }
  } else {
    while (begin < end) {
      if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
        memcpy((char *)&flavor, begin, sizeof(uint32_t));
        begin += sizeof(uint32_t);
      } else {
        flavor = 0;
        begin = end;
      }
      if (isLittleEndian != sys::IsLittleEndianHost)
        sys::swapByteOrder(flavor);
      if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
        memcpy((char *)&count, begin, sizeof(uint32_t));
        begin += sizeof(uint32_t);
      } else {
        count = 0;
        begin = end;
      }
      if (isLittleEndian != sys::IsLittleEndianHost)
        sys::swapByteOrder(count);
      outs() << "     flavor " << flavor << "\n";
      outs() << "      count " << count << "\n";
      outs() << "      state (Unknown cputype/cpusubtype)\n";
      begin += count * sizeof(uint32_t);
    }
  }
}

static void PrintDylibCommand(MachO::dylib_command dl, const char *Ptr) {
  if (dl.cmd == MachO::LC_ID_DYLIB)
    outs() << "          cmd LC_ID_DYLIB\n";
  else if (dl.cmd == MachO::LC_LOAD_DYLIB)
    outs() << "          cmd LC_LOAD_DYLIB\n";
  else if (dl.cmd == MachO::LC_LOAD_WEAK_DYLIB)
    outs() << "          cmd LC_LOAD_WEAK_DYLIB\n";
  else if (dl.cmd == MachO::LC_REEXPORT_DYLIB)
    outs() << "          cmd LC_REEXPORT_DYLIB\n";
  else if (dl.cmd == MachO::LC_LAZY_LOAD_DYLIB)
    outs() << "          cmd LC_LAZY_LOAD_DYLIB\n";
  else if (dl.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
    outs() << "          cmd LC_LOAD_UPWARD_DYLIB\n";
  else
    outs() << "          cmd " << dl.cmd << " (unknown)\n";
  outs() << "      cmdsize " << dl.cmdsize;
  if (dl.cmdsize < sizeof(struct MachO::dylib_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  if (dl.dylib.name < dl.cmdsize) {
    const char *P = (const char *)(Ptr) + dl.dylib.name;
    outs() << "         name " << P << " (offset " << dl.dylib.name << ")\n";
  } else {
    outs() << "         name ?(bad offset " << dl.dylib.name << ")\n";
  }
  outs() << "   time stamp " << dl.dylib.timestamp << " ";
  time_t t = dl.dylib.timestamp;
  outs() << ctime(&t);
  outs() << "      current version ";
  if (dl.dylib.current_version == 0xffffffff)
    outs() << "n/a\n";
  else
    outs() << ((dl.dylib.current_version >> 16) & 0xffff) << "."
           << ((dl.dylib.current_version >> 8) & 0xff) << "."
           << (dl.dylib.current_version & 0xff) << "\n";
  outs() << "compatibility version ";
  if (dl.dylib.compatibility_version == 0xffffffff)
    outs() << "n/a\n";
  else
    outs() << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
           << ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
           << (dl.dylib.compatibility_version & 0xff) << "\n";
}

static void PrintLinkEditDataCommand(MachO::linkedit_data_command ld,
                                     uint32_t object_size) {
  if (ld.cmd == MachO::LC_CODE_SIGNATURE)
    outs() << "      cmd LC_FUNCTION_STARTS\n";
  else if (ld.cmd == MachO::LC_SEGMENT_SPLIT_INFO)
    outs() << "      cmd LC_SEGMENT_SPLIT_INFO\n";
  else if (ld.cmd == MachO::LC_FUNCTION_STARTS)
    outs() << "      cmd LC_FUNCTION_STARTS\n";
  else if (ld.cmd == MachO::LC_DATA_IN_CODE)
    outs() << "      cmd LC_DATA_IN_CODE\n";
  else if (ld.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS)
    outs() << "      cmd LC_DYLIB_CODE_SIGN_DRS\n";
  else if (ld.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT)
    outs() << "      cmd LC_LINKER_OPTIMIZATION_HINT\n";
  else
    outs() << "      cmd " << ld.cmd << " (?)\n";
  outs() << "  cmdsize " << ld.cmdsize;
  if (ld.cmdsize != sizeof(struct MachO::linkedit_data_command))
    outs() << " Incorrect size\n";
  else
    outs() << "\n";
  outs() << "  dataoff " << ld.dataoff;
  if (ld.dataoff > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
  outs() << " datasize " << ld.datasize;
  uint64_t big_size = ld.dataoff;
  big_size += ld.datasize;
  if (big_size > object_size)
    outs() << " (past end of file)\n";
  else
    outs() << "\n";
}

static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t filetype,
                              uint32_t cputype, bool verbose) {
  StringRef Buf = Obj->getData();
  unsigned Index = 0;
  for (const auto &Command : Obj->load_commands()) {
    outs() << "Load command " << Index++ << "\n";
    if (Command.C.cmd == MachO::LC_SEGMENT) {
      MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command);
      const char *sg_segname = SLC.segname;
      PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr,
                          SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot,
                          SLC.initprot, SLC.nsects, SLC.flags, Buf.size(),
                          verbose);
      for (unsigned j = 0; j < SLC.nsects; j++) {
        MachO::section S = Obj->getSection(Command, j);
        PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align,
                     S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2,
                     SLC.cmd, sg_segname, filetype, Buf.size(), verbose);
      }
    } else if (Command.C.cmd == MachO::LC_SEGMENT_64) {
      MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command);
      const char *sg_segname = SLC_64.segname;
      PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname,
                          SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff,
                          SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot,
                          SLC_64.nsects, SLC_64.flags, Buf.size(), verbose);
      for (unsigned j = 0; j < SLC_64.nsects; j++) {
        MachO::section_64 S_64 = Obj->getSection64(Command, j);
        PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size,
                     S_64.offset, S_64.align, S_64.reloff, S_64.nreloc,
                     S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd,
                     sg_segname, filetype, Buf.size(), verbose);
      }
    } else if (Command.C.cmd == MachO::LC_SYMTAB) {
      MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
      PrintSymtabLoadCommand(Symtab, Obj->is64Bit(), Buf.size());
    } else if (Command.C.cmd == MachO::LC_DYSYMTAB) {
      MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand();
      MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
      PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(),
                               Obj->is64Bit());
    } else if (Command.C.cmd == MachO::LC_DYLD_INFO ||
               Command.C.cmd == MachO::LC_DYLD_INFO_ONLY) {
      MachO::dyld_info_command DyldInfo = Obj->getDyldInfoLoadCommand(Command);
      PrintDyldInfoLoadCommand(DyldInfo, Buf.size());
    } else if (Command.C.cmd == MachO::LC_LOAD_DYLINKER ||
               Command.C.cmd == MachO::LC_ID_DYLINKER ||
               Command.C.cmd == MachO::LC_DYLD_ENVIRONMENT) {
      MachO::dylinker_command Dyld = Obj->getDylinkerCommand(Command);
      PrintDyldLoadCommand(Dyld, Command.Ptr);
    } else if (Command.C.cmd == MachO::LC_UUID) {
      MachO::uuid_command Uuid = Obj->getUuidCommand(Command);
      PrintUuidLoadCommand(Uuid);
    } else if (Command.C.cmd == MachO::LC_RPATH) {
      MachO::rpath_command Rpath = Obj->getRpathCommand(Command);
      PrintRpathLoadCommand(Rpath, Command.Ptr);
    } else if (Command.C.cmd == MachO::LC_VERSION_MIN_MACOSX ||
               Command.C.cmd == MachO::LC_VERSION_MIN_IPHONEOS ||
               Command.C.cmd == MachO::LC_VERSION_MIN_TVOS ||
               Command.C.cmd == MachO::LC_VERSION_MIN_WATCHOS) {
      MachO::version_min_command Vd = Obj->getVersionMinLoadCommand(Command);
      PrintVersionMinLoadCommand(Vd);
    } else if (Command.C.cmd == MachO::LC_SOURCE_VERSION) {
      MachO::source_version_command Sd = Obj->getSourceVersionCommand(Command);
      PrintSourceVersionCommand(Sd);
    } else if (Command.C.cmd == MachO::LC_MAIN) {
      MachO::entry_point_command Ep = Obj->getEntryPointCommand(Command);
      PrintEntryPointCommand(Ep);
    } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO) {
      MachO::encryption_info_command Ei =
          Obj->getEncryptionInfoCommand(Command);
      PrintEncryptionInfoCommand(Ei, Buf.size());
    } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO_64) {
      MachO::encryption_info_command_64 Ei =
          Obj->getEncryptionInfoCommand64(Command);
      PrintEncryptionInfoCommand64(Ei, Buf.size());
    } else if (Command.C.cmd == MachO::LC_LINKER_OPTION) {
      MachO::linker_option_command Lo =
          Obj->getLinkerOptionLoadCommand(Command);
      PrintLinkerOptionCommand(Lo, Command.Ptr);
    } else if (Command.C.cmd == MachO::LC_SUB_FRAMEWORK) {
      MachO::sub_framework_command Sf = Obj->getSubFrameworkCommand(Command);
      PrintSubFrameworkCommand(Sf, Command.Ptr);
    } else if (Command.C.cmd == MachO::LC_SUB_UMBRELLA) {
      MachO::sub_umbrella_command Sf = Obj->getSubUmbrellaCommand(Command);
      PrintSubUmbrellaCommand(Sf, Command.Ptr);
    } else if (Command.C.cmd == MachO::LC_SUB_LIBRARY) {
      MachO::sub_library_command Sl = Obj->getSubLibraryCommand(Command);
      PrintSubLibraryCommand(Sl, Command.Ptr);
    } else if (Command.C.cmd == MachO::LC_SUB_CLIENT) {
      MachO::sub_client_command Sc = Obj->getSubClientCommand(Command);
      PrintSubClientCommand(Sc, Command.Ptr);
    } else if (Command.C.cmd == MachO::LC_ROUTINES) {
      MachO::routines_command Rc = Obj->getRoutinesCommand(Command);
      PrintRoutinesCommand(Rc);
    } else if (Command.C.cmd == MachO::LC_ROUTINES_64) {
      MachO::routines_command_64 Rc = Obj->getRoutinesCommand64(Command);
      PrintRoutinesCommand64(Rc);
    } else if (Command.C.cmd == MachO::LC_THREAD ||
               Command.C.cmd == MachO::LC_UNIXTHREAD) {
      MachO::thread_command Tc = Obj->getThreadCommand(Command);
      PrintThreadCommand(Tc, Command.Ptr, Obj->isLittleEndian(), cputype);
    } else if (Command.C.cmd == MachO::LC_LOAD_DYLIB ||
               Command.C.cmd == MachO::LC_ID_DYLIB ||
               Command.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
               Command.C.cmd == MachO::LC_REEXPORT_DYLIB ||
               Command.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
               Command.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB) {
      MachO::dylib_command Dl = Obj->getDylibIDLoadCommand(Command);
      PrintDylibCommand(Dl, Command.Ptr);
    } else if (Command.C.cmd == MachO::LC_CODE_SIGNATURE ||
               Command.C.cmd == MachO::LC_SEGMENT_SPLIT_INFO ||
               Command.C.cmd == MachO::LC_FUNCTION_STARTS ||
               Command.C.cmd == MachO::LC_DATA_IN_CODE ||
               Command.C.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS ||
               Command.C.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) {
      MachO::linkedit_data_command Ld =
          Obj->getLinkeditDataLoadCommand(Command);
      PrintLinkEditDataCommand(Ld, Buf.size());
    } else {
      outs() << "      cmd ?(" << format("0x%08" PRIx32, Command.C.cmd)
             << ")\n";
      outs() << "  cmdsize " << Command.C.cmdsize << "\n";
      // TODO: get and print the raw bytes of the load command.
    }
    // TODO: print all the other kinds of load commands.
  }
}

static void getAndPrintMachHeader(const MachOObjectFile *Obj,
                                  uint32_t &filetype, uint32_t &cputype,
                                  bool verbose) {
  if (Obj->is64Bit()) {
    MachO::mach_header_64 H_64;
    H_64 = Obj->getHeader64();
    PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype,
                    H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose);
    filetype = H_64.filetype;
    cputype = H_64.cputype;
  } else {
    MachO::mach_header H;
    H = Obj->getHeader();
    PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds,
                    H.sizeofcmds, H.flags, verbose);
    filetype = H.filetype;
    cputype = H.cputype;
  }
}

void llvm::printMachOFileHeader(const object::ObjectFile *Obj) {
  const MachOObjectFile *file = dyn_cast<const MachOObjectFile>(Obj);
  uint32_t filetype = 0;
  uint32_t cputype = 0;
  getAndPrintMachHeader(file, filetype, cputype, !NonVerbose);
  PrintLoadCommands(file, filetype, cputype, !NonVerbose);
}

//===----------------------------------------------------------------------===//
// export trie dumping
//===----------------------------------------------------------------------===//

void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) {
  for (const llvm::object::ExportEntry &Entry : Obj->exports()) {
    uint64_t Flags = Entry.flags();
    bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT);
    bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION);
    bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
                        MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL);
    bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
                MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE);
    bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER);
    if (ReExport)
      outs() << "[re-export] ";
    else
      outs() << format("0x%08llX  ",
                       Entry.address()); // FIXME:add in base address
    outs() << Entry.name();
    if (WeakDef || ThreadLocal || Resolver || Abs) {
      bool NeedsComma = false;
      outs() << " [";
      if (WeakDef) {
        outs() << "weak_def";
        NeedsComma = true;
      }
      if (ThreadLocal) {
        if (NeedsComma)
          outs() << ", ";
        outs() << "per-thread";
        NeedsComma = true;
      }
      if (Abs) {
        if (NeedsComma)
          outs() << ", ";
        outs() << "absolute";
        NeedsComma = true;
      }
      if (Resolver) {
        if (NeedsComma)
          outs() << ", ";
        outs() << format("resolver=0x%08llX", Entry.other());
        NeedsComma = true;
      }
      outs() << "]";
    }
    if (ReExport) {
      StringRef DylibName = "unknown";
      int Ordinal = Entry.other() - 1;
      Obj->getLibraryShortNameByIndex(Ordinal, DylibName);
      if (Entry.otherName().empty())
        outs() << " (from " << DylibName << ")";
      else
        outs() << " (" << Entry.otherName() << " from " << DylibName << ")";
    }
    outs() << "\n";
  }
}

//===----------------------------------------------------------------------===//
// rebase table dumping
//===----------------------------------------------------------------------===//

namespace {
class SegInfo {
public:
  SegInfo(const object::MachOObjectFile *Obj);

  StringRef segmentName(uint32_t SegIndex);
  StringRef sectionName(uint32_t SegIndex, uint64_t SegOffset);
  uint64_t address(uint32_t SegIndex, uint64_t SegOffset);
  bool isValidSegIndexAndOffset(uint32_t SegIndex, uint64_t SegOffset);

private:
  struct SectionInfo {
    uint64_t Address;
    uint64_t Size;
    StringRef SectionName;
    StringRef SegmentName;
    uint64_t OffsetInSegment;
    uint64_t SegmentStartAddress;
    uint32_t SegmentIndex;
  };
  const SectionInfo &findSection(uint32_t SegIndex, uint64_t SegOffset);
  SmallVector<SectionInfo, 32> Sections;
};
}

SegInfo::SegInfo(const object::MachOObjectFile *Obj) {
  // Build table of sections so segIndex/offset pairs can be translated.
  uint32_t CurSegIndex = Obj->hasPageZeroSegment() ? 1 : 0;
  StringRef CurSegName;
  uint64_t CurSegAddress;
  for (const SectionRef &Section : Obj->sections()) {
    SectionInfo Info;
    error(Section.getName(Info.SectionName));
    Info.Address = Section.getAddress();
    Info.Size = Section.getSize();
    Info.SegmentName =
        Obj->getSectionFinalSegmentName(Section.getRawDataRefImpl());
    if (!Info.SegmentName.equals(CurSegName)) {
      ++CurSegIndex;
      CurSegName = Info.SegmentName;
      CurSegAddress = Info.Address;
    }
    Info.SegmentIndex = CurSegIndex - 1;
    Info.OffsetInSegment = Info.Address - CurSegAddress;
    Info.SegmentStartAddress = CurSegAddress;
    Sections.push_back(Info);
  }
}

StringRef SegInfo::segmentName(uint32_t SegIndex) {
  for (const SectionInfo &SI : Sections) {
    if (SI.SegmentIndex == SegIndex)
      return SI.SegmentName;
  }
  llvm_unreachable("invalid segIndex");
}

bool SegInfo::isValidSegIndexAndOffset(uint32_t SegIndex,
                                       uint64_t OffsetInSeg) {
  for (const SectionInfo &SI : Sections) {
    if (SI.SegmentIndex != SegIndex)
      continue;
    if (SI.OffsetInSegment > OffsetInSeg)
      continue;
    if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
      continue;
    return true;
  }
  return false;
}

const SegInfo::SectionInfo &SegInfo::findSection(uint32_t SegIndex,
                                                 uint64_t OffsetInSeg) {
  for (const SectionInfo &SI : Sections) {
    if (SI.SegmentIndex != SegIndex)
      continue;
    if (SI.OffsetInSegment > OffsetInSeg)
      continue;
    if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
      continue;
    return SI;
  }
  llvm_unreachable("segIndex and offset not in any section");
}

StringRef SegInfo::sectionName(uint32_t SegIndex, uint64_t OffsetInSeg) {
  return findSection(SegIndex, OffsetInSeg).SectionName;
}

uint64_t SegInfo::address(uint32_t SegIndex, uint64_t OffsetInSeg) {
  const SectionInfo &SI = findSection(SegIndex, OffsetInSeg);
  return SI.SegmentStartAddress + OffsetInSeg;
}

void llvm::printMachORebaseTable(const object::MachOObjectFile *Obj) {
  // Build table of sections so names can used in final output.
  SegInfo sectionTable(Obj);

  outs() << "segment  section            address     type\n";
  for (const llvm::object::MachORebaseEntry &Entry : Obj->rebaseTable()) {
    uint32_t SegIndex = Entry.segmentIndex();
    uint64_t OffsetInSeg = Entry.segmentOffset();
    StringRef SegmentName = sectionTable.segmentName(SegIndex);
    StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
    uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);

    // Table lines look like: __DATA  __nl_symbol_ptr  0x0000F00C  pointer
    outs() << format("%-8s %-18s 0x%08" PRIX64 "  %s\n",
                     SegmentName.str().c_str(), SectionName.str().c_str(),
                     Address, Entry.typeName().str().c_str());
  }
}

static StringRef ordinalName(const object::MachOObjectFile *Obj, int Ordinal) {
  StringRef DylibName;
  switch (Ordinal) {
  case MachO::BIND_SPECIAL_DYLIB_SELF:
    return "this-image";
  case MachO::BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE:
    return "main-executable";
  case MachO::BIND_SPECIAL_DYLIB_FLAT_LOOKUP:
    return "flat-namespace";
  default:
    if (Ordinal > 0) {
      std::error_code EC =
          Obj->getLibraryShortNameByIndex(Ordinal - 1, DylibName);
      if (EC)
        return "<<bad library ordinal>>";
      return DylibName;
    }
  }
  return "<<unknown special ordinal>>";
}

//===----------------------------------------------------------------------===//
// bind table dumping
//===----------------------------------------------------------------------===//

void llvm::printMachOBindTable(const object::MachOObjectFile *Obj) {
  // Build table of sections so names can used in final output.
  SegInfo sectionTable(Obj);

  outs() << "segment  section            address    type       "
            "addend dylib            symbol\n";
  for (const llvm::object::MachOBindEntry &Entry : Obj->bindTable()) {
    uint32_t SegIndex = Entry.segmentIndex();
    uint64_t OffsetInSeg = Entry.segmentOffset();
    StringRef SegmentName = sectionTable.segmentName(SegIndex);
    StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
    uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);

    // Table lines look like:
    //  __DATA  __got  0x00012010    pointer   0 libSystem ___stack_chk_guard
    StringRef Attr;
    if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT)
      Attr = " (weak_import)";
    outs() << left_justify(SegmentName, 8) << " "
           << left_justify(SectionName, 18) << " "
           << format_hex(Address, 10, true) << " "
           << left_justify(Entry.typeName(), 8) << " "
           << format_decimal(Entry.addend(), 8) << " "
           << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
           << Entry.symbolName() << Attr << "\n";
  }
}

//===----------------------------------------------------------------------===//
// lazy bind table dumping
//===----------------------------------------------------------------------===//

void llvm::printMachOLazyBindTable(const object::MachOObjectFile *Obj) {
  // Build table of sections so names can used in final output.
  SegInfo sectionTable(Obj);

  outs() << "segment  section            address     "
            "dylib            symbol\n";
  for (const llvm::object::MachOBindEntry &Entry : Obj->lazyBindTable()) {
    uint32_t SegIndex = Entry.segmentIndex();
    uint64_t OffsetInSeg = Entry.segmentOffset();
    StringRef SegmentName = sectionTable.segmentName(SegIndex);
    StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
    uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);

    // Table lines look like:
    //  __DATA  __got  0x00012010 libSystem ___stack_chk_guard
    outs() << left_justify(SegmentName, 8) << " "
           << left_justify(SectionName, 18) << " "
           << format_hex(Address, 10, true) << " "
           << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
           << Entry.symbolName() << "\n";
  }
}

//===----------------------------------------------------------------------===//
// weak bind table dumping
//===----------------------------------------------------------------------===//

void llvm::printMachOWeakBindTable(const object::MachOObjectFile *Obj) {
  // Build table of sections so names can used in final output.
  SegInfo sectionTable(Obj);

  outs() << "segment  section            address     "
            "type       addend   symbol\n";
  for (const llvm::object::MachOBindEntry &Entry : Obj->weakBindTable()) {
    // Strong symbols don't have a location to update.
    if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) {
      outs() << "                                        strong              "
             << Entry.symbolName() << "\n";
      continue;
    }
    uint32_t SegIndex = Entry.segmentIndex();
    uint64_t OffsetInSeg = Entry.segmentOffset();
    StringRef SegmentName = sectionTable.segmentName(SegIndex);
    StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
    uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);

    // Table lines look like:
    // __DATA  __data  0x00001000  pointer    0   _foo
    outs() << left_justify(SegmentName, 8) << " "
           << left_justify(SectionName, 18) << " "
           << format_hex(Address, 10, true) << " "
           << left_justify(Entry.typeName(), 8) << " "
           << format_decimal(Entry.addend(), 8) << "   " << Entry.symbolName()
           << "\n";
  }
}

// get_dyld_bind_info_symbolname() is used for disassembly and passed an
// address, ReferenceValue, in the Mach-O file and looks in the dyld bind
// information for that address. If the address is found its binding symbol
// name is returned.  If not nullptr is returned.
static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
                                                 struct DisassembleInfo *info) {
  if (info->bindtable == nullptr) {
    info->bindtable = new (BindTable);
    SegInfo sectionTable(info->O);
    for (const llvm::object::MachOBindEntry &Entry : info->O->bindTable()) {
      uint32_t SegIndex = Entry.segmentIndex();
      uint64_t OffsetInSeg = Entry.segmentOffset();
      if (!sectionTable.isValidSegIndexAndOffset(SegIndex, OffsetInSeg))
        continue;
      uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
      const char *SymbolName = nullptr;
      StringRef name = Entry.symbolName();
      if (!name.empty())
        SymbolName = name.data();
      info->bindtable->push_back(std::make_pair(Address, SymbolName));
    }
  }
  for (bind_table_iterator BI = info->bindtable->begin(),
                           BE = info->bindtable->end();
       BI != BE; ++BI) {
    uint64_t Address = BI->first;
    if (ReferenceValue == Address) {
      const char *SymbolName = BI->second;
      return SymbolName;
    }
  }
  return nullptr;
}