//===- Miscompilation.cpp - Debug program miscompilations -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements optimizer and code generation miscompilation debugging // support. // //===----------------------------------------------------------------------===// #include "BugDriver.h" #include "ListReducer.h" #include "ToolRunner.h" #include "llvm/Config/config.h" // for HAVE_LINK_R #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Linker/Linker.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FileUtilities.h" #include "llvm/Transforms/Utils/Cloning.h" using namespace llvm; namespace llvm { extern cl::opt<std::string> OutputPrefix; extern cl::list<std::string> InputArgv; } namespace { static llvm::cl::opt<bool> DisableLoopExtraction("disable-loop-extraction", cl::desc("Don't extract loops when searching for miscompilations"), cl::init(false)); static llvm::cl::opt<bool> DisableBlockExtraction("disable-block-extraction", cl::desc("Don't extract blocks when searching for miscompilations"), cl::init(false)); class ReduceMiscompilingPasses : public ListReducer<std::string> { BugDriver &BD; public: ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {} TestResult doTest(std::vector<std::string> &Prefix, std::vector<std::string> &Suffix, std::string &Error) override; }; } /// TestResult - After passes have been split into a test group and a control /// group, see if they still break the program. /// ReduceMiscompilingPasses::TestResult ReduceMiscompilingPasses::doTest(std::vector<std::string> &Prefix, std::vector<std::string> &Suffix, std::string &Error) { // First, run the program with just the Suffix passes. If it is still broken // with JUST the kept passes, discard the prefix passes. outs() << "Checking to see if '" << getPassesString(Suffix) << "' compiles correctly: "; std::string BitcodeResult; if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) { errs() << " Error running this sequence of passes" << " on the input program!\n"; BD.setPassesToRun(Suffix); BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false); exit(BD.debugOptimizerCrash()); } // Check to see if the finished program matches the reference output... bool Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", true /*delete bitcode*/, &Error); if (!Error.empty()) return InternalError; if (Diff) { outs() << " nope.\n"; if (Suffix.empty()) { errs() << BD.getToolName() << ": I'm confused: the test fails when " << "no passes are run, nondeterministic program?\n"; exit(1); } return KeepSuffix; // Miscompilation detected! } outs() << " yup.\n"; // No miscompilation! if (Prefix.empty()) return NoFailure; // Next, see if the program is broken if we run the "prefix" passes first, // then separately run the "kept" passes. outs() << "Checking to see if '" << getPassesString(Prefix) << "' compiles correctly: "; // If it is not broken with the kept passes, it's possible that the prefix // passes must be run before the kept passes to break it. If the program // WORKS after the prefix passes, but then fails if running the prefix AND // kept passes, we can update our bitcode file to include the result of the // prefix passes, then discard the prefix passes. // if (BD.runPasses(BD.getProgram(), Prefix, BitcodeResult, false/*delete*/, true/*quiet*/)) { errs() << " Error running this sequence of passes" << " on the input program!\n"; BD.setPassesToRun(Prefix); BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false); exit(BD.debugOptimizerCrash()); } // If the prefix maintains the predicate by itself, only keep the prefix! Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", false, &Error); if (!Error.empty()) return InternalError; if (Diff) { outs() << " nope.\n"; sys::fs::remove(BitcodeResult); return KeepPrefix; } outs() << " yup.\n"; // No miscompilation! // Ok, so now we know that the prefix passes work, try running the suffix // passes on the result of the prefix passes. // std::unique_ptr<Module> PrefixOutput = parseInputFile(BitcodeResult, BD.getContext()); if (!PrefixOutput) { errs() << BD.getToolName() << ": Error reading bitcode file '" << BitcodeResult << "'!\n"; exit(1); } sys::fs::remove(BitcodeResult); // Don't check if there are no passes in the suffix. if (Suffix.empty()) return NoFailure; outs() << "Checking to see if '" << getPassesString(Suffix) << "' passes compile correctly after the '" << getPassesString(Prefix) << "' passes: "; std::unique_ptr<Module> OriginalInput( BD.swapProgramIn(PrefixOutput.release())); if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) { errs() << " Error running this sequence of passes" << " on the input program!\n"; BD.setPassesToRun(Suffix); BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false); exit(BD.debugOptimizerCrash()); } // Run the result... Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", true /*delete bitcode*/, &Error); if (!Error.empty()) return InternalError; if (Diff) { outs() << " nope.\n"; return KeepSuffix; } // Otherwise, we must not be running the bad pass anymore. outs() << " yup.\n"; // No miscompilation! // Restore orig program & free test. delete BD.swapProgramIn(OriginalInput.release()); return NoFailure; } namespace { class ReduceMiscompilingFunctions : public ListReducer<Function*> { BugDriver &BD; bool (*TestFn)(BugDriver &, std::unique_ptr<Module>, std::unique_ptr<Module>, std::string &); public: ReduceMiscompilingFunctions(BugDriver &bd, bool (*F)(BugDriver &, std::unique_ptr<Module>, std::unique_ptr<Module>, std::string &)) : BD(bd), TestFn(F) {} TestResult doTest(std::vector<Function*> &Prefix, std::vector<Function*> &Suffix, std::string &Error) override { if (!Suffix.empty()) { bool Ret = TestFuncs(Suffix, Error); if (!Error.empty()) return InternalError; if (Ret) return KeepSuffix; } if (!Prefix.empty()) { bool Ret = TestFuncs(Prefix, Error); if (!Error.empty()) return InternalError; if (Ret) return KeepPrefix; } return NoFailure; } bool TestFuncs(const std::vector<Function*> &Prefix, std::string &Error); }; } /// Given two modules, link them together and run the program, checking to see /// if the program matches the diff. If there is an error, return NULL. If not, /// return the merged module. The Broken argument will be set to true if the /// output is different. If the DeleteInputs argument is set to true then this /// function deletes both input modules before it returns. /// static std::unique_ptr<Module> testMergedProgram(const BugDriver &BD, std::unique_ptr<Module> M1, std::unique_ptr<Module> M2, std::string &Error, bool &Broken) { if (Linker::linkModules(*M1, std::move(M2))) exit(1); // Execute the program. Broken = BD.diffProgram(M1.get(), "", "", false, &Error); if (!Error.empty()) return nullptr; return M1; } /// TestFuncs - split functions in a Module into two groups: those that are /// under consideration for miscompilation vs. those that are not, and test /// accordingly. Each group of functions becomes a separate Module. /// bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*> &Funcs, std::string &Error) { // Test to see if the function is misoptimized if we ONLY run it on the // functions listed in Funcs. outs() << "Checking to see if the program is misoptimized when " << (Funcs.size()==1 ? "this function is" : "these functions are") << " run through the pass" << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":"; PrintFunctionList(Funcs); outs() << '\n'; // Create a clone for two reasons: // * If the optimization passes delete any function, the deleted function // will be in the clone and Funcs will still point to valid memory // * If the optimization passes use interprocedural information to break // a function, we want to continue with the original function. Otherwise // we can conclude that a function triggers the bug when in fact one // needs a larger set of original functions to do so. ValueToValueMapTy VMap; Module *Clone = CloneModule(BD.getProgram(), VMap).release(); Module *Orig = BD.swapProgramIn(Clone); std::vector<Function*> FuncsOnClone; for (unsigned i = 0, e = Funcs.size(); i != e; ++i) { Function *F = cast<Function>(VMap[Funcs[i]]); FuncsOnClone.push_back(F); } // Split the module into the two halves of the program we want. VMap.clear(); std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap); std::unique_ptr<Module> ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap); bool Broken = TestFn(BD, std::move(ToOptimize), std::move(ToNotOptimize), Error); delete BD.swapProgramIn(Orig); return Broken; } /// DisambiguateGlobalSymbols - Give anonymous global values names. /// static void DisambiguateGlobalSymbols(Module *M) { for (Module::global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) if (!I->hasName()) I->setName("anon_global"); for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) if (!I->hasName()) I->setName("anon_fn"); } /// Given a reduced list of functions that still exposed the bug, check to see /// if we can extract the loops in the region without obscuring the bug. If so, /// it reduces the amount of code identified. /// static bool ExtractLoops(BugDriver &BD, bool (*TestFn)(BugDriver &, std::unique_ptr<Module>, std::unique_ptr<Module>, std::string &), std::vector<Function *> &MiscompiledFunctions, std::string &Error) { bool MadeChange = false; while (1) { if (BugpointIsInterrupted) return MadeChange; ValueToValueMapTy VMap; std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap); Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize.get(), MiscompiledFunctions, VMap) .release(); std::unique_ptr<Module> ToOptimizeLoopExtracted = BD.extractLoop(ToOptimize); if (!ToOptimizeLoopExtracted) { // If the loop extractor crashed or if there were no extractible loops, // then this chapter of our odyssey is over with. delete ToOptimize; return MadeChange; } errs() << "Extracted a loop from the breaking portion of the program.\n"; // Bugpoint is intentionally not very trusting of LLVM transformations. In // particular, we're not going to assume that the loop extractor works, so // we're going to test the newly loop extracted program to make sure nothing // has broken. If something broke, then we'll inform the user and stop // extraction. AbstractInterpreter *AI = BD.switchToSafeInterpreter(); bool Failure; std::unique_ptr<Module> New = testMergedProgram(BD, std::move(ToOptimizeLoopExtracted), std::move(ToNotOptimize), Error, Failure); if (!New) return false; // Delete the original and set the new program. Module *Old = BD.swapProgramIn(New.release()); for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i) MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]); delete Old; if (Failure) { BD.switchToInterpreter(AI); // Merged program doesn't work anymore! errs() << " *** ERROR: Loop extraction broke the program. :(" << " Please report a bug!\n"; errs() << " Continuing on with un-loop-extracted version.\n"; BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-tno.bc", ToNotOptimize.get()); BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to.bc", ToOptimize); BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to-le.bc", ToOptimizeLoopExtracted.get()); errs() << "Please submit the " << OutputPrefix << "-loop-extract-fail-*.bc files.\n"; delete ToOptimize; return MadeChange; } delete ToOptimize; BD.switchToInterpreter(AI); outs() << " Testing after loop extraction:\n"; // Clone modules, the tester function will free them. std::unique_ptr<Module> TOLEBackup = CloneModule(ToOptimizeLoopExtracted.get(), VMap); std::unique_ptr<Module> TNOBackup = CloneModule(ToNotOptimize.get(), VMap); for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i) MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]); Failure = TestFn(BD, std::move(ToOptimizeLoopExtracted), std::move(ToNotOptimize), Error); if (!Error.empty()) return false; ToOptimizeLoopExtracted = std::move(TOLEBackup); ToNotOptimize = std::move(TNOBackup); if (!Failure) { outs() << "*** Loop extraction masked the problem. Undoing.\n"; // If the program is not still broken, then loop extraction did something // that masked the error. Stop loop extraction now. std::vector<std::pair<std::string, FunctionType*> > MisCompFunctions; for (Function *F : MiscompiledFunctions) { MisCompFunctions.emplace_back(F->getName(), F->getFunctionType()); } if (Linker::linkModules(*ToNotOptimize, std::move(ToOptimizeLoopExtracted))) exit(1); MiscompiledFunctions.clear(); for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) { Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first); assert(NewF && "Function not found??"); MiscompiledFunctions.push_back(NewF); } BD.setNewProgram(ToNotOptimize.release()); return MadeChange; } outs() << "*** Loop extraction successful!\n"; std::vector<std::pair<std::string, FunctionType*> > MisCompFunctions; for (Module::iterator I = ToOptimizeLoopExtracted->begin(), E = ToOptimizeLoopExtracted->end(); I != E; ++I) if (!I->isDeclaration()) MisCompFunctions.emplace_back(I->getName(), I->getFunctionType()); // Okay, great! Now we know that we extracted a loop and that loop // extraction both didn't break the program, and didn't mask the problem. // Replace the current program with the loop extracted version, and try to // extract another loop. if (Linker::linkModules(*ToNotOptimize, std::move(ToOptimizeLoopExtracted))) exit(1); // All of the Function*'s in the MiscompiledFunctions list are in the old // module. Update this list to include all of the functions in the // optimized and loop extracted module. MiscompiledFunctions.clear(); for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) { Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first); assert(NewF && "Function not found??"); MiscompiledFunctions.push_back(NewF); } BD.setNewProgram(ToNotOptimize.release()); MadeChange = true; } } namespace { class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> { BugDriver &BD; bool (*TestFn)(BugDriver &, std::unique_ptr<Module>, std::unique_ptr<Module>, std::string &); std::vector<Function*> FunctionsBeingTested; public: ReduceMiscompiledBlocks(BugDriver &bd, bool (*F)(BugDriver &, std::unique_ptr<Module>, std::unique_ptr<Module>, std::string &), const std::vector<Function *> &Fns) : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {} TestResult doTest(std::vector<BasicBlock*> &Prefix, std::vector<BasicBlock*> &Suffix, std::string &Error) override { if (!Suffix.empty()) { bool Ret = TestFuncs(Suffix, Error); if (!Error.empty()) return InternalError; if (Ret) return KeepSuffix; } if (!Prefix.empty()) { bool Ret = TestFuncs(Prefix, Error); if (!Error.empty()) return InternalError; if (Ret) return KeepPrefix; } return NoFailure; } bool TestFuncs(const std::vector<BasicBlock*> &BBs, std::string &Error); }; } /// TestFuncs - Extract all blocks for the miscompiled functions except for the /// specified blocks. If the problem still exists, return true. /// bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs, std::string &Error) { // Test to see if the function is misoptimized if we ONLY run it on the // functions listed in Funcs. outs() << "Checking to see if the program is misoptimized when all "; if (!BBs.empty()) { outs() << "but these " << BBs.size() << " blocks are extracted: "; for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i) outs() << BBs[i]->getName() << " "; if (BBs.size() > 10) outs() << "..."; } else { outs() << "blocks are extracted."; } outs() << '\n'; // Split the module into the two halves of the program we want. ValueToValueMapTy VMap; Module *Clone = CloneModule(BD.getProgram(), VMap).release(); Module *Orig = BD.swapProgramIn(Clone); std::vector<Function*> FuncsOnClone; std::vector<BasicBlock*> BBsOnClone; for (unsigned i = 0, e = FunctionsBeingTested.size(); i != e; ++i) { Function *F = cast<Function>(VMap[FunctionsBeingTested[i]]); FuncsOnClone.push_back(F); } for (unsigned i = 0, e = BBs.size(); i != e; ++i) { BasicBlock *BB = cast<BasicBlock>(VMap[BBs[i]]); BBsOnClone.push_back(BB); } VMap.clear(); std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap); std::unique_ptr<Module> ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap); // Try the extraction. If it doesn't work, then the block extractor crashed // or something, in which case bugpoint can't chase down this possibility. if (std::unique_ptr<Module> New = BD.extractMappedBlocksFromModule(BBsOnClone, ToOptimize.get())) { bool Ret = TestFn(BD, std::move(New), std::move(ToNotOptimize), Error); delete BD.swapProgramIn(Orig); return Ret; } delete BD.swapProgramIn(Orig); return false; } /// Given a reduced list of functions that still expose the bug, extract as many /// basic blocks from the region as possible without obscuring the bug. /// static bool ExtractBlocks(BugDriver &BD, bool (*TestFn)(BugDriver &, std::unique_ptr<Module>, std::unique_ptr<Module>, std::string &), std::vector<Function *> &MiscompiledFunctions, std::string &Error) { if (BugpointIsInterrupted) return false; std::vector<BasicBlock*> Blocks; for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i) for (BasicBlock &BB : *MiscompiledFunctions[i]) Blocks.push_back(&BB); // Use the list reducer to identify blocks that can be extracted without // obscuring the bug. The Blocks list will end up containing blocks that must // be retained from the original program. unsigned OldSize = Blocks.size(); // Check to see if all blocks are extractible first. bool Ret = ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions) .TestFuncs(std::vector<BasicBlock*>(), Error); if (!Error.empty()) return false; if (Ret) { Blocks.clear(); } else { ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions).reduceList(Blocks, Error); if (!Error.empty()) return false; if (Blocks.size() == OldSize) return false; } ValueToValueMapTy VMap; Module *ProgClone = CloneModule(BD.getProgram(), VMap).release(); Module *ToExtract = SplitFunctionsOutOfModule(ProgClone, MiscompiledFunctions, VMap) .release(); std::unique_ptr<Module> Extracted = BD.extractMappedBlocksFromModule(Blocks, ToExtract); if (!Extracted) { // Weird, extraction should have worked. errs() << "Nondeterministic problem extracting blocks??\n"; delete ProgClone; delete ToExtract; return false; } // Otherwise, block extraction succeeded. Link the two program fragments back // together. delete ToExtract; std::vector<std::pair<std::string, FunctionType*> > MisCompFunctions; for (Module::iterator I = Extracted->begin(), E = Extracted->end(); I != E; ++I) if (!I->isDeclaration()) MisCompFunctions.emplace_back(I->getName(), I->getFunctionType()); if (Linker::linkModules(*ProgClone, std::move(Extracted))) exit(1); // Set the new program and delete the old one. BD.setNewProgram(ProgClone); // Update the list of miscompiled functions. MiscompiledFunctions.clear(); for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) { Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first); assert(NewF && "Function not found??"); MiscompiledFunctions.push_back(NewF); } return true; } /// This is a generic driver to narrow down miscompilations, either in an /// optimization or a code generator. /// static std::vector<Function *> DebugAMiscompilation(BugDriver &BD, bool (*TestFn)(BugDriver &, std::unique_ptr<Module>, std::unique_ptr<Module>, std::string &), std::string &Error) { // Okay, now that we have reduced the list of passes which are causing the // failure, see if we can pin down which functions are being // miscompiled... first build a list of all of the non-external functions in // the program. std::vector<Function*> MiscompiledFunctions; Module *Prog = BD.getProgram(); for (Function &F : *Prog) if (!F.isDeclaration()) MiscompiledFunctions.push_back(&F); // Do the reduction... if (!BugpointIsInterrupted) ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions, Error); if (!Error.empty()) { errs() << "\n***Cannot reduce functions: "; return MiscompiledFunctions; } outs() << "\n*** The following function" << (MiscompiledFunctions.size() == 1 ? " is" : "s are") << " being miscompiled: "; PrintFunctionList(MiscompiledFunctions); outs() << '\n'; // See if we can rip any loops out of the miscompiled functions and still // trigger the problem. if (!BugpointIsInterrupted && !DisableLoopExtraction) { bool Ret = ExtractLoops(BD, TestFn, MiscompiledFunctions, Error); if (!Error.empty()) return MiscompiledFunctions; if (Ret) { // Okay, we extracted some loops and the problem still appears. See if // we can eliminate some of the created functions from being candidates. DisambiguateGlobalSymbols(BD.getProgram()); // Do the reduction... if (!BugpointIsInterrupted) ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions, Error); if (!Error.empty()) return MiscompiledFunctions; outs() << "\n*** The following function" << (MiscompiledFunctions.size() == 1 ? " is" : "s are") << " being miscompiled: "; PrintFunctionList(MiscompiledFunctions); outs() << '\n'; } } if (!BugpointIsInterrupted && !DisableBlockExtraction) { bool Ret = ExtractBlocks(BD, TestFn, MiscompiledFunctions, Error); if (!Error.empty()) return MiscompiledFunctions; if (Ret) { // Okay, we extracted some blocks and the problem still appears. See if // we can eliminate some of the created functions from being candidates. DisambiguateGlobalSymbols(BD.getProgram()); // Do the reduction... ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions, Error); if (!Error.empty()) return MiscompiledFunctions; outs() << "\n*** The following function" << (MiscompiledFunctions.size() == 1 ? " is" : "s are") << " being miscompiled: "; PrintFunctionList(MiscompiledFunctions); outs() << '\n'; } } return MiscompiledFunctions; } /// This is the predicate function used to check to see if the "Test" portion of /// the program is misoptimized. If so, return true. In any case, both module /// arguments are deleted. /// static bool TestOptimizer(BugDriver &BD, std::unique_ptr<Module> Test, std::unique_ptr<Module> Safe, std::string &Error) { // Run the optimization passes on ToOptimize, producing a transformed version // of the functions being tested. outs() << " Optimizing functions being tested: "; std::unique_ptr<Module> Optimized = BD.runPassesOn(Test.get(), BD.getPassesToRun(), /*AutoDebugCrashes*/ true); outs() << "done.\n"; outs() << " Checking to see if the merged program executes correctly: "; bool Broken; std::unique_ptr<Module> New = testMergedProgram( BD, std::move(Optimized), std::move(Safe), Error, Broken); if (New) { outs() << (Broken ? " nope.\n" : " yup.\n"); // Delete the original and set the new program. delete BD.swapProgramIn(New.release()); } return Broken; } /// debugMiscompilation - This method is used when the passes selected are not /// crashing, but the generated output is semantically different from the /// input. /// void BugDriver::debugMiscompilation(std::string *Error) { // Make sure something was miscompiled... if (!BugpointIsInterrupted) if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun, *Error)) { if (Error->empty()) errs() << "*** Optimized program matches reference output! No problem" << " detected...\nbugpoint can't help you with your problem!\n"; return; } outs() << "\n*** Found miscompiling pass" << (getPassesToRun().size() == 1 ? "" : "es") << ": " << getPassesString(getPassesToRun()) << '\n'; EmitProgressBitcode(Program, "passinput"); std::vector<Function *> MiscompiledFunctions = DebugAMiscompilation(*this, TestOptimizer, *Error); if (!Error->empty()) return; // Output a bunch of bitcode files for the user... outs() << "Outputting reduced bitcode files which expose the problem:\n"; ValueToValueMapTy VMap; Module *ToNotOptimize = CloneModule(getProgram(), VMap).release(); Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, MiscompiledFunctions, VMap) .release(); outs() << " Non-optimized portion: "; EmitProgressBitcode(ToNotOptimize, "tonotoptimize", true); delete ToNotOptimize; // Delete hacked module. outs() << " Portion that is input to optimizer: "; EmitProgressBitcode(ToOptimize, "tooptimize"); delete ToOptimize; // Delete hacked module. return; } /// Get the specified modules ready for code generator testing. /// static void CleanupAndPrepareModules(BugDriver &BD, std::unique_ptr<Module> &Test, Module *Safe) { // Clean up the modules, removing extra cruft that we don't need anymore... Test = BD.performFinalCleanups(Test.get()); // If we are executing the JIT, we have several nasty issues to take care of. if (!BD.isExecutingJIT()) return; // First, if the main function is in the Safe module, we must add a stub to // the Test module to call into it. Thus, we create a new function `main' // which just calls the old one. if (Function *oldMain = Safe->getFunction("main")) if (!oldMain->isDeclaration()) { // Rename it oldMain->setName("llvm_bugpoint_old_main"); // Create a NEW `main' function with same type in the test module. Function *newMain = Function::Create(oldMain->getFunctionType(), GlobalValue::ExternalLinkage, "main", Test.get()); // Create an `oldmain' prototype in the test module, which will // corresponds to the real main function in the same module. Function *oldMainProto = Function::Create(oldMain->getFunctionType(), GlobalValue::ExternalLinkage, oldMain->getName(), Test.get()); // Set up and remember the argument list for the main function. std::vector<Value*> args; for (Function::arg_iterator I = newMain->arg_begin(), E = newMain->arg_end(), OI = oldMain->arg_begin(); I != E; ++I, ++OI) { I->setName(OI->getName()); // Copy argument names from oldMain args.push_back(&*I); } // Call the old main function and return its result BasicBlock *BB = BasicBlock::Create(Safe->getContext(), "entry", newMain); CallInst *call = CallInst::Create(oldMainProto, args, "", BB); // If the type of old function wasn't void, return value of call ReturnInst::Create(Safe->getContext(), call, BB); } // The second nasty issue we must deal with in the JIT is that the Safe // module cannot directly reference any functions defined in the test // module. Instead, we use a JIT API call to dynamically resolve the // symbol. // Add the resolver to the Safe module. // Prototype: void *getPointerToNamedFunction(const char* Name) Constant *resolverFunc = Safe->getOrInsertFunction("getPointerToNamedFunction", Type::getInt8PtrTy(Safe->getContext()), Type::getInt8PtrTy(Safe->getContext()), (Type *)nullptr); // Use the function we just added to get addresses of functions we need. for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) { if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc && !F->isIntrinsic() /* ignore intrinsics */) { Function *TestFn = Test->getFunction(F->getName()); // Don't forward functions which are external in the test module too. if (TestFn && !TestFn->isDeclaration()) { // 1. Add a string constant with its name to the global file Constant *InitArray = ConstantDataArray::getString(F->getContext(), F->getName()); GlobalVariable *funcName = new GlobalVariable(*Safe, InitArray->getType(), true /*isConstant*/, GlobalValue::InternalLinkage, InitArray, F->getName() + "_name"); // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an // sbyte* so it matches the signature of the resolver function. // GetElementPtr *funcName, ulong 0, ulong 0 std::vector<Constant*> GEPargs(2, Constant::getNullValue(Type::getInt32Ty(F->getContext()))); Value *GEP = ConstantExpr::getGetElementPtr(InitArray->getType(), funcName, GEPargs); std::vector<Value*> ResolverArgs; ResolverArgs.push_back(GEP); // Rewrite uses of F in global initializers, etc. to uses of a wrapper // function that dynamically resolves the calls to F via our JIT API if (!F->use_empty()) { // Create a new global to hold the cached function pointer. Constant *NullPtr = ConstantPointerNull::get(F->getType()); GlobalVariable *Cache = new GlobalVariable(*F->getParent(), F->getType(), false, GlobalValue::InternalLinkage, NullPtr,F->getName()+".fpcache"); // Construct a new stub function that will re-route calls to F FunctionType *FuncTy = F->getFunctionType(); Function *FuncWrapper = Function::Create(FuncTy, GlobalValue::InternalLinkage, F->getName() + "_wrapper", F->getParent()); BasicBlock *EntryBB = BasicBlock::Create(F->getContext(), "entry", FuncWrapper); BasicBlock *DoCallBB = BasicBlock::Create(F->getContext(), "usecache", FuncWrapper); BasicBlock *LookupBB = BasicBlock::Create(F->getContext(), "lookupfp", FuncWrapper); // Check to see if we already looked up the value. Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB); Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal, NullPtr, "isNull"); BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB); // Resolve the call to function F via the JIT API: // // call resolver(GetElementPtr...) CallInst *Resolver = CallInst::Create(resolverFunc, ResolverArgs, "resolver", LookupBB); // Cast the result from the resolver to correctly-typed function. CastInst *CastedResolver = new BitCastInst(Resolver, PointerType::getUnqual(F->getFunctionType()), "resolverCast", LookupBB); // Save the value in our cache. new StoreInst(CastedResolver, Cache, LookupBB); BranchInst::Create(DoCallBB, LookupBB); PHINode *FuncPtr = PHINode::Create(NullPtr->getType(), 2, "fp", DoCallBB); FuncPtr->addIncoming(CastedResolver, LookupBB); FuncPtr->addIncoming(CachedVal, EntryBB); // Save the argument list. std::vector<Value*> Args; for (Argument &A : FuncWrapper->args()) Args.push_back(&A); // Pass on the arguments to the real function, return its result if (F->getReturnType()->isVoidTy()) { CallInst::Create(FuncPtr, Args, "", DoCallBB); ReturnInst::Create(F->getContext(), DoCallBB); } else { CallInst *Call = CallInst::Create(FuncPtr, Args, "retval", DoCallBB); ReturnInst::Create(F->getContext(),Call, DoCallBB); } // Use the wrapper function instead of the old function F->replaceAllUsesWith(FuncWrapper); } } } } if (verifyModule(*Test) || verifyModule(*Safe)) { errs() << "Bugpoint has a bug, which corrupted a module!!\n"; abort(); } } /// This is the predicate function used to check to see if the "Test" portion of /// the program is miscompiled by the code generator under test. If so, return /// true. In any case, both module arguments are deleted. /// static bool TestCodeGenerator(BugDriver &BD, std::unique_ptr<Module> Test, std::unique_ptr<Module> Safe, std::string &Error) { CleanupAndPrepareModules(BD, Test, Safe.get()); SmallString<128> TestModuleBC; int TestModuleFD; std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc", TestModuleFD, TestModuleBC); if (EC) { errs() << BD.getToolName() << "Error making unique filename: " << EC.message() << "\n"; exit(1); } if (BD.writeProgramToFile(TestModuleBC.str(), TestModuleFD, Test.get())) { errs() << "Error writing bitcode to `" << TestModuleBC.str() << "'\nExiting."; exit(1); } FileRemover TestModuleBCRemover(TestModuleBC.str(), !SaveTemps); // Make the shared library SmallString<128> SafeModuleBC; int SafeModuleFD; EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD, SafeModuleBC); if (EC) { errs() << BD.getToolName() << "Error making unique filename: " << EC.message() << "\n"; exit(1); } if (BD.writeProgramToFile(SafeModuleBC.str(), SafeModuleFD, Safe.get())) { errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting."; exit(1); } FileRemover SafeModuleBCRemover(SafeModuleBC.str(), !SaveTemps); std::string SharedObject = BD.compileSharedObject(SafeModuleBC.str(), Error); if (!Error.empty()) return false; FileRemover SharedObjectRemover(SharedObject, !SaveTemps); // Run the code generator on the `Test' code, loading the shared library. // The function returns whether or not the new output differs from reference. bool Result = BD.diffProgram(BD.getProgram(), TestModuleBC.str(), SharedObject, false, &Error); if (!Error.empty()) return false; if (Result) errs() << ": still failing!\n"; else errs() << ": didn't fail.\n"; return Result; } /// debugCodeGenerator - debug errors in LLC, LLI, or CBE. /// bool BugDriver::debugCodeGenerator(std::string *Error) { if ((void*)SafeInterpreter == (void*)Interpreter) { std::string Result = executeProgramSafely(Program, "bugpoint.safe.out", Error); if (Error->empty()) { outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match " << "the reference diff. This may be due to a\n front-end " << "bug or a bug in the original program, but this can also " << "happen if bugpoint isn't running the program with the " << "right flags or input.\n I left the result of executing " << "the program with the \"safe\" backend in this file for " << "you: '" << Result << "'.\n"; } return true; } DisambiguateGlobalSymbols(Program); std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator, *Error); if (!Error->empty()) return true; // Split the module into the two halves of the program we want. ValueToValueMapTy VMap; std::unique_ptr<Module> ToNotCodeGen = CloneModule(getProgram(), VMap); std::unique_ptr<Module> ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen.get(), Funcs, VMap); // Condition the modules CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen.get()); SmallString<128> TestModuleBC; int TestModuleFD; std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc", TestModuleFD, TestModuleBC); if (EC) { errs() << getToolName() << "Error making unique filename: " << EC.message() << "\n"; exit(1); } if (writeProgramToFile(TestModuleBC.str(), TestModuleFD, ToCodeGen.get())) { errs() << "Error writing bitcode to `" << TestModuleBC << "'\nExiting."; exit(1); } // Make the shared library SmallString<128> SafeModuleBC; int SafeModuleFD; EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD, SafeModuleBC); if (EC) { errs() << getToolName() << "Error making unique filename: " << EC.message() << "\n"; exit(1); } if (writeProgramToFile(SafeModuleBC.str(), SafeModuleFD, ToNotCodeGen.get())) { errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting."; exit(1); } std::string SharedObject = compileSharedObject(SafeModuleBC.str(), *Error); if (!Error->empty()) return true; outs() << "You can reproduce the problem with the command line: \n"; if (isExecutingJIT()) { outs() << " lli -load " << SharedObject << " " << TestModuleBC; } else { outs() << " llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n"; outs() << " cc " << SharedObject << " " << TestModuleBC.str() << ".s -o " << TestModuleBC << ".exe"; #if defined (HAVE_LINK_R) outs() << " -Wl,-R."; #endif outs() << "\n"; outs() << " " << TestModuleBC << ".exe"; } for (unsigned i = 0, e = InputArgv.size(); i != e; ++i) outs() << " " << InputArgv[i]; outs() << '\n'; outs() << "The shared object was created with:\n llc -march=c " << SafeModuleBC.str() << " -o temporary.c\n" << " cc -xc temporary.c -O2 -o " << SharedObject; if (TargetTriple.getArch() == Triple::sparc) outs() << " -G"; // Compile a shared library, `-G' for Sparc else outs() << " -fPIC -shared"; // `-shared' for Linux/X86, maybe others outs() << " -fno-strict-aliasing\n"; return false; }