//===-- Thumb2InstrInfo.cpp - Thumb-2 Instruction Information -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Thumb-2 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "Thumb2InstrInfo.h" #include "ARMConstantPoolValue.h" #include "ARMMachineFunctionInfo.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/CommandLine.h" using namespace llvm; static cl::opt<bool> OldT2IfCvt("old-thumb2-ifcvt", cl::Hidden, cl::desc("Use old-style Thumb2 if-conversion heuristics"), cl::init(false)); Thumb2InstrInfo::Thumb2InstrInfo(const ARMSubtarget &STI) : ARMBaseInstrInfo(STI), RI() {} /// getNoopForMachoTarget - Return the noop instruction to use for a noop. void Thumb2InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { NopInst.setOpcode(ARM::tHINT); NopInst.addOperand(MCOperand::createImm(0)); NopInst.addOperand(MCOperand::createImm(ARMCC::AL)); NopInst.addOperand(MCOperand::createReg(0)); } unsigned Thumb2InstrInfo::getUnindexedOpcode(unsigned Opc) const { // FIXME return 0; } void Thumb2InstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const { MachineBasicBlock *MBB = Tail->getParent(); ARMFunctionInfo *AFI = MBB->getParent()->getInfo<ARMFunctionInfo>(); if (!AFI->hasITBlocks()) { TargetInstrInfo::ReplaceTailWithBranchTo(Tail, NewDest); return; } // If the first instruction of Tail is predicated, we may have to update // the IT instruction. unsigned PredReg = 0; ARMCC::CondCodes CC = getInstrPredicate(Tail, PredReg); MachineBasicBlock::iterator MBBI = Tail; if (CC != ARMCC::AL) // Expecting at least the t2IT instruction before it. --MBBI; // Actually replace the tail. TargetInstrInfo::ReplaceTailWithBranchTo(Tail, NewDest); // Fix up IT. if (CC != ARMCC::AL) { MachineBasicBlock::iterator E = MBB->begin(); unsigned Count = 4; // At most 4 instructions in an IT block. while (Count && MBBI != E) { if (MBBI->isDebugValue()) { --MBBI; continue; } if (MBBI->getOpcode() == ARM::t2IT) { unsigned Mask = MBBI->getOperand(1).getImm(); if (Count == 4) MBBI->eraseFromParent(); else { unsigned MaskOn = 1 << Count; unsigned MaskOff = ~(MaskOn - 1); MBBI->getOperand(1).setImm((Mask & MaskOff) | MaskOn); } return; } --MBBI; --Count; } // Ctrl flow can reach here if branch folding is run before IT block // formation pass. } } bool Thumb2InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { while (MBBI->isDebugValue()) { ++MBBI; if (MBBI == MBB.end()) return false; } unsigned PredReg = 0; return getITInstrPredicate(MBBI, PredReg) == ARMCC::AL; } void Thumb2InstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // Handle SPR, DPR, and QPR copies. if (!ARM::GPRRegClass.contains(DestReg, SrcReg)) return ARMBaseInstrInfo::copyPhysReg(MBB, I, DL, DestReg, SrcReg, KillSrc); AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::tMOVr), DestReg) .addReg(SrcReg, getKillRegState(KillSrc))); } void Thumb2InstrInfo:: storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); if (RC == &ARM::GPRRegClass || RC == &ARM::tGPRRegClass || RC == &ARM::tcGPRRegClass || RC == &ARM::rGPRRegClass || RC == &ARM::GPRnopcRegClass) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::t2STRi12)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); return; } if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { // Thumb2 STRD expects its dest-registers to be in rGPR. Not a problem for // gsub_0, but needs an extra constraint for gsub_1 (which could be sp // otherwise). MachineRegisterInfo *MRI = &MF.getRegInfo(); MRI->constrainRegClass(SrcReg, &ARM::GPRPair_with_gsub_1_in_rGPRRegClass); MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::t2STRDi8)); AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); MIB.addFrameIndex(FI).addImm(0).addMemOperand(MMO); AddDefaultPred(MIB); return; } ARMBaseInstrInfo::storeRegToStackSlot(MBB, I, SrcReg, isKill, FI, RC, TRI); } void Thumb2InstrInfo:: loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); if (RC == &ARM::GPRRegClass || RC == &ARM::tGPRRegClass || RC == &ARM::tcGPRRegClass || RC == &ARM::rGPRRegClass || RC == &ARM::GPRnopcRegClass) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::t2LDRi12), DestReg) .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); return; } if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { // Thumb2 LDRD expects its dest-registers to be in rGPR. Not a problem for // gsub_0, but needs an extra constraint for gsub_1 (which could be sp // otherwise). MachineRegisterInfo *MRI = &MF.getRegInfo(); MRI->constrainRegClass(DestReg, &ARM::GPRPair_with_gsub_1_in_rGPRRegClass); MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::t2LDRDi8)); AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); MIB.addFrameIndex(FI).addImm(0).addMemOperand(MMO); AddDefaultPred(MIB); if (TargetRegisterInfo::isPhysicalRegister(DestReg)) MIB.addReg(DestReg, RegState::ImplicitDefine); return; } ARMBaseInstrInfo::loadRegFromStackSlot(MBB, I, DestReg, FI, RC, TRI); } void Thumb2InstrInfo::expandLoadStackGuard(MachineBasicBlock::iterator MI, Reloc::Model RM) const { if (RM == Reloc::PIC_) expandLoadStackGuardBase(MI, ARM::t2MOV_ga_pcrel, ARM::t2LDRi12, RM); else expandLoadStackGuardBase(MI, ARM::t2MOVi32imm, ARM::t2LDRi12, RM); } void llvm::emitT2RegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, DebugLoc dl, unsigned DestReg, unsigned BaseReg, int NumBytes, ARMCC::CondCodes Pred, unsigned PredReg, const ARMBaseInstrInfo &TII, unsigned MIFlags) { if (NumBytes == 0 && DestReg != BaseReg) { BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), DestReg) .addReg(BaseReg, RegState::Kill) .addImm((unsigned)Pred).addReg(PredReg).setMIFlags(MIFlags); return; } bool isSub = NumBytes < 0; if (isSub) NumBytes = -NumBytes; // If profitable, use a movw or movt to materialize the offset. // FIXME: Use the scavenger to grab a scratch register. if (DestReg != ARM::SP && DestReg != BaseReg && NumBytes >= 4096 && ARM_AM::getT2SOImmVal(NumBytes) == -1) { bool Fits = false; if (NumBytes < 65536) { // Use a movw to materialize the 16-bit constant. BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), DestReg) .addImm(NumBytes) .addImm((unsigned)Pred).addReg(PredReg).setMIFlags(MIFlags); Fits = true; } else if ((NumBytes & 0xffff) == 0) { // Use a movt to materialize the 32-bit constant. BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), DestReg) .addReg(DestReg) .addImm(NumBytes >> 16) .addImm((unsigned)Pred).addReg(PredReg).setMIFlags(MIFlags); Fits = true; } if (Fits) { if (isSub) { BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), DestReg) .addReg(BaseReg) .addReg(DestReg, RegState::Kill) .addImm((unsigned)Pred).addReg(PredReg).addReg(0) .setMIFlags(MIFlags); } else { // Here we know that DestReg is not SP but we do not // know anything about BaseReg. t2ADDrr is an invalid // instruction is SP is used as the second argument, but // is fine if SP is the first argument. To be sure we // do not generate invalid encoding, put BaseReg first. BuildMI(MBB, MBBI, dl, TII.get(ARM::t2ADDrr), DestReg) .addReg(BaseReg) .addReg(DestReg, RegState::Kill) .addImm((unsigned)Pred).addReg(PredReg).addReg(0) .setMIFlags(MIFlags); } return; } } while (NumBytes) { unsigned ThisVal = NumBytes; unsigned Opc = 0; if (DestReg == ARM::SP && BaseReg != ARM::SP) { // mov sp, rn. Note t2MOVr cannot be used. AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr),DestReg) .addReg(BaseReg).setMIFlags(MIFlags)); BaseReg = ARM::SP; continue; } bool HasCCOut = true; if (BaseReg == ARM::SP) { // sub sp, sp, #imm7 if (DestReg == ARM::SP && (ThisVal < ((1 << 7)-1) * 4)) { assert((ThisVal & 3) == 0 && "Stack update is not multiple of 4?"); Opc = isSub ? ARM::tSUBspi : ARM::tADDspi; AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) .addReg(BaseReg).addImm(ThisVal/4).setMIFlags(MIFlags)); NumBytes = 0; continue; } // sub rd, sp, so_imm Opc = isSub ? ARM::t2SUBri : ARM::t2ADDri; if (ARM_AM::getT2SOImmVal(NumBytes) != -1) { NumBytes = 0; } else { // FIXME: Move this to ARMAddressingModes.h? unsigned RotAmt = countLeadingZeros(ThisVal); ThisVal = ThisVal & ARM_AM::rotr32(0xff000000U, RotAmt); NumBytes &= ~ThisVal; assert(ARM_AM::getT2SOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); } } else { assert(DestReg != ARM::SP && BaseReg != ARM::SP); Opc = isSub ? ARM::t2SUBri : ARM::t2ADDri; if (ARM_AM::getT2SOImmVal(NumBytes) != -1) { NumBytes = 0; } else if (ThisVal < 4096) { Opc = isSub ? ARM::t2SUBri12 : ARM::t2ADDri12; HasCCOut = false; NumBytes = 0; } else { // FIXME: Move this to ARMAddressingModes.h? unsigned RotAmt = countLeadingZeros(ThisVal); ThisVal = ThisVal & ARM_AM::rotr32(0xff000000U, RotAmt); NumBytes &= ~ThisVal; assert(ARM_AM::getT2SOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); } } // Build the new ADD / SUB. MachineInstrBuilder MIB = AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) .addReg(BaseReg, RegState::Kill) .addImm(ThisVal)).setMIFlags(MIFlags); if (HasCCOut) AddDefaultCC(MIB); BaseReg = DestReg; } } static unsigned negativeOffsetOpcode(unsigned opcode) { switch (opcode) { case ARM::t2LDRi12: return ARM::t2LDRi8; case ARM::t2LDRHi12: return ARM::t2LDRHi8; case ARM::t2LDRBi12: return ARM::t2LDRBi8; case ARM::t2LDRSHi12: return ARM::t2LDRSHi8; case ARM::t2LDRSBi12: return ARM::t2LDRSBi8; case ARM::t2STRi12: return ARM::t2STRi8; case ARM::t2STRBi12: return ARM::t2STRBi8; case ARM::t2STRHi12: return ARM::t2STRHi8; case ARM::t2PLDi12: return ARM::t2PLDi8; case ARM::t2LDRi8: case ARM::t2LDRHi8: case ARM::t2LDRBi8: case ARM::t2LDRSHi8: case ARM::t2LDRSBi8: case ARM::t2STRi8: case ARM::t2STRBi8: case ARM::t2STRHi8: case ARM::t2PLDi8: return opcode; default: break; } return 0; } static unsigned positiveOffsetOpcode(unsigned opcode) { switch (opcode) { case ARM::t2LDRi8: return ARM::t2LDRi12; case ARM::t2LDRHi8: return ARM::t2LDRHi12; case ARM::t2LDRBi8: return ARM::t2LDRBi12; case ARM::t2LDRSHi8: return ARM::t2LDRSHi12; case ARM::t2LDRSBi8: return ARM::t2LDRSBi12; case ARM::t2STRi8: return ARM::t2STRi12; case ARM::t2STRBi8: return ARM::t2STRBi12; case ARM::t2STRHi8: return ARM::t2STRHi12; case ARM::t2PLDi8: return ARM::t2PLDi12; case ARM::t2LDRi12: case ARM::t2LDRHi12: case ARM::t2LDRBi12: case ARM::t2LDRSHi12: case ARM::t2LDRSBi12: case ARM::t2STRi12: case ARM::t2STRBi12: case ARM::t2STRHi12: case ARM::t2PLDi12: return opcode; default: break; } return 0; } static unsigned immediateOffsetOpcode(unsigned opcode) { switch (opcode) { case ARM::t2LDRs: return ARM::t2LDRi12; case ARM::t2LDRHs: return ARM::t2LDRHi12; case ARM::t2LDRBs: return ARM::t2LDRBi12; case ARM::t2LDRSHs: return ARM::t2LDRSHi12; case ARM::t2LDRSBs: return ARM::t2LDRSBi12; case ARM::t2STRs: return ARM::t2STRi12; case ARM::t2STRBs: return ARM::t2STRBi12; case ARM::t2STRHs: return ARM::t2STRHi12; case ARM::t2PLDs: return ARM::t2PLDi12; case ARM::t2LDRi12: case ARM::t2LDRHi12: case ARM::t2LDRBi12: case ARM::t2LDRSHi12: case ARM::t2LDRSBi12: case ARM::t2STRi12: case ARM::t2STRBi12: case ARM::t2STRHi12: case ARM::t2PLDi12: case ARM::t2LDRi8: case ARM::t2LDRHi8: case ARM::t2LDRBi8: case ARM::t2LDRSHi8: case ARM::t2LDRSBi8: case ARM::t2STRi8: case ARM::t2STRBi8: case ARM::t2STRHi8: case ARM::t2PLDi8: return opcode; default: break; } return 0; } bool llvm::rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx, unsigned FrameReg, int &Offset, const ARMBaseInstrInfo &TII) { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MI.getDesc(); unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); bool isSub = false; // Memory operands in inline assembly always use AddrModeT2_i12. if (Opcode == ARM::INLINEASM) AddrMode = ARMII::AddrModeT2_i12; // FIXME. mode for thumb2? if (Opcode == ARM::t2ADDri || Opcode == ARM::t2ADDri12) { Offset += MI.getOperand(FrameRegIdx+1).getImm(); unsigned PredReg; if (Offset == 0 && getInstrPredicate(&MI, PredReg) == ARMCC::AL) { // Turn it into a move. MI.setDesc(TII.get(ARM::tMOVr)); MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); // Remove offset and remaining explicit predicate operands. do MI.RemoveOperand(FrameRegIdx+1); while (MI.getNumOperands() > FrameRegIdx+1); MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI); AddDefaultPred(MIB); return true; } bool HasCCOut = Opcode != ARM::t2ADDri12; if (Offset < 0) { Offset = -Offset; isSub = true; MI.setDesc(TII.get(ARM::t2SUBri)); } else { MI.setDesc(TII.get(ARM::t2ADDri)); } // Common case: small offset, fits into instruction. if (ARM_AM::getT2SOImmVal(Offset) != -1) { MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); // Add cc_out operand if the original instruction did not have one. if (!HasCCOut) MI.addOperand(MachineOperand::CreateReg(0, false)); Offset = 0; return true; } // Another common case: imm12. if (Offset < 4096 && (!HasCCOut || MI.getOperand(MI.getNumOperands()-1).getReg() == 0)) { unsigned NewOpc = isSub ? ARM::t2SUBri12 : ARM::t2ADDri12; MI.setDesc(TII.get(NewOpc)); MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); // Remove the cc_out operand. if (HasCCOut) MI.RemoveOperand(MI.getNumOperands()-1); Offset = 0; return true; } // Otherwise, extract 8 adjacent bits from the immediate into this // t2ADDri/t2SUBri. unsigned RotAmt = countLeadingZeros<unsigned>(Offset); unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xff000000U, RotAmt); // We will handle these bits from offset, clear them. Offset &= ~ThisImmVal; assert(ARM_AM::getT2SOImmVal(ThisImmVal) != -1 && "Bit extraction didn't work?"); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); // Add cc_out operand if the original instruction did not have one. if (!HasCCOut) MI.addOperand(MachineOperand::CreateReg(0, false)); } else { // AddrMode4 and AddrMode6 cannot handle any offset. if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6) return false; // AddrModeT2_so cannot handle any offset. If there is no offset // register then we change to an immediate version. unsigned NewOpc = Opcode; if (AddrMode == ARMII::AddrModeT2_so) { unsigned OffsetReg = MI.getOperand(FrameRegIdx+1).getReg(); if (OffsetReg != 0) { MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); return Offset == 0; } MI.RemoveOperand(FrameRegIdx+1); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(0); NewOpc = immediateOffsetOpcode(Opcode); AddrMode = ARMII::AddrModeT2_i12; } unsigned NumBits = 0; unsigned Scale = 1; if (AddrMode == ARMII::AddrModeT2_i8 || AddrMode == ARMII::AddrModeT2_i12) { // i8 supports only negative, and i12 supports only positive, so // based on Offset sign convert Opcode to the appropriate // instruction Offset += MI.getOperand(FrameRegIdx+1).getImm(); if (Offset < 0) { NewOpc = negativeOffsetOpcode(Opcode); NumBits = 8; isSub = true; Offset = -Offset; } else { NewOpc = positiveOffsetOpcode(Opcode); NumBits = 12; } } else if (AddrMode == ARMII::AddrMode5) { // VFP address mode. const MachineOperand &OffOp = MI.getOperand(FrameRegIdx+1); int InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm()); if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 8; Scale = 4; Offset += InstrOffs * 4; assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); if (Offset < 0) { Offset = -Offset; isSub = true; } } else if (AddrMode == ARMII::AddrModeT2_i8s4) { Offset += MI.getOperand(FrameRegIdx + 1).getImm() * 4; NumBits = 10; // 8 bits scaled by 4 // MCInst operand expects already scaled value. Scale = 1; assert((Offset & 3) == 0 && "Can't encode this offset!"); } else { llvm_unreachable("Unsupported addressing mode!"); } if (NewOpc != Opcode) MI.setDesc(TII.get(NewOpc)); MachineOperand &ImmOp = MI.getOperand(FrameRegIdx+1); // Attempt to fold address computation // Common case: small offset, fits into instruction. int ImmedOffset = Offset / Scale; unsigned Mask = (1 << NumBits) - 1; if ((unsigned)Offset <= Mask * Scale) { // Replace the FrameIndex with fp/sp MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); if (isSub) { if (AddrMode == ARMII::AddrMode5) // FIXME: Not consistent. ImmedOffset |= 1 << NumBits; else ImmedOffset = -ImmedOffset; } ImmOp.ChangeToImmediate(ImmedOffset); Offset = 0; return true; } // Otherwise, offset doesn't fit. Pull in what we can to simplify ImmedOffset = ImmedOffset & Mask; if (isSub) { if (AddrMode == ARMII::AddrMode5) // FIXME: Not consistent. ImmedOffset |= 1 << NumBits; else { ImmedOffset = -ImmedOffset; if (ImmedOffset == 0) // Change the opcode back if the encoded offset is zero. MI.setDesc(TII.get(positiveOffsetOpcode(NewOpc))); } } ImmOp.ChangeToImmediate(ImmedOffset); Offset &= ~(Mask*Scale); } Offset = (isSub) ? -Offset : Offset; return Offset == 0; } ARMCC::CondCodes llvm::getITInstrPredicate(const MachineInstr *MI, unsigned &PredReg) { unsigned Opc = MI->getOpcode(); if (Opc == ARM::tBcc || Opc == ARM::t2Bcc) return ARMCC::AL; return getInstrPredicate(MI, PredReg); }