//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ARMFeatures.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMBaseInfo.h" #include "MCTargetDesc/ARMMCExpr.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler.h" #include "llvm/MC/MCELFStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCAsmParserUtils.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/ARMEHABI.h" #include "llvm/Support/TargetParser.h" #include "llvm/Support/COFF.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ELF.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { class ARMOperand; enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; class UnwindContext { MCAsmParser &Parser; typedef SmallVector<SMLoc, 4> Locs; Locs FnStartLocs; Locs CantUnwindLocs; Locs PersonalityLocs; Locs PersonalityIndexLocs; Locs HandlerDataLocs; int FPReg; public: UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} bool hasFnStart() const { return !FnStartLocs.empty(); } bool cantUnwind() const { return !CantUnwindLocs.empty(); } bool hasHandlerData() const { return !HandlerDataLocs.empty(); } bool hasPersonality() const { return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); } void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } void saveFPReg(int Reg) { FPReg = Reg; } int getFPReg() const { return FPReg; } void emitFnStartLocNotes() const { for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); FI != FE; ++FI) Parser.Note(*FI, ".fnstart was specified here"); } void emitCantUnwindLocNotes() const { for (Locs::const_iterator UI = CantUnwindLocs.begin(), UE = CantUnwindLocs.end(); UI != UE; ++UI) Parser.Note(*UI, ".cantunwind was specified here"); } void emitHandlerDataLocNotes() const { for (Locs::const_iterator HI = HandlerDataLocs.begin(), HE = HandlerDataLocs.end(); HI != HE; ++HI) Parser.Note(*HI, ".handlerdata was specified here"); } void emitPersonalityLocNotes() const { for (Locs::const_iterator PI = PersonalityLocs.begin(), PE = PersonalityLocs.end(), PII = PersonalityIndexLocs.begin(), PIE = PersonalityIndexLocs.end(); PI != PE || PII != PIE;) { if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) Parser.Note(*PI++, ".personality was specified here"); else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) Parser.Note(*PII++, ".personalityindex was specified here"); else llvm_unreachable(".personality and .personalityindex cannot be " "at the same location"); } } void reset() { FnStartLocs = Locs(); CantUnwindLocs = Locs(); PersonalityLocs = Locs(); HandlerDataLocs = Locs(); PersonalityIndexLocs = Locs(); FPReg = ARM::SP; } }; class ARMAsmParser : public MCTargetAsmParser { const MCInstrInfo &MII; const MCRegisterInfo *MRI; UnwindContext UC; ARMTargetStreamer &getTargetStreamer() { assert(getParser().getStreamer().getTargetStreamer() && "do not have a target streamer"); MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); return static_cast<ARMTargetStreamer &>(TS); } // Map of register aliases registers via the .req directive. StringMap<unsigned> RegisterReqs; bool NextSymbolIsThumb; struct { ARMCC::CondCodes Cond; // Condition for IT block. unsigned Mask:4; // Condition mask for instructions. // Starting at first 1 (from lsb). // '1' condition as indicated in IT. // '0' inverse of condition (else). // Count of instructions in IT block is // 4 - trailingzeroes(mask) bool FirstCond; // Explicit flag for when we're parsing the // First instruction in the IT block. It's // implied in the mask, so needs special // handling. unsigned CurPosition; // Current position in parsing of IT // block. In range [0,3]. Initialized // according to count of instructions in block. // ~0U if no active IT block. } ITState; bool inITBlock() { return ITState.CurPosition != ~0U; } bool lastInITBlock() { return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); } void forwardITPosition() { if (!inITBlock()) return; // Move to the next instruction in the IT block, if there is one. If not, // mark the block as done. unsigned TZ = countTrailingZeros(ITState.Mask); if (++ITState.CurPosition == 5 - TZ) ITState.CurPosition = ~0U; // Done with the IT block after this. } void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { return getParser().Note(L, Msg, Ranges); } bool Warning(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { return getParser().Warning(L, Msg, Ranges); } bool Error(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { return getParser().Error(L, Msg, Ranges); } bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, unsigned ListNo, bool IsARPop = false); bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, unsigned ListNo); int tryParseRegister(); bool tryParseRegisterWithWriteBack(OperandVector &); int tryParseShiftRegister(OperandVector &); bool parseRegisterList(OperandVector &); bool parseMemory(OperandVector &); bool parseOperand(OperandVector &, StringRef Mnemonic); bool parsePrefix(ARMMCExpr::VariantKind &RefKind); bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, unsigned &ShiftAmount); bool parseLiteralValues(unsigned Size, SMLoc L); bool parseDirectiveThumb(SMLoc L); bool parseDirectiveARM(SMLoc L); bool parseDirectiveThumbFunc(SMLoc L); bool parseDirectiveCode(SMLoc L); bool parseDirectiveSyntax(SMLoc L); bool parseDirectiveReq(StringRef Name, SMLoc L); bool parseDirectiveUnreq(SMLoc L); bool parseDirectiveArch(SMLoc L); bool parseDirectiveEabiAttr(SMLoc L); bool parseDirectiveCPU(SMLoc L); bool parseDirectiveFPU(SMLoc L); bool parseDirectiveFnStart(SMLoc L); bool parseDirectiveFnEnd(SMLoc L); bool parseDirectiveCantUnwind(SMLoc L); bool parseDirectivePersonality(SMLoc L); bool parseDirectiveHandlerData(SMLoc L); bool parseDirectiveSetFP(SMLoc L); bool parseDirectivePad(SMLoc L); bool parseDirectiveRegSave(SMLoc L, bool IsVector); bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); bool parseDirectiveLtorg(SMLoc L); bool parseDirectiveEven(SMLoc L); bool parseDirectivePersonalityIndex(SMLoc L); bool parseDirectiveUnwindRaw(SMLoc L); bool parseDirectiveTLSDescSeq(SMLoc L); bool parseDirectiveMovSP(SMLoc L); bool parseDirectiveObjectArch(SMLoc L); bool parseDirectiveArchExtension(SMLoc L); bool parseDirectiveAlign(SMLoc L); bool parseDirectiveThumbSet(SMLoc L); StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, bool &CarrySetting, unsigned &ProcessorIMod, StringRef &ITMask); void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode); void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, OperandVector &Operands); bool isThumb() const { // FIXME: Can tablegen auto-generate this? return getSTI().getFeatureBits()[ARM::ModeThumb]; } bool isThumbOne() const { return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; } bool isThumbTwo() const { return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; } bool hasThumb() const { return getSTI().getFeatureBits()[ARM::HasV4TOps]; } bool hasV6Ops() const { return getSTI().getFeatureBits()[ARM::HasV6Ops]; } bool hasV6MOps() const { return getSTI().getFeatureBits()[ARM::HasV6MOps]; } bool hasV7Ops() const { return getSTI().getFeatureBits()[ARM::HasV7Ops]; } bool hasV8Ops() const { return getSTI().getFeatureBits()[ARM::HasV8Ops]; } bool hasARM() const { return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; } bool hasDSP() const { return getSTI().getFeatureBits()[ARM::FeatureDSP]; } bool hasD16() const { return getSTI().getFeatureBits()[ARM::FeatureD16]; } bool hasV8_1aOps() const { return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; } void SwitchMode() { MCSubtargetInfo &STI = copySTI(); uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); setAvailableFeatures(FB); } bool isMClass() const { return getSTI().getFeatureBits()[ARM::FeatureMClass]; } /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "ARMGenAsmMatcher.inc" /// } OperandMatchResultTy parseITCondCode(OperandVector &); OperandMatchResultTy parseCoprocNumOperand(OperandVector &); OperandMatchResultTy parseCoprocRegOperand(OperandVector &); OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); OperandMatchResultTy parseMSRMaskOperand(OperandVector &); OperandMatchResultTy parseBankedRegOperand(OperandVector &); OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, int High); OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { return parsePKHImm(O, "lsl", 0, 31); } OperandMatchResultTy parsePKHASRImm(OperandVector &O) { return parsePKHImm(O, "asr", 1, 32); } OperandMatchResultTy parseSetEndImm(OperandVector &); OperandMatchResultTy parseShifterImm(OperandVector &); OperandMatchResultTy parseRotImm(OperandVector &); OperandMatchResultTy parseModImm(OperandVector &); OperandMatchResultTy parseBitfield(OperandVector &); OperandMatchResultTy parsePostIdxReg(OperandVector &); OperandMatchResultTy parseAM3Offset(OperandVector &); OperandMatchResultTy parseFPImm(OperandVector &); OperandMatchResultTy parseVectorList(OperandVector &); OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc); // Asm Match Converter Methods void cvtThumbMultiply(MCInst &Inst, const OperandVector &); void cvtThumbBranches(MCInst &Inst, const OperandVector &); bool validateInstruction(MCInst &Inst, const OperandVector &Ops); bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); public: enum ARMMatchResultTy { Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, Match_RequiresNotITBlock, Match_RequiresV6, Match_RequiresThumb2, Match_RequiresV8, #define GET_OPERAND_DIAGNOSTIC_TYPES #include "ARMGenAsmMatcher.inc" }; ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { MCAsmParserExtension::Initialize(Parser); // Cache the MCRegisterInfo. MRI = getContext().getRegisterInfo(); // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); // Not in an ITBlock to start with. ITState.CurPosition = ~0U; NextSymbolIsThumb = false; } // Implementation of the MCTargetAsmParser interface: bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool ParseDirective(AsmToken DirectiveID) override; unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override; unsigned checkTargetMatchPredicate(MCInst &Inst) override; bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override; void onLabelParsed(MCSymbol *Symbol) override; }; } // end anonymous namespace namespace { /// ARMOperand - Instances of this class represent a parsed ARM machine /// operand. class ARMOperand : public MCParsedAsmOperand { enum KindTy { k_CondCode, k_CCOut, k_ITCondMask, k_CoprocNum, k_CoprocReg, k_CoprocOption, k_Immediate, k_MemBarrierOpt, k_InstSyncBarrierOpt, k_Memory, k_PostIndexRegister, k_MSRMask, k_BankedReg, k_ProcIFlags, k_VectorIndex, k_Register, k_RegisterList, k_DPRRegisterList, k_SPRRegisterList, k_VectorList, k_VectorListAllLanes, k_VectorListIndexed, k_ShiftedRegister, k_ShiftedImmediate, k_ShifterImmediate, k_RotateImmediate, k_ModifiedImmediate, k_BitfieldDescriptor, k_Token } Kind; SMLoc StartLoc, EndLoc, AlignmentLoc; SmallVector<unsigned, 8> Registers; struct CCOp { ARMCC::CondCodes Val; }; struct CopOp { unsigned Val; }; struct CoprocOptionOp { unsigned Val; }; struct ITMaskOp { unsigned Mask:4; }; struct MBOptOp { ARM_MB::MemBOpt Val; }; struct ISBOptOp { ARM_ISB::InstSyncBOpt Val; }; struct IFlagsOp { ARM_PROC::IFlags Val; }; struct MMaskOp { unsigned Val; }; struct BankedRegOp { unsigned Val; }; struct TokOp { const char *Data; unsigned Length; }; struct RegOp { unsigned RegNum; }; // A vector register list is a sequential list of 1 to 4 registers. struct VectorListOp { unsigned RegNum; unsigned Count; unsigned LaneIndex; bool isDoubleSpaced; }; struct VectorIndexOp { unsigned Val; }; struct ImmOp { const MCExpr *Val; }; /// Combined record for all forms of ARM address expressions. struct MemoryOp { unsigned BaseRegNum; // Offset is in OffsetReg or OffsetImm. If both are zero, no offset // was specified. const MCConstantExpr *OffsetImm; // Offset immediate value unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg unsigned ShiftImm; // shift for OffsetReg. unsigned Alignment; // 0 = no alignment specified // n = alignment in bytes (2, 4, 8, 16, or 32) unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) }; struct PostIdxRegOp { unsigned RegNum; bool isAdd; ARM_AM::ShiftOpc ShiftTy; unsigned ShiftImm; }; struct ShifterImmOp { bool isASR; unsigned Imm; }; struct RegShiftedRegOp { ARM_AM::ShiftOpc ShiftTy; unsigned SrcReg; unsigned ShiftReg; unsigned ShiftImm; }; struct RegShiftedImmOp { ARM_AM::ShiftOpc ShiftTy; unsigned SrcReg; unsigned ShiftImm; }; struct RotImmOp { unsigned Imm; }; struct ModImmOp { unsigned Bits; unsigned Rot; }; struct BitfieldOp { unsigned LSB; unsigned Width; }; union { struct CCOp CC; struct CopOp Cop; struct CoprocOptionOp CoprocOption; struct MBOptOp MBOpt; struct ISBOptOp ISBOpt; struct ITMaskOp ITMask; struct IFlagsOp IFlags; struct MMaskOp MMask; struct BankedRegOp BankedReg; struct TokOp Tok; struct RegOp Reg; struct VectorListOp VectorList; struct VectorIndexOp VectorIndex; struct ImmOp Imm; struct MemoryOp Memory; struct PostIdxRegOp PostIdxReg; struct ShifterImmOp ShifterImm; struct RegShiftedRegOp RegShiftedReg; struct RegShiftedImmOp RegShiftedImm; struct RotImmOp RotImm; struct ModImmOp ModImm; struct BitfieldOp Bitfield; }; public: ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const override { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const override { return EndLoc; } /// getLocRange - Get the range between the first and last token of this /// operand. SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } /// getAlignmentLoc - Get the location of the Alignment token of this operand. SMLoc getAlignmentLoc() const { assert(Kind == k_Memory && "Invalid access!"); return AlignmentLoc; } ARMCC::CondCodes getCondCode() const { assert(Kind == k_CondCode && "Invalid access!"); return CC.Val; } unsigned getCoproc() const { assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); return Cop.Val; } StringRef getToken() const { assert(Kind == k_Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } unsigned getReg() const override { assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); return Reg.RegNum; } const SmallVectorImpl<unsigned> &getRegList() const { assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || Kind == k_SPRRegisterList) && "Invalid access!"); return Registers; } const MCExpr *getImm() const { assert(isImm() && "Invalid access!"); return Imm.Val; } unsigned getVectorIndex() const { assert(Kind == k_VectorIndex && "Invalid access!"); return VectorIndex.Val; } ARM_MB::MemBOpt getMemBarrierOpt() const { assert(Kind == k_MemBarrierOpt && "Invalid access!"); return MBOpt.Val; } ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); return ISBOpt.Val; } ARM_PROC::IFlags getProcIFlags() const { assert(Kind == k_ProcIFlags && "Invalid access!"); return IFlags.Val; } unsigned getMSRMask() const { assert(Kind == k_MSRMask && "Invalid access!"); return MMask.Val; } unsigned getBankedReg() const { assert(Kind == k_BankedReg && "Invalid access!"); return BankedReg.Val; } bool isCoprocNum() const { return Kind == k_CoprocNum; } bool isCoprocReg() const { return Kind == k_CoprocReg; } bool isCoprocOption() const { return Kind == k_CoprocOption; } bool isCondCode() const { return Kind == k_CondCode; } bool isCCOut() const { return Kind == k_CCOut; } bool isITMask() const { return Kind == k_ITCondMask; } bool isITCondCode() const { return Kind == k_CondCode; } bool isImm() const override { return Kind == k_Immediate; } // checks whether this operand is an unsigned offset which fits is a field // of specified width and scaled by a specific number of bits template<unsigned width, unsigned scale> bool isUnsignedOffset() const { if (!isImm()) return false; if (isa<MCSymbolRefExpr>(Imm.Val)) return true; if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { int64_t Val = CE->getValue(); int64_t Align = 1LL << scale; int64_t Max = Align * ((1LL << width) - 1); return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); } return false; } // checks whether this operand is an signed offset which fits is a field // of specified width and scaled by a specific number of bits template<unsigned width, unsigned scale> bool isSignedOffset() const { if (!isImm()) return false; if (isa<MCSymbolRefExpr>(Imm.Val)) return true; if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { int64_t Val = CE->getValue(); int64_t Align = 1LL << scale; int64_t Max = Align * ((1LL << (width-1)) - 1); int64_t Min = -Align * (1LL << (width-1)); return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); } return false; } // checks whether this operand is a memory operand computed as an offset // applied to PC. the offset may have 8 bits of magnitude and is represented // with two bits of shift. textually it may be either [pc, #imm], #imm or // relocable expression... bool isThumbMemPC() const { int64_t Val = 0; if (isImm()) { if (isa<MCSymbolRefExpr>(Imm.Val)) return true; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); if (!CE) return false; Val = CE->getValue(); } else if (isMem()) { if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; if(Memory.BaseRegNum != ARM::PC) return false; Val = Memory.OffsetImm->getValue(); } else return false; return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); } bool isFPImm() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); return Val != -1; } bool isFBits16() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value <= 16; } bool isFBits32() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 1 && Value <= 32; } bool isImm8s4() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; } bool isImm0_1020s4() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; } bool isImm0_508s4() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ((Value & 3) == 0) && Value >= 0 && Value <= 508; } bool isImm0_508s4Neg() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = -CE->getValue(); // explicitly exclude zero. we want that to use the normal 0_508 version. return ((Value & 3) == 0) && Value > 0 && Value <= 508; } bool isImm0_239() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 240; } bool isImm0_255() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 256; } bool isImm0_4095() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 4096; } bool isImm0_4095Neg() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = -CE->getValue(); return Value > 0 && Value < 4096; } bool isImm0_1() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 2; } bool isImm0_3() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 4; } bool isImm0_7() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 8; } bool isImm0_15() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 16; } bool isImm0_31() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 32; } bool isImm0_63() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 64; } bool isImm8() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value == 8; } bool isImm16() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value == 16; } bool isImm32() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value == 32; } bool isShrImm8() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value <= 8; } bool isShrImm16() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value <= 16; } bool isShrImm32() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value <= 32; } bool isShrImm64() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value <= 64; } bool isImm1_7() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value < 8; } bool isImm1_15() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value < 16; } bool isImm1_31() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value < 32; } bool isImm1_16() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value < 17; } bool isImm1_32() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value < 33; } bool isImm0_32() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 33; } bool isImm0_65535() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 65536; } bool isImm256_65535Expr() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); // If it's not a constant expression, it'll generate a fixup and be // handled later. if (!CE) return true; int64_t Value = CE->getValue(); return Value >= 256 && Value < 65536; } bool isImm0_65535Expr() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); // If it's not a constant expression, it'll generate a fixup and be // handled later. if (!CE) return true; int64_t Value = CE->getValue(); return Value >= 0 && Value < 65536; } bool isImm24bit() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value <= 0xffffff; } bool isImmThumbSR() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value < 33; } bool isPKHLSLImm() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value >= 0 && Value < 32; } bool isPKHASRImm() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value > 0 && Value <= 32; } bool isAdrLabel() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. if (isImm() && !isa<MCConstantExpr>(getImm())) return true; // If it is a constant, it must fit into a modified immediate encoding. if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return (ARM_AM::getSOImmVal(Value) != -1 || ARM_AM::getSOImmVal(-Value) != -1); } bool isT2SOImm() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ARM_AM::getT2SOImmVal(Value) != -1; } bool isT2SOImmNot() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ARM_AM::getT2SOImmVal(Value) == -1 && ARM_AM::getT2SOImmVal(~Value) != -1; } bool isT2SOImmNeg() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); // Only use this when not representable as a plain so_imm. return ARM_AM::getT2SOImmVal(Value) == -1 && ARM_AM::getT2SOImmVal(-Value) != -1; } bool isSetEndImm() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return Value == 1 || Value == 0; } bool isReg() const override { return Kind == k_Register; } bool isRegList() const { return Kind == k_RegisterList; } bool isDPRRegList() const { return Kind == k_DPRRegisterList; } bool isSPRRegList() const { return Kind == k_SPRRegisterList; } bool isToken() const override { return Kind == k_Token; } bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } bool isMem() const override { return Kind == k_Memory; } bool isShifterImm() const { return Kind == k_ShifterImmediate; } bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } bool isRotImm() const { return Kind == k_RotateImmediate; } bool isModImm() const { return Kind == k_ModifiedImmediate; } bool isModImmNot() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ARM_AM::getSOImmVal(~Value) != -1; } bool isModImmNeg() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Value = CE->getValue(); return ARM_AM::getSOImmVal(Value) == -1 && ARM_AM::getSOImmVal(-Value) != -1; } bool isBitfield() const { return Kind == k_BitfieldDescriptor; } bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } bool isPostIdxReg() const { return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; } bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { if (!isMem()) return false; // No offset of any kind. return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && (alignOK || Memory.Alignment == Alignment); } bool isMemPCRelImm12() const { if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Base register must be PC. if (Memory.BaseRegNum != ARM::PC) return false; // Immediate offset in range [-4095, 4095]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); } bool isAlignedMemory() const { return isMemNoOffset(true); } bool isAlignedMemoryNone() const { return isMemNoOffset(false, 0); } bool isDupAlignedMemoryNone() const { return isMemNoOffset(false, 0); } bool isAlignedMemory16() const { if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. return true; return isMemNoOffset(false, 0); } bool isDupAlignedMemory16() const { if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. return true; return isMemNoOffset(false, 0); } bool isAlignedMemory32() const { if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. return true; return isMemNoOffset(false, 0); } bool isDupAlignedMemory32() const { if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. return true; return isMemNoOffset(false, 0); } bool isAlignedMemory64() const { if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. return true; return isMemNoOffset(false, 0); } bool isDupAlignedMemory64() const { if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. return true; return isMemNoOffset(false, 0); } bool isAlignedMemory64or128() const { if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. return true; if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. return true; return isMemNoOffset(false, 0); } bool isDupAlignedMemory64or128() const { if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. return true; if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. return true; return isMemNoOffset(false, 0); } bool isAlignedMemory64or128or256() const { if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. return true; if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. return true; if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. return true; return isMemNoOffset(false, 0); } bool isAddrMode2() const { if (!isMem() || Memory.Alignment != 0) return false; // Check for register offset. if (Memory.OffsetRegNum) return true; // Immediate offset in range [-4095, 4095]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return Val > -4096 && Val < 4096; } bool isAM2OffsetImm() const { if (!isImm()) return false; // Immediate offset in range [-4095, 4095]. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Val = CE->getValue(); return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); } bool isAddrMode3() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm() && !isa<MCConstantExpr>(getImm())) return true; if (!isMem() || Memory.Alignment != 0) return false; // No shifts are legal for AM3. if (Memory.ShiftType != ARM_AM::no_shift) return false; // Check for register offset. if (Memory.OffsetRegNum) return true; // Immediate offset in range [-255, 255]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); // The #-0 offset is encoded as INT32_MIN, and we have to check // for this too. return (Val > -256 && Val < 256) || Val == INT32_MIN; } bool isAM3Offset() const { if (Kind != k_Immediate && Kind != k_PostIndexRegister) return false; if (Kind == k_PostIndexRegister) return PostIdxReg.ShiftTy == ARM_AM::no_shift; // Immediate offset in range [-255, 255]. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Val = CE->getValue(); // Special case, #-0 is INT32_MIN. return (Val > -256 && Val < 256) || Val == INT32_MIN; } bool isAddrMode5() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm() && !isa<MCConstantExpr>(getImm())) return true; if (!isMem() || Memory.Alignment != 0) return false; // Check for register offset. if (Memory.OffsetRegNum) return false; // Immediate offset in range [-1020, 1020] and a multiple of 4. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || Val == INT32_MIN; } bool isMemTBB() const { if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) return false; return true; } bool isMemTBH() const { if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || Memory.Alignment != 0 ) return false; return true; } bool isMemRegOffset() const { if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) return false; return true; } bool isT2MemRegOffset() const { if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || Memory.Alignment != 0) return false; // Only lsl #{0, 1, 2, 3} allowed. if (Memory.ShiftType == ARM_AM::no_shift) return true; if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) return false; return true; } bool isMemThumbRR() const { // Thumb reg+reg addressing is simple. Just two registers, a base and // an offset. No shifts, negations or any other complicating factors. if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) return false; return isARMLowRegister(Memory.BaseRegNum) && (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); } bool isMemThumbRIs4() const { if (!isMem() || Memory.OffsetRegNum != 0 || !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) return false; // Immediate offset, multiple of 4 in range [0, 124]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return Val >= 0 && Val <= 124 && (Val % 4) == 0; } bool isMemThumbRIs2() const { if (!isMem() || Memory.OffsetRegNum != 0 || !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) return false; // Immediate offset, multiple of 4 in range [0, 62]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return Val >= 0 && Val <= 62 && (Val % 2) == 0; } bool isMemThumbRIs1() const { if (!isMem() || Memory.OffsetRegNum != 0 || !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) return false; // Immediate offset in range [0, 31]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return Val >= 0 && Val <= 31; } bool isMemThumbSPI() const { if (!isMem() || Memory.OffsetRegNum != 0 || Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) return false; // Immediate offset, multiple of 4 in range [0, 1020]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return Val >= 0 && Val <= 1020 && (Val % 4) == 0; } bool isMemImm8s4Offset() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm() && !isa<MCConstantExpr>(getImm())) return true; if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Immediate offset a multiple of 4 in range [-1020, 1020]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); // Special case, #-0 is INT32_MIN. return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; } bool isMemImm0_1020s4Offset() const { if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Immediate offset a multiple of 4 in range [0, 1020]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return Val >= 0 && Val <= 1020 && (Val & 3) == 0; } bool isMemImm8Offset() const { if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Base reg of PC isn't allowed for these encodings. if (Memory.BaseRegNum == ARM::PC) return false; // Immediate offset in range [-255, 255]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return (Val == INT32_MIN) || (Val > -256 && Val < 256); } bool isMemPosImm8Offset() const { if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Immediate offset in range [0, 255]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return Val >= 0 && Val < 256; } bool isMemNegImm8Offset() const { if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Base reg of PC isn't allowed for these encodings. if (Memory.BaseRegNum == ARM::PC) return false; // Immediate offset in range [-255, -1]. if (!Memory.OffsetImm) return false; int64_t Val = Memory.OffsetImm->getValue(); return (Val == INT32_MIN) || (Val > -256 && Val < 0); } bool isMemUImm12Offset() const { if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Immediate offset in range [0, 4095]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return (Val >= 0 && Val < 4096); } bool isMemImm12Offset() const { // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm() && !isa<MCConstantExpr>(getImm())) return true; if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) return false; // Immediate offset in range [-4095, 4095]. if (!Memory.OffsetImm) return true; int64_t Val = Memory.OffsetImm->getValue(); return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); } bool isPostIdxImm8() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Val = CE->getValue(); return (Val > -256 && Val < 256) || (Val == INT32_MIN); } bool isPostIdxImm8s4() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; int64_t Val = CE->getValue(); return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || (Val == INT32_MIN); } bool isMSRMask() const { return Kind == k_MSRMask; } bool isBankedReg() const { return Kind == k_BankedReg; } bool isProcIFlags() const { return Kind == k_ProcIFlags; } // NEON operands. bool isSingleSpacedVectorList() const { return Kind == k_VectorList && !VectorList.isDoubleSpaced; } bool isDoubleSpacedVectorList() const { return Kind == k_VectorList && VectorList.isDoubleSpaced; } bool isVecListOneD() const { if (!isSingleSpacedVectorList()) return false; return VectorList.Count == 1; } bool isVecListDPair() const { if (!isSingleSpacedVectorList()) return false; return (ARMMCRegisterClasses[ARM::DPairRegClassID] .contains(VectorList.RegNum)); } bool isVecListThreeD() const { if (!isSingleSpacedVectorList()) return false; return VectorList.Count == 3; } bool isVecListFourD() const { if (!isSingleSpacedVectorList()) return false; return VectorList.Count == 4; } bool isVecListDPairSpaced() const { if (Kind != k_VectorList) return false; if (isSingleSpacedVectorList()) return false; return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] .contains(VectorList.RegNum)); } bool isVecListThreeQ() const { if (!isDoubleSpacedVectorList()) return false; return VectorList.Count == 3; } bool isVecListFourQ() const { if (!isDoubleSpacedVectorList()) return false; return VectorList.Count == 4; } bool isSingleSpacedVectorAllLanes() const { return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; } bool isDoubleSpacedVectorAllLanes() const { return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; } bool isVecListOneDAllLanes() const { if (!isSingleSpacedVectorAllLanes()) return false; return VectorList.Count == 1; } bool isVecListDPairAllLanes() const { if (!isSingleSpacedVectorAllLanes()) return false; return (ARMMCRegisterClasses[ARM::DPairRegClassID] .contains(VectorList.RegNum)); } bool isVecListDPairSpacedAllLanes() const { if (!isDoubleSpacedVectorAllLanes()) return false; return VectorList.Count == 2; } bool isVecListThreeDAllLanes() const { if (!isSingleSpacedVectorAllLanes()) return false; return VectorList.Count == 3; } bool isVecListThreeQAllLanes() const { if (!isDoubleSpacedVectorAllLanes()) return false; return VectorList.Count == 3; } bool isVecListFourDAllLanes() const { if (!isSingleSpacedVectorAllLanes()) return false; return VectorList.Count == 4; } bool isVecListFourQAllLanes() const { if (!isDoubleSpacedVectorAllLanes()) return false; return VectorList.Count == 4; } bool isSingleSpacedVectorIndexed() const { return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; } bool isDoubleSpacedVectorIndexed() const { return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; } bool isVecListOneDByteIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 1 && VectorList.LaneIndex <= 7; } bool isVecListOneDHWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 1 && VectorList.LaneIndex <= 3; } bool isVecListOneDWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 1 && VectorList.LaneIndex <= 1; } bool isVecListTwoDByteIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 2 && VectorList.LaneIndex <= 7; } bool isVecListTwoDHWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 2 && VectorList.LaneIndex <= 3; } bool isVecListTwoQWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 2 && VectorList.LaneIndex <= 1; } bool isVecListTwoQHWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 2 && VectorList.LaneIndex <= 3; } bool isVecListTwoDWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 2 && VectorList.LaneIndex <= 1; } bool isVecListThreeDByteIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 3 && VectorList.LaneIndex <= 7; } bool isVecListThreeDHWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 3 && VectorList.LaneIndex <= 3; } bool isVecListThreeQWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 3 && VectorList.LaneIndex <= 1; } bool isVecListThreeQHWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 3 && VectorList.LaneIndex <= 3; } bool isVecListThreeDWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 3 && VectorList.LaneIndex <= 1; } bool isVecListFourDByteIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 4 && VectorList.LaneIndex <= 7; } bool isVecListFourDHWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 4 && VectorList.LaneIndex <= 3; } bool isVecListFourQWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 4 && VectorList.LaneIndex <= 1; } bool isVecListFourQHWordIndexed() const { if (!isDoubleSpacedVectorIndexed()) return false; return VectorList.Count == 4 && VectorList.LaneIndex <= 3; } bool isVecListFourDWordIndexed() const { if (!isSingleSpacedVectorIndexed()) return false; return VectorList.Count == 4 && VectorList.LaneIndex <= 1; } bool isVectorIndex8() const { if (Kind != k_VectorIndex) return false; return VectorIndex.Val < 8; } bool isVectorIndex16() const { if (Kind != k_VectorIndex) return false; return VectorIndex.Val < 4; } bool isVectorIndex32() const { if (Kind != k_VectorIndex) return false; return VectorIndex.Val < 2; } bool isNEONi8splat() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); // Must be a constant. if (!CE) return false; int64_t Value = CE->getValue(); // i8 value splatted across 8 bytes. The immediate is just the 8 byte // value. return Value >= 0 && Value < 256; } bool isNEONi16splat() const { if (isNEONByteReplicate(2)) return false; // Leave that for bytes replication and forbid by default. if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); // Must be a constant. if (!CE) return false; unsigned Value = CE->getValue(); return ARM_AM::isNEONi16splat(Value); } bool isNEONi16splatNot() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); // Must be a constant. if (!CE) return false; unsigned Value = CE->getValue(); return ARM_AM::isNEONi16splat(~Value & 0xffff); } bool isNEONi32splat() const { if (isNEONByteReplicate(4)) return false; // Leave that for bytes replication and forbid by default. if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); // Must be a constant. if (!CE) return false; unsigned Value = CE->getValue(); return ARM_AM::isNEONi32splat(Value); } bool isNEONi32splatNot() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); // Must be a constant. if (!CE) return false; unsigned Value = CE->getValue(); return ARM_AM::isNEONi32splat(~Value); } bool isNEONByteReplicate(unsigned NumBytes) const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); // Must be a constant. if (!CE) return false; int64_t Value = CE->getValue(); if (!Value) return false; // Don't bother with zero. unsigned char B = Value & 0xff; for (unsigned i = 1; i < NumBytes; ++i) { Value >>= 8; if ((Value & 0xff) != B) return false; } return true; } bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } bool isNEONi32vmov() const { if (isNEONByteReplicate(4)) return false; // Let it to be classified as byte-replicate case. if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); // Must be a constant. if (!CE) return false; int64_t Value = CE->getValue(); // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. // FIXME: This is probably wrong and a copy and paste from previous example return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00) || (Value >= 0x010000 && Value <= 0xff0000) || (Value >= 0x01000000 && Value <= 0xff000000) || (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); } bool isNEONi32vmovNeg() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); // Must be a constant. if (!CE) return false; int64_t Value = ~CE->getValue(); // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. // FIXME: This is probably wrong and a copy and paste from previous example return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00) || (Value >= 0x010000 && Value <= 0xff0000) || (Value >= 0x01000000 && Value <= 0xff000000) || (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); } bool isNEONi64splat() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); // Must be a constant. if (!CE) return false; uint64_t Value = CE->getValue(); // i64 value with each byte being either 0 or 0xff. for (unsigned i = 0; i < 8; ++i) if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; return true; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. Null MCExpr = 0. if (!Expr) Inst.addOperand(MCOperand::createImm(0)); else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) Inst.addOperand(MCOperand::createImm(CE->getValue())); else Inst.addOperand(MCOperand::createExpr(Expr)); } void addCondCodeOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; Inst.addOperand(MCOperand::createReg(RegNum)); } void addCoprocNumOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getCoproc())); } void addCoprocRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getCoproc())); } void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); } void addITMaskOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(ITMask.Mask)); } void addITCondCodeOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); } void addCCOutOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getReg())); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getReg())); } void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); assert(isRegShiftedReg() && "addRegShiftedRegOperands() on non-RegShiftedReg!"); Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); Inst.addOperand(MCOperand::createImm( ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); } void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); assert(isRegShiftedImm() && "addRegShiftedImmOperands() on non-RegShiftedImm!"); Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); // Shift of #32 is encoded as 0 where permitted unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); Inst.addOperand(MCOperand::createImm( ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); } void addShifterImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | ShifterImm.Imm)); } void addRegListOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const SmallVectorImpl<unsigned> &RegList = getRegList(); for (SmallVectorImpl<unsigned>::const_iterator I = RegList.begin(), E = RegList.end(); I != E; ++I) Inst.addOperand(MCOperand::createReg(*I)); } void addDPRRegListOperands(MCInst &Inst, unsigned N) const { addRegListOperands(Inst, N); } void addSPRRegListOperands(MCInst &Inst, unsigned N) const { addRegListOperands(Inst, N); } void addRotImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // Encoded as val>>3. The printer handles display as 8, 16, 24. Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); } void addModImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // Support for fixups (MCFixup) if (isImm()) return addImmOperands(Inst, N); Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); } void addModImmNotOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); Inst.addOperand(MCOperand::createImm(Enc)); } void addModImmNegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); Inst.addOperand(MCOperand::createImm(Enc)); } void addBitfieldOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // Munge the lsb/width into a bitfield mask. unsigned lsb = Bitfield.LSB; unsigned width = Bitfield.Width; // Make a 32-bit mask w/ the referenced bits clear and all other bits set. uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> (32 - (lsb + width))); Inst.addOperand(MCOperand::createImm(Mask)); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addFBits16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); } void addFBits32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); } void addFPImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); Inst.addOperand(MCOperand::createImm(Val)); } void addImm8s4Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // FIXME: We really want to scale the value here, but the LDRD/STRD // instruction don't encode operands that way yet. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue())); } void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate is scaled by four in the encoding and is stored // in the MCInst as such. Lop off the low two bits here. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); } void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate is scaled by four in the encoding and is stored // in the MCInst as such. Lop off the low two bits here. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); } void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate is scaled by four in the encoding and is stored // in the MCInst as such. Lop off the low two bits here. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); } void addImm1_16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The constant encodes as the immediate-1, and we store in the instruction // the bits as encoded, so subtract off one here. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); } void addImm1_32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The constant encodes as the immediate-1, and we store in the instruction // the bits as encoded, so subtract off one here. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); } void addImmThumbSROperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The constant encodes as the immediate, except for 32, which encodes as // zero. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); unsigned Imm = CE->getValue(); Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); } void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // An ASR value of 32 encodes as 0, so that's how we want to add it to // the instruction as well. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); int Val = CE->getValue(); Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); } void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The operand is actually a t2_so_imm, but we have its bitwise // negation in the assembly source, so twiddle it here. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(~CE->getValue())); } void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The operand is actually a t2_so_imm, but we have its // negation in the assembly source, so twiddle it here. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(-CE->getValue())); } void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The operand is actually an imm0_4095, but we have its // negation in the assembly source, so twiddle it here. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(-CE->getValue())); } void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); return; } const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); assert(SR && "Unknown value type!"); Inst.addOperand(MCOperand::createExpr(SR)); } void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (isImm()) { const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (CE) { Inst.addOperand(MCOperand::createImm(CE->getValue())); return; } const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); assert(SR && "Unknown value type!"); Inst.addOperand(MCOperand::createExpr(SR)); return; } assert(isMem() && "Unknown value type!"); assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); } void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); } void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); } void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); } void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); int32_t Imm = Memory.OffsetImm->getValue(); Inst.addOperand(MCOperand::createImm(Imm)); } void addAdrLabelOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); assert(isImm() && "Not an immediate!"); // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. if (!isa<MCConstantExpr>(getImm())) { Inst.addOperand(MCOperand::createExpr(getImm())); return; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); int Val = CE->getValue(); Inst.addOperand(MCOperand::createImm(Val)); } void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Memory.Alignment)); } void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { addAlignedMemoryOperands(Inst, N); } void addAddrMode2Operands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; if (!Memory.OffsetRegNum) { ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == INT32_MIN) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); } else { // For register offset, we encode the shift type and negation flag // here. Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, Memory.ShiftImm, Memory.ShiftType); } Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); assert(CE && "non-constant AM2OffsetImm operand!"); int32_t Val = CE->getValue(); ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == INT32_MIN) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); Inst.addOperand(MCOperand::createReg(0)); Inst.addOperand(MCOperand::createImm(Val)); } void addAddrMode3Operands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm()) { Inst.addOperand(MCOperand::createExpr(getImm())); Inst.addOperand(MCOperand::createReg(0)); Inst.addOperand(MCOperand::createImm(0)); return; } int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; if (!Memory.OffsetRegNum) { ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == INT32_MIN) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM3Opc(AddSub, Val); } else { // For register offset, we encode the shift type and negation flag // here. Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); } Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); if (Kind == k_PostIndexRegister) { int32_t Val = ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); Inst.addOperand(MCOperand::createImm(Val)); return; } // Constant offset. const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); int32_t Val = CE->getValue(); ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == INT32_MIN) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM3Opc(AddSub, Val); Inst.addOperand(MCOperand::createReg(0)); Inst.addOperand(MCOperand::createImm(Val)); } void addAddrMode5Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm()) { Inst.addOperand(MCOperand::createExpr(getImm())); Inst.addOperand(MCOperand::createImm(0)); return; } // The lower two bits are always zero and as such are not encoded. int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; // Special case for #-0 if (Val == INT32_MIN) Val = 0; if (Val < 0) Val = -Val; Val = ARM_AM::getAM5Opc(AddSub, Val); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // If we have an immediate that's not a constant, treat it as a label // reference needing a fixup. If it is a constant, it's something else // and we reject it. if (isImm()) { Inst.addOperand(MCOperand::createExpr(getImm())); Inst.addOperand(MCOperand::createImm(0)); return; } int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // The lower two bits are always zero and as such are not encoded. int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { addMemImm8OffsetOperands(Inst, N); } void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { addMemImm8OffsetOperands(Inst, N); } void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // If this is an immediate, it's a label reference. if (isImm()) { addExpr(Inst, getImm()); Inst.addOperand(MCOperand::createImm(0)); return; } // Otherwise, it's a normal memory reg+offset. int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); // If this is an immediate, it's a label reference. if (isImm()) { addExpr(Inst, getImm()); Inst.addOperand(MCOperand::createImm(0)); return; } // Otherwise, it's a normal memory reg+offset. int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addMemTBBOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); } void addMemTBHOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); } void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); unsigned Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, Memory.ShiftImm, Memory.ShiftType); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); } void addMemThumbRROperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); } void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); Inst.addOperand(MCOperand::createImm(Val)); } void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); assert(CE && "non-constant post-idx-imm8 operand!"); int Imm = CE->getValue(); bool isAdd = Imm >= 0; if (Imm == INT32_MIN) Imm = 0; Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; Inst.addOperand(MCOperand::createImm(Imm)); } void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); assert(CE && "non-constant post-idx-imm8s4 operand!"); int Imm = CE->getValue(); bool isAdd = Imm >= 0; if (Imm == INT32_MIN) Imm = 0; // Immediate is scaled by 4. Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; Inst.addOperand(MCOperand::createImm(Imm)); } void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); } void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); // The sign, shift type, and shift amount are encoded in a single operand // using the AM2 encoding helpers. ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, PostIdxReg.ShiftTy); Inst.addOperand(MCOperand::createImm(Imm)); } void addMSRMaskOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); } void addBankedRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); } void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); } void addVecListOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); } void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); } void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getVectorIndex())); } void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getVectorIndex())); } void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getVectorIndex())); } void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. // Mask in that this is an i8 splat. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); } void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); unsigned Value = CE->getValue(); Value = ARM_AM::encodeNEONi16splat(Value); Inst.addOperand(MCOperand::createImm(Value)); } void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); unsigned Value = CE->getValue(); Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); Inst.addOperand(MCOperand::createImm(Value)); } void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); unsigned Value = CE->getValue(); Value = ARM_AM::encodeNEONi32splat(Value); Inst.addOperand(MCOperand::createImm(Value)); } void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); unsigned Value = CE->getValue(); Value = ARM_AM::encodeNEONi32splat(~Value); Inst.addOperand(MCOperand::createImm(Value)); } void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); unsigned Value = CE->getValue(); assert((Inst.getOpcode() == ARM::VMOVv8i8 || Inst.getOpcode() == ARM::VMOVv16i8) && "All vmvn instructions that wants to replicate non-zero byte " "always must be replaced with VMOVv8i8 or VMOVv16i8."); unsigned B = ((~Value) & 0xff); B |= 0xe00; // cmode = 0b1110 Inst.addOperand(MCOperand::createImm(B)); } void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); unsigned Value = CE->getValue(); if (Value >= 256 && Value <= 0xffff) Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); else if (Value > 0xffff && Value <= 0xffffff) Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); else if (Value > 0xffffff) Value = (Value >> 24) | 0x600; Inst.addOperand(MCOperand::createImm(Value)); } void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); unsigned Value = CE->getValue(); assert((Inst.getOpcode() == ARM::VMOVv8i8 || Inst.getOpcode() == ARM::VMOVv16i8) && "All instructions that wants to replicate non-zero byte " "always must be replaced with VMOVv8i8 or VMOVv16i8."); unsigned B = Value & 0xff; B |= 0xe00; // cmode = 0b1110 Inst.addOperand(MCOperand::createImm(B)); } void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); unsigned Value = ~CE->getValue(); if (Value >= 256 && Value <= 0xffff) Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); else if (Value > 0xffff && Value <= 0xffffff) Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); else if (Value > 0xffffff) Value = (Value >> 24) | 0x600; Inst.addOperand(MCOperand::createImm(Value)); } void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // The immediate encodes the type of constant as well as the value. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); uint64_t Value = CE->getValue(); unsigned Imm = 0; for (unsigned i = 0; i < 8; ++i, Value >>= 8) { Imm |= (Value & 1) << i; } Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); } void print(raw_ostream &OS) const override; static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { auto Op = make_unique<ARMOperand>(k_ITCondMask); Op->ITMask.Mask = Mask; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, SMLoc S) { auto Op = make_unique<ARMOperand>(k_CondCode); Op->CC.Val = CC; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { auto Op = make_unique<ARMOperand>(k_CoprocNum); Op->Cop.Val = CopVal; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { auto Op = make_unique<ARMOperand>(k_CoprocReg); Op->Cop.Val = CopVal; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_CoprocOption); Op->Cop.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { auto Op = make_unique<ARMOperand>(k_CCOut); Op->Reg.RegNum = RegNum; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { auto Op = make_unique<ARMOperand>(k_Token); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_Register); Op->Reg.RegNum = RegNum; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, unsigned ShiftReg, unsigned ShiftImm, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_ShiftedRegister); Op->RegShiftedReg.ShiftTy = ShTy; Op->RegShiftedReg.SrcReg = SrcReg; Op->RegShiftedReg.ShiftReg = ShiftReg; Op->RegShiftedReg.ShiftImm = ShiftImm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, unsigned ShiftImm, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); Op->RegShiftedImm.ShiftTy = ShTy; Op->RegShiftedImm.SrcReg = SrcReg; Op->RegShiftedImm.ShiftImm = ShiftImm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_ShifterImmediate); Op->ShifterImm.isASR = isASR; Op->ShifterImm.Imm = Imm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_RotateImmediate); Op->RotImm.Imm = Imm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); Op->ModImm.Bits = Bits; Op->ModImm.Rot = Rot; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); Op->Bitfield.LSB = LSB; Op->Bitfield.Width = Width; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, SMLoc StartLoc, SMLoc EndLoc) { assert (Regs.size() > 0 && "RegList contains no registers?"); KindTy Kind = k_RegisterList; if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) Kind = k_DPRRegisterList; else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. contains(Regs.front().second)) Kind = k_SPRRegisterList; // Sort based on the register encoding values. array_pod_sort(Regs.begin(), Regs.end()); auto Op = make_unique<ARMOperand>(Kind); for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator I = Regs.begin(), E = Regs.end(); I != E; ++I) Op->Registers.push_back(I->second); Op->StartLoc = StartLoc; Op->EndLoc = EndLoc; return Op; } static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, unsigned Count, bool isDoubleSpaced, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_VectorList); Op->VectorList.RegNum = RegNum; Op->VectorList.Count = Count; Op->VectorList.isDoubleSpaced = isDoubleSpaced; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); Op->VectorList.RegNum = RegNum; Op->VectorList.Count = Count; Op->VectorList.isDoubleSpaced = isDoubleSpaced; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, bool isDoubleSpaced, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_VectorListIndexed); Op->VectorList.RegNum = RegNum; Op->VectorList.Count = Count; Op->VectorList.LaneIndex = Index; Op->VectorList.isDoubleSpaced = isDoubleSpaced; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = make_unique<ARMOperand>(k_VectorIndex); Op->VectorIndex.Val = Idx; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_Immediate); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, SMLoc E, SMLoc AlignmentLoc = SMLoc()) { auto Op = make_unique<ARMOperand>(k_Memory); Op->Memory.BaseRegNum = BaseRegNum; Op->Memory.OffsetImm = OffsetImm; Op->Memory.OffsetRegNum = OffsetRegNum; Op->Memory.ShiftType = ShiftType; Op->Memory.ShiftImm = ShiftImm; Op->Memory.Alignment = Alignment; Op->Memory.isNegative = isNegative; Op->StartLoc = S; Op->EndLoc = E; Op->AlignmentLoc = AlignmentLoc; return Op; } static std::unique_ptr<ARMOperand> CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, unsigned ShiftImm, SMLoc S, SMLoc E) { auto Op = make_unique<ARMOperand>(k_PostIndexRegister); Op->PostIdxReg.RegNum = RegNum; Op->PostIdxReg.isAdd = isAdd; Op->PostIdxReg.ShiftTy = ShiftTy; Op->PostIdxReg.ShiftImm = ShiftImm; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) { auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); Op->MBOpt.Val = Opt; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<ARMOperand> CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); Op->ISBOpt.Val = Opt; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) { auto Op = make_unique<ARMOperand>(k_ProcIFlags); Op->IFlags.Val = IFlags; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { auto Op = make_unique<ARMOperand>(k_MSRMask); Op->MMask.Val = MMask; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { auto Op = make_unique<ARMOperand>(k_BankedReg); Op->BankedReg.Val = Reg; Op->StartLoc = S; Op->EndLoc = S; return Op; } }; } // end anonymous namespace. void ARMOperand::print(raw_ostream &OS) const { switch (Kind) { case k_CondCode: OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; break; case k_CCOut: OS << "<ccout " << getReg() << ">"; break; case k_ITCondMask: { static const char *const MaskStr[] = { "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" }; assert((ITMask.Mask & 0xf) == ITMask.Mask); OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; break; } case k_CoprocNum: OS << "<coprocessor number: " << getCoproc() << ">"; break; case k_CoprocReg: OS << "<coprocessor register: " << getCoproc() << ">"; break; case k_CoprocOption: OS << "<coprocessor option: " << CoprocOption.Val << ">"; break; case k_MSRMask: OS << "<mask: " << getMSRMask() << ">"; break; case k_BankedReg: OS << "<banked reg: " << getBankedReg() << ">"; break; case k_Immediate: OS << *getImm(); break; case k_MemBarrierOpt: OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; break; case k_InstSyncBarrierOpt: OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; break; case k_Memory: OS << "<memory " << " base:" << Memory.BaseRegNum; OS << ">"; break; case k_PostIndexRegister: OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") << PostIdxReg.RegNum; if (PostIdxReg.ShiftTy != ARM_AM::no_shift) OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " << PostIdxReg.ShiftImm; OS << ">"; break; case k_ProcIFlags: { OS << "<ARM_PROC::"; unsigned IFlags = getProcIFlags(); for (int i=2; i >= 0; --i) if (IFlags & (1 << i)) OS << ARM_PROC::IFlagsToString(1 << i); OS << ">"; break; } case k_Register: OS << "<register " << getReg() << ">"; break; case k_ShifterImmediate: OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") << " #" << ShifterImm.Imm << ">"; break; case k_ShiftedRegister: OS << "<so_reg_reg " << RegShiftedReg.SrcReg << " " << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " << RegShiftedReg.ShiftReg << ">"; break; case k_ShiftedImmediate: OS << "<so_reg_imm " << RegShiftedImm.SrcReg << " " << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" << RegShiftedImm.ShiftImm << ">"; break; case k_RotateImmediate: OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; break; case k_ModifiedImmediate: OS << "<mod_imm #" << ModImm.Bits << ", #" << ModImm.Rot << ")>"; break; case k_BitfieldDescriptor: OS << "<bitfield " << "lsb: " << Bitfield.LSB << ", width: " << Bitfield.Width << ">"; break; case k_RegisterList: case k_DPRRegisterList: case k_SPRRegisterList: { OS << "<register_list "; const SmallVectorImpl<unsigned> &RegList = getRegList(); for (SmallVectorImpl<unsigned>::const_iterator I = RegList.begin(), E = RegList.end(); I != E; ) { OS << *I; if (++I < E) OS << ", "; } OS << ">"; break; } case k_VectorList: OS << "<vector_list " << VectorList.Count << " * " << VectorList.RegNum << ">"; break; case k_VectorListAllLanes: OS << "<vector_list(all lanes) " << VectorList.Count << " * " << VectorList.RegNum << ">"; break; case k_VectorListIndexed: OS << "<vector_list(lane " << VectorList.LaneIndex << ") " << VectorList.Count << " * " << VectorList.RegNum << ">"; break; case k_Token: OS << "'" << getToken() << "'"; break; case k_VectorIndex: OS << "<vectorindex " << getVectorIndex() << ">"; break; } } /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } bool ARMAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { const AsmToken &Tok = getParser().getTok(); StartLoc = Tok.getLoc(); EndLoc = Tok.getEndLoc(); RegNo = tryParseRegister(); return (RegNo == (unsigned)-1); } /// Try to parse a register name. The token must be an Identifier when called, /// and if it is a register name the token is eaten and the register number is /// returned. Otherwise return -1. /// int ARMAsmParser::tryParseRegister() { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return -1; std::string lowerCase = Tok.getString().lower(); unsigned RegNum = MatchRegisterName(lowerCase); if (!RegNum) { RegNum = StringSwitch<unsigned>(lowerCase) .Case("r13", ARM::SP) .Case("r14", ARM::LR) .Case("r15", ARM::PC) .Case("ip", ARM::R12) // Additional register name aliases for 'gas' compatibility. .Case("a1", ARM::R0) .Case("a2", ARM::R1) .Case("a3", ARM::R2) .Case("a4", ARM::R3) .Case("v1", ARM::R4) .Case("v2", ARM::R5) .Case("v3", ARM::R6) .Case("v4", ARM::R7) .Case("v5", ARM::R8) .Case("v6", ARM::R9) .Case("v7", ARM::R10) .Case("v8", ARM::R11) .Case("sb", ARM::R9) .Case("sl", ARM::R10) .Case("fp", ARM::R11) .Default(0); } if (!RegNum) { // Check for aliases registered via .req. Canonicalize to lower case. // That's more consistent since register names are case insensitive, and // it's how the original entry was passed in from MC/MCParser/AsmParser. StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); // If no match, return failure. if (Entry == RegisterReqs.end()) return -1; Parser.Lex(); // Eat identifier token. return Entry->getValue(); } // Some FPUs only have 16 D registers, so D16-D31 are invalid if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) return -1; Parser.Lex(); // Eat identifier token. return RegNum; } // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. // If a recoverable error occurs, return 1. If an irrecoverable error // occurs, return -1. An irrecoverable error is one where tokens have been // consumed in the process of trying to parse the shifter (i.e., when it is // indeed a shifter operand, but malformed). int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return -1; std::string lowerCase = Tok.getString().lower(); ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) .Case("asl", ARM_AM::lsl) .Case("lsl", ARM_AM::lsl) .Case("lsr", ARM_AM::lsr) .Case("asr", ARM_AM::asr) .Case("ror", ARM_AM::ror) .Case("rrx", ARM_AM::rrx) .Default(ARM_AM::no_shift); if (ShiftTy == ARM_AM::no_shift) return 1; Parser.Lex(); // Eat the operator. // The source register for the shift has already been added to the // operand list, so we need to pop it off and combine it into the shifted // register operand instead. std::unique_ptr<ARMOperand> PrevOp( (ARMOperand *)Operands.pop_back_val().release()); if (!PrevOp->isReg()) return Error(PrevOp->getStartLoc(), "shift must be of a register"); int SrcReg = PrevOp->getReg(); SMLoc EndLoc; int64_t Imm = 0; int ShiftReg = 0; if (ShiftTy == ARM_AM::rrx) { // RRX Doesn't have an explicit shift amount. The encoder expects // the shift register to be the same as the source register. Seems odd, // but OK. ShiftReg = SrcReg; } else { // Figure out if this is shifted by a constant or a register (for non-RRX). if (Parser.getTok().is(AsmToken::Hash) || Parser.getTok().is(AsmToken::Dollar)) { Parser.Lex(); // Eat hash. SMLoc ImmLoc = Parser.getTok().getLoc(); const MCExpr *ShiftExpr = nullptr; if (getParser().parseExpression(ShiftExpr, EndLoc)) { Error(ImmLoc, "invalid immediate shift value"); return -1; } // The expression must be evaluatable as an immediate. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); if (!CE) { Error(ImmLoc, "invalid immediate shift value"); return -1; } // Range check the immediate. // lsl, ror: 0 <= imm <= 31 // lsr, asr: 0 <= imm <= 32 Imm = CE->getValue(); if (Imm < 0 || ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { Error(ImmLoc, "immediate shift value out of range"); return -1; } // shift by zero is a nop. Always send it through as lsl. // ('as' compatibility) if (Imm == 0) ShiftTy = ARM_AM::lsl; } else if (Parser.getTok().is(AsmToken::Identifier)) { SMLoc L = Parser.getTok().getLoc(); EndLoc = Parser.getTok().getEndLoc(); ShiftReg = tryParseRegister(); if (ShiftReg == -1) { Error(L, "expected immediate or register in shift operand"); return -1; } } else { Error(Parser.getTok().getLoc(), "expected immediate or register in shift operand"); return -1; } } if (ShiftReg && ShiftTy != ARM_AM::rrx) Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, ShiftReg, Imm, S, EndLoc)); else Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, S, EndLoc)); return 0; } /// Try to parse a register name. The token must be an Identifier when called. /// If it's a register, an AsmOperand is created. Another AsmOperand is created /// if there is a "writeback". 'true' if it's not a register. /// /// TODO this is likely to change to allow different register types and or to /// parse for a specific register type. bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { MCAsmParser &Parser = getParser(); const AsmToken &RegTok = Parser.getTok(); int RegNo = tryParseRegister(); if (RegNo == -1) return true; Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), RegTok.getEndLoc())); const AsmToken &ExclaimTok = Parser.getTok(); if (ExclaimTok.is(AsmToken::Exclaim)) { Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), ExclaimTok.getLoc())); Parser.Lex(); // Eat exclaim token return false; } // Also check for an index operand. This is only legal for vector registers, // but that'll get caught OK in operand matching, so we don't need to // explicitly filter everything else out here. if (Parser.getTok().is(AsmToken::LBrac)) { SMLoc SIdx = Parser.getTok().getLoc(); Parser.Lex(); // Eat left bracket token. const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return true; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); if (!MCE) return TokError("immediate value expected for vector index"); if (Parser.getTok().isNot(AsmToken::RBrac)) return Error(Parser.getTok().getLoc(), "']' expected"); SMLoc E = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat right bracket token. Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), SIdx, E, getContext())); } return false; } /// MatchCoprocessorOperandName - Try to parse an coprocessor related /// instruction with a symbolic operand name. /// We accept "crN" syntax for GAS compatibility. /// <operand-name> ::= <prefix><number> /// If CoprocOp is 'c', then: /// <prefix> ::= c | cr /// If CoprocOp is 'p', then : /// <prefix> ::= p /// <number> ::= integer in range [0, 15] static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { // Use the same layout as the tablegen'erated register name matcher. Ugly, // but efficient. if (Name.size() < 2 || Name[0] != CoprocOp) return -1; Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); switch (Name.size()) { default: return -1; case 1: switch (Name[0]) { default: return -1; case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; } case 2: if (Name[0] != '1') return -1; switch (Name[1]) { default: return -1; // CP10 and CP11 are VFP/NEON and so vector instructions should be used. // However, old cores (v5/v6) did use them in that way. case '0': return 10; case '1': return 11; case '2': return 12; case '3': return 13; case '4': return 14; case '5': return 15; } } } /// parseITCondCode - Try to parse a condition code for an IT instruction. ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseITCondCode(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Identifier)) return MatchOperand_NoMatch; unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) .Case("eq", ARMCC::EQ) .Case("ne", ARMCC::NE) .Case("hs", ARMCC::HS) .Case("cs", ARMCC::HS) .Case("lo", ARMCC::LO) .Case("cc", ARMCC::LO) .Case("mi", ARMCC::MI) .Case("pl", ARMCC::PL) .Case("vs", ARMCC::VS) .Case("vc", ARMCC::VC) .Case("hi", ARMCC::HI) .Case("ls", ARMCC::LS) .Case("ge", ARMCC::GE) .Case("lt", ARMCC::LT) .Case("gt", ARMCC::GT) .Case("le", ARMCC::LE) .Case("al", ARMCC::AL) .Default(~0U); if (CC == ~0U) return MatchOperand_NoMatch; Parser.Lex(); // Eat the token. Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); return MatchOperand_Success; } /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The /// token must be an Identifier when called, and if it is a coprocessor /// number, the token is eaten and the operand is added to the operand list. ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return MatchOperand_NoMatch; int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); if (Num == -1) return MatchOperand_NoMatch; // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); return MatchOperand_Success; } /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The /// token must be an Identifier when called, and if it is a coprocessor /// number, the token is eaten and the operand is added to the operand list. ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return MatchOperand_NoMatch; int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); if (Reg == -1) return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); return MatchOperand_Success; } /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. /// coproc_option : '{' imm0_255 '}' ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); // If this isn't a '{', this isn't a coprocessor immediate operand. if (Parser.getTok().isNot(AsmToken::LCurly)) return MatchOperand_NoMatch; Parser.Lex(); // Eat the '{' const MCExpr *Expr; SMLoc Loc = Parser.getTok().getLoc(); if (getParser().parseExpression(Expr)) { Error(Loc, "illegal expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); return MatchOperand_ParseFail; } int Val = CE->getValue(); // Check for and consume the closing '}' if (Parser.getTok().isNot(AsmToken::RCurly)) return MatchOperand_ParseFail; SMLoc E = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat the '}' Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); return MatchOperand_Success; } // For register list parsing, we need to map from raw GPR register numbering // to the enumeration values. The enumeration values aren't sorted by // register number due to our using "sp", "lr" and "pc" as canonical names. static unsigned getNextRegister(unsigned Reg) { // If this is a GPR, we need to do it manually, otherwise we can rely // on the sort ordering of the enumeration since the other reg-classes // are sane. if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) return Reg + 1; switch(Reg) { default: llvm_unreachable("Invalid GPR number!"); case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; } } // Return the low-subreg of a given Q register. static unsigned getDRegFromQReg(unsigned QReg) { switch (QReg) { default: llvm_unreachable("expected a Q register!"); case ARM::Q0: return ARM::D0; case ARM::Q1: return ARM::D2; case ARM::Q2: return ARM::D4; case ARM::Q3: return ARM::D6; case ARM::Q4: return ARM::D8; case ARM::Q5: return ARM::D10; case ARM::Q6: return ARM::D12; case ARM::Q7: return ARM::D14; case ARM::Q8: return ARM::D16; case ARM::Q9: return ARM::D18; case ARM::Q10: return ARM::D20; case ARM::Q11: return ARM::D22; case ARM::Q12: return ARM::D24; case ARM::Q13: return ARM::D26; case ARM::Q14: return ARM::D28; case ARM::Q15: return ARM::D30; } } /// Parse a register list. bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { MCAsmParser &Parser = getParser(); assert(Parser.getTok().is(AsmToken::LCurly) && "Token is not a Left Curly Brace"); SMLoc S = Parser.getTok().getLoc(); Parser.Lex(); // Eat '{' token. SMLoc RegLoc = Parser.getTok().getLoc(); // Check the first register in the list to see what register class // this is a list of. int Reg = tryParseRegister(); if (Reg == -1) return Error(RegLoc, "register expected"); // The reglist instructions have at most 16 registers, so reserve // space for that many. int EReg = 0; SmallVector<std::pair<unsigned, unsigned>, 16> Registers; // Allow Q regs and just interpret them as the two D sub-registers. if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { Reg = getDRegFromQReg(Reg); EReg = MRI->getEncodingValue(Reg); Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); ++Reg; } const MCRegisterClass *RC; if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; else return Error(RegLoc, "invalid register in register list"); // Store the register. EReg = MRI->getEncodingValue(Reg); Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); // This starts immediately after the first register token in the list, // so we can see either a comma or a minus (range separator) as a legal // next token. while (Parser.getTok().is(AsmToken::Comma) || Parser.getTok().is(AsmToken::Minus)) { if (Parser.getTok().is(AsmToken::Minus)) { Parser.Lex(); // Eat the minus. SMLoc AfterMinusLoc = Parser.getTok().getLoc(); int EndReg = tryParseRegister(); if (EndReg == -1) return Error(AfterMinusLoc, "register expected"); // Allow Q regs and just interpret them as the two D sub-registers. if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) EndReg = getDRegFromQReg(EndReg) + 1; // If the register is the same as the start reg, there's nothing // more to do. if (Reg == EndReg) continue; // The register must be in the same register class as the first. if (!RC->contains(EndReg)) return Error(AfterMinusLoc, "invalid register in register list"); // Ranges must go from low to high. if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) return Error(AfterMinusLoc, "bad range in register list"); // Add all the registers in the range to the register list. while (Reg != EndReg) { Reg = getNextRegister(Reg); EReg = MRI->getEncodingValue(Reg); Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); } continue; } Parser.Lex(); // Eat the comma. RegLoc = Parser.getTok().getLoc(); int OldReg = Reg; const AsmToken RegTok = Parser.getTok(); Reg = tryParseRegister(); if (Reg == -1) return Error(RegLoc, "register expected"); // Allow Q regs and just interpret them as the two D sub-registers. bool isQReg = false; if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { Reg = getDRegFromQReg(Reg); isQReg = true; } // The register must be in the same register class as the first. if (!RC->contains(Reg)) return Error(RegLoc, "invalid register in register list"); // List must be monotonically increasing. if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) Warning(RegLoc, "register list not in ascending order"); else return Error(RegLoc, "register list not in ascending order"); } if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { Warning(RegLoc, "duplicated register (" + RegTok.getString() + ") in register list"); continue; } // VFP register lists must also be contiguous. if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && Reg != OldReg + 1) return Error(RegLoc, "non-contiguous register range"); EReg = MRI->getEncodingValue(Reg); Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); if (isQReg) { EReg = MRI->getEncodingValue(++Reg); Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); } } if (Parser.getTok().isNot(AsmToken::RCurly)) return Error(Parser.getTok().getLoc(), "'}' expected"); SMLoc E = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat '}' token. // Push the register list operand. Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); // The ARM system instruction variants for LDM/STM have a '^' token here. if (Parser.getTok().is(AsmToken::Caret)) { Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); Parser.Lex(); // Eat '^' token. } return false; } // Helper function to parse the lane index for vector lists. ARMAsmParser::OperandMatchResultTy ARMAsmParser:: parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { MCAsmParser &Parser = getParser(); Index = 0; // Always return a defined index value. if (Parser.getTok().is(AsmToken::LBrac)) { Parser.Lex(); // Eat the '['. if (Parser.getTok().is(AsmToken::RBrac)) { // "Dn[]" is the 'all lanes' syntax. LaneKind = AllLanes; EndLoc = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat the ']'. return MatchOperand_Success; } // There's an optional '#' token here. Normally there wouldn't be, but // inline assemble puts one in, and it's friendly to accept that. if (Parser.getTok().is(AsmToken::Hash)) Parser.Lex(); // Eat '#' or '$'. const MCExpr *LaneIndex; SMLoc Loc = Parser.getTok().getLoc(); if (getParser().parseExpression(LaneIndex)) { Error(Loc, "illegal expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); if (!CE) { Error(Loc, "lane index must be empty or an integer"); return MatchOperand_ParseFail; } if (Parser.getTok().isNot(AsmToken::RBrac)) { Error(Parser.getTok().getLoc(), "']' expected"); return MatchOperand_ParseFail; } EndLoc = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat the ']'. int64_t Val = CE->getValue(); // FIXME: Make this range check context sensitive for .8, .16, .32. if (Val < 0 || Val > 7) { Error(Parser.getTok().getLoc(), "lane index out of range"); return MatchOperand_ParseFail; } Index = Val; LaneKind = IndexedLane; return MatchOperand_Success; } LaneKind = NoLanes; return MatchOperand_Success; } // parse a vector register list ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseVectorList(OperandVector &Operands) { MCAsmParser &Parser = getParser(); VectorLaneTy LaneKind; unsigned LaneIndex; SMLoc S = Parser.getTok().getLoc(); // As an extension (to match gas), support a plain D register or Q register // (without encosing curly braces) as a single or double entry list, // respectively. if (Parser.getTok().is(AsmToken::Identifier)) { SMLoc E = Parser.getTok().getEndLoc(); int Reg = tryParseRegister(); if (Reg == -1) return MatchOperand_NoMatch; if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); if (Res != MatchOperand_Success) return Res; switch (LaneKind) { case NoLanes: Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); break; case AllLanes: Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, S, E)); break; case IndexedLane: Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, LaneIndex, false, S, E)); break; } return MatchOperand_Success; } if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { Reg = getDRegFromQReg(Reg); OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); if (Res != MatchOperand_Success) return Res; switch (LaneKind) { case NoLanes: Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, &ARMMCRegisterClasses[ARM::DPairRegClassID]); Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); break; case AllLanes: Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, &ARMMCRegisterClasses[ARM::DPairRegClassID]); Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, S, E)); break; case IndexedLane: Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, LaneIndex, false, S, E)); break; } return MatchOperand_Success; } Error(S, "vector register expected"); return MatchOperand_ParseFail; } if (Parser.getTok().isNot(AsmToken::LCurly)) return MatchOperand_NoMatch; Parser.Lex(); // Eat '{' token. SMLoc RegLoc = Parser.getTok().getLoc(); int Reg = tryParseRegister(); if (Reg == -1) { Error(RegLoc, "register expected"); return MatchOperand_ParseFail; } unsigned Count = 1; int Spacing = 0; unsigned FirstReg = Reg; // The list is of D registers, but we also allow Q regs and just interpret // them as the two D sub-registers. if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { FirstReg = Reg = getDRegFromQReg(Reg); Spacing = 1; // double-spacing requires explicit D registers, otherwise // it's ambiguous with four-register single spaced. ++Reg; ++Count; } SMLoc E; if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) return MatchOperand_ParseFail; while (Parser.getTok().is(AsmToken::Comma) || Parser.getTok().is(AsmToken::Minus)) { if (Parser.getTok().is(AsmToken::Minus)) { if (!Spacing) Spacing = 1; // Register range implies a single spaced list. else if (Spacing == 2) { Error(Parser.getTok().getLoc(), "sequential registers in double spaced list"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat the minus. SMLoc AfterMinusLoc = Parser.getTok().getLoc(); int EndReg = tryParseRegister(); if (EndReg == -1) { Error(AfterMinusLoc, "register expected"); return MatchOperand_ParseFail; } // Allow Q regs and just interpret them as the two D sub-registers. if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) EndReg = getDRegFromQReg(EndReg) + 1; // If the register is the same as the start reg, there's nothing // more to do. if (Reg == EndReg) continue; // The register must be in the same register class as the first. if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { Error(AfterMinusLoc, "invalid register in register list"); return MatchOperand_ParseFail; } // Ranges must go from low to high. if (Reg > EndReg) { Error(AfterMinusLoc, "bad range in register list"); return MatchOperand_ParseFail; } // Parse the lane specifier if present. VectorLaneTy NextLaneKind; unsigned NextLaneIndex; if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) return MatchOperand_ParseFail; if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { Error(AfterMinusLoc, "mismatched lane index in register list"); return MatchOperand_ParseFail; } // Add all the registers in the range to the register list. Count += EndReg - Reg; Reg = EndReg; continue; } Parser.Lex(); // Eat the comma. RegLoc = Parser.getTok().getLoc(); int OldReg = Reg; Reg = tryParseRegister(); if (Reg == -1) { Error(RegLoc, "register expected"); return MatchOperand_ParseFail; } // vector register lists must be contiguous. // It's OK to use the enumeration values directly here rather, as the // VFP register classes have the enum sorted properly. // // The list is of D registers, but we also allow Q regs and just interpret // them as the two D sub-registers. if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { if (!Spacing) Spacing = 1; // Register range implies a single spaced list. else if (Spacing == 2) { Error(RegLoc, "invalid register in double-spaced list (must be 'D' register')"); return MatchOperand_ParseFail; } Reg = getDRegFromQReg(Reg); if (Reg != OldReg + 1) { Error(RegLoc, "non-contiguous register range"); return MatchOperand_ParseFail; } ++Reg; Count += 2; // Parse the lane specifier if present. VectorLaneTy NextLaneKind; unsigned NextLaneIndex; SMLoc LaneLoc = Parser.getTok().getLoc(); if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) return MatchOperand_ParseFail; if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { Error(LaneLoc, "mismatched lane index in register list"); return MatchOperand_ParseFail; } continue; } // Normal D register. // Figure out the register spacing (single or double) of the list if // we don't know it already. if (!Spacing) Spacing = 1 + (Reg == OldReg + 2); // Just check that it's contiguous and keep going. if (Reg != OldReg + Spacing) { Error(RegLoc, "non-contiguous register range"); return MatchOperand_ParseFail; } ++Count; // Parse the lane specifier if present. VectorLaneTy NextLaneKind; unsigned NextLaneIndex; SMLoc EndLoc = Parser.getTok().getLoc(); if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) return MatchOperand_ParseFail; if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { Error(EndLoc, "mismatched lane index in register list"); return MatchOperand_ParseFail; } } if (Parser.getTok().isNot(AsmToken::RCurly)) { Error(Parser.getTok().getLoc(), "'}' expected"); return MatchOperand_ParseFail; } E = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat '}' token. switch (LaneKind) { case NoLanes: // Two-register operands have been converted to the // composite register classes. if (Count == 2) { const MCRegisterClass *RC = (Spacing == 1) ? &ARMMCRegisterClasses[ARM::DPairRegClassID] : &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); } Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, (Spacing == 2), S, E)); break; case AllLanes: // Two-register operands have been converted to the // composite register classes. if (Count == 2) { const MCRegisterClass *RC = (Spacing == 1) ? &ARMMCRegisterClasses[ARM::DPairRegClassID] : &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); } Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, (Spacing == 2), S, E)); break; case IndexedLane: Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, LaneIndex, (Spacing == 2), S, E)); break; } return MatchOperand_Success; } /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); unsigned Opt; if (Tok.is(AsmToken::Identifier)) { StringRef OptStr = Tok.getString(); Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) .Case("sy", ARM_MB::SY) .Case("st", ARM_MB::ST) .Case("ld", ARM_MB::LD) .Case("sh", ARM_MB::ISH) .Case("ish", ARM_MB::ISH) .Case("shst", ARM_MB::ISHST) .Case("ishst", ARM_MB::ISHST) .Case("ishld", ARM_MB::ISHLD) .Case("nsh", ARM_MB::NSH) .Case("un", ARM_MB::NSH) .Case("nshst", ARM_MB::NSHST) .Case("nshld", ARM_MB::NSHLD) .Case("unst", ARM_MB::NSHST) .Case("osh", ARM_MB::OSH) .Case("oshst", ARM_MB::OSHST) .Case("oshld", ARM_MB::OSHLD) .Default(~0U); // ishld, oshld, nshld and ld are only available from ARMv8. if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) Opt = ~0U; if (Opt == ~0U) return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. } else if (Tok.is(AsmToken::Hash) || Tok.is(AsmToken::Dollar) || Tok.is(AsmToken::Integer)) { if (Parser.getTok().isNot(AsmToken::Integer)) Parser.Lex(); // Eat '#' or '$'. SMLoc Loc = Parser.getTok().getLoc(); const MCExpr *MemBarrierID; if (getParser().parseExpression(MemBarrierID)) { Error(Loc, "illegal expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); if (!CE) { Error(Loc, "constant expression expected"); return MatchOperand_ParseFail; } int Val = CE->getValue(); if (Val & ~0xf) { Error(Loc, "immediate value out of range"); return MatchOperand_ParseFail; } Opt = ARM_MB::RESERVED_0 + Val; } else return MatchOperand_ParseFail; Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); return MatchOperand_Success; } /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); unsigned Opt; if (Tok.is(AsmToken::Identifier)) { StringRef OptStr = Tok.getString(); if (OptStr.equals_lower("sy")) Opt = ARM_ISB::SY; else return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. } else if (Tok.is(AsmToken::Hash) || Tok.is(AsmToken::Dollar) || Tok.is(AsmToken::Integer)) { if (Parser.getTok().isNot(AsmToken::Integer)) Parser.Lex(); // Eat '#' or '$'. SMLoc Loc = Parser.getTok().getLoc(); const MCExpr *ISBarrierID; if (getParser().parseExpression(ISBarrierID)) { Error(Loc, "illegal expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); if (!CE) { Error(Loc, "constant expression expected"); return MatchOperand_ParseFail; } int Val = CE->getValue(); if (Val & ~0xf) { Error(Loc, "immediate value out of range"); return MatchOperand_ParseFail; } Opt = ARM_ISB::RESERVED_0 + Val; } else return MatchOperand_ParseFail; Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( (ARM_ISB::InstSyncBOpt)Opt, S)); return MatchOperand_Success; } /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Identifier)) return MatchOperand_NoMatch; StringRef IFlagsStr = Tok.getString(); // An iflags string of "none" is interpreted to mean that none of the AIF // bits are set. Not a terribly useful instruction, but a valid encoding. unsigned IFlags = 0; if (IFlagsStr != "none") { for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) .Case("a", ARM_PROC::A) .Case("i", ARM_PROC::I) .Case("f", ARM_PROC::F) .Default(~0U); // If some specific iflag is already set, it means that some letter is // present more than once, this is not acceptable. if (Flag == ~0U || (IFlags & Flag)) return MatchOperand_NoMatch; IFlags |= Flag; } } Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); return MatchOperand_Success; } /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Identifier)) return MatchOperand_NoMatch; StringRef Mask = Tok.getString(); if (isMClass()) { // See ARMv6-M 10.1.1 std::string Name = Mask.lower(); unsigned FlagsVal = StringSwitch<unsigned>(Name) // Note: in the documentation: // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias // for MSR APSR_nzcvq. // but we do make it an alias here. This is so to get the "mask encoding" // bits correct on MSR APSR writes. // // FIXME: Note the 0xc00 "mask encoding" bits version of the registers // should really only be allowed when writing a special register. Note // they get dropped in the MRS instruction reading a special register as // the SYSm field is only 8 bits. .Case("apsr", 0x800) .Case("apsr_nzcvq", 0x800) .Case("apsr_g", 0x400) .Case("apsr_nzcvqg", 0xc00) .Case("iapsr", 0x801) .Case("iapsr_nzcvq", 0x801) .Case("iapsr_g", 0x401) .Case("iapsr_nzcvqg", 0xc01) .Case("eapsr", 0x802) .Case("eapsr_nzcvq", 0x802) .Case("eapsr_g", 0x402) .Case("eapsr_nzcvqg", 0xc02) .Case("xpsr", 0x803) .Case("xpsr_nzcvq", 0x803) .Case("xpsr_g", 0x403) .Case("xpsr_nzcvqg", 0xc03) .Case("ipsr", 0x805) .Case("epsr", 0x806) .Case("iepsr", 0x807) .Case("msp", 0x808) .Case("psp", 0x809) .Case("primask", 0x810) .Case("basepri", 0x811) .Case("basepri_max", 0x812) .Case("faultmask", 0x813) .Case("control", 0x814) .Default(~0U); if (FlagsVal == ~0U) return MatchOperand_NoMatch; if (!hasDSP() && (FlagsVal & 0x400)) // The _g and _nzcvqg versions are only valid if the DSP extension is // available. return MatchOperand_NoMatch; if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) // basepri, basepri_max and faultmask only valid for V7m. return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); return MatchOperand_Success; } // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" size_t Start = 0, Next = Mask.find('_'); StringRef Flags = ""; std::string SpecReg = Mask.slice(Start, Next).lower(); if (Next != StringRef::npos) Flags = Mask.slice(Next+1, Mask.size()); // FlagsVal contains the complete mask: // 3-0: Mask // 4: Special Reg (cpsr, apsr => 0; spsr => 1) unsigned FlagsVal = 0; if (SpecReg == "apsr") { FlagsVal = StringSwitch<unsigned>(Flags) .Case("nzcvq", 0x8) // same as CPSR_f .Case("g", 0x4) // same as CPSR_s .Case("nzcvqg", 0xc) // same as CPSR_fs .Default(~0U); if (FlagsVal == ~0U) { if (!Flags.empty()) return MatchOperand_NoMatch; else FlagsVal = 8; // No flag } } else if (SpecReg == "cpsr" || SpecReg == "spsr") { // cpsr_all is an alias for cpsr_fc, as is plain cpsr. if (Flags == "all" || Flags == "") Flags = "fc"; for (int i = 0, e = Flags.size(); i != e; ++i) { unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) .Case("c", 1) .Case("x", 2) .Case("s", 4) .Case("f", 8) .Default(~0U); // If some specific flag is already set, it means that some letter is // present more than once, this is not acceptable. if (FlagsVal == ~0U || (FlagsVal & Flag)) return MatchOperand_NoMatch; FlagsVal |= Flag; } } else // No match for special register. return MatchOperand_NoMatch; // Special register without flags is NOT equivalent to "fc" flags. // NOTE: This is a divergence from gas' behavior. Uncommenting the following // two lines would enable gas compatibility at the expense of breaking // round-tripping. // // if (!FlagsVal) // FlagsVal = 0x9; // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) if (SpecReg == "spsr") FlagsVal |= 16; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); return MatchOperand_Success; } /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for /// use in the MRS/MSR instructions added to support virtualization. ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Identifier)) return MatchOperand_NoMatch; StringRef RegName = Tok.getString(); // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM // and bit 5 is R. unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) .Case("r8_usr", 0x00) .Case("r9_usr", 0x01) .Case("r10_usr", 0x02) .Case("r11_usr", 0x03) .Case("r12_usr", 0x04) .Case("sp_usr", 0x05) .Case("lr_usr", 0x06) .Case("r8_fiq", 0x08) .Case("r9_fiq", 0x09) .Case("r10_fiq", 0x0a) .Case("r11_fiq", 0x0b) .Case("r12_fiq", 0x0c) .Case("sp_fiq", 0x0d) .Case("lr_fiq", 0x0e) .Case("lr_irq", 0x10) .Case("sp_irq", 0x11) .Case("lr_svc", 0x12) .Case("sp_svc", 0x13) .Case("lr_abt", 0x14) .Case("sp_abt", 0x15) .Case("lr_und", 0x16) .Case("sp_und", 0x17) .Case("lr_mon", 0x1c) .Case("sp_mon", 0x1d) .Case("elr_hyp", 0x1e) .Case("sp_hyp", 0x1f) .Case("spsr_fiq", 0x2e) .Case("spsr_irq", 0x30) .Case("spsr_svc", 0x32) .Case("spsr_abt", 0x34) .Case("spsr_und", 0x36) .Case("spsr_mon", 0x3c) .Case("spsr_hyp", 0x3e) .Default(~0U); if (Encoding == ~0U) return MatchOperand_NoMatch; Parser.Lex(); // Eat identifier token. Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); return MatchOperand_Success; } ARMAsmParser::OperandMatchResultTy ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, int High) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) { Error(Parser.getTok().getLoc(), Op + " operand expected."); return MatchOperand_ParseFail; } StringRef ShiftName = Tok.getString(); std::string LowerOp = Op.lower(); std::string UpperOp = Op.upper(); if (ShiftName != LowerOp && ShiftName != UpperOp) { Error(Parser.getTok().getLoc(), Op + " operand expected."); return MatchOperand_ParseFail; } Parser.Lex(); // Eat shift type token. // There must be a '#' and a shift amount. if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) { Error(Parser.getTok().getLoc(), "'#' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. const MCExpr *ShiftAmount; SMLoc Loc = Parser.getTok().getLoc(); SMLoc EndLoc; if (getParser().parseExpression(ShiftAmount, EndLoc)) { Error(Loc, "illegal expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); if (!CE) { Error(Loc, "constant expression expected"); return MatchOperand_ParseFail; } int Val = CE->getValue(); if (Val < Low || Val > High) { Error(Loc, "immediate value out of range"); return MatchOperand_ParseFail; } Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); return MatchOperand_Success; } ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseSetEndImm(OperandVector &Operands) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); if (Tok.isNot(AsmToken::Identifier)) { Error(S, "'be' or 'le' operand expected"); return MatchOperand_ParseFail; } int Val = StringSwitch<int>(Tok.getString().lower()) .Case("be", 1) .Case("le", 0) .Default(-1); Parser.Lex(); // Eat the token. if (Val == -1) { Error(S, "'be' or 'le' operand expected"); return MatchOperand_ParseFail; } Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, Tok.getEndLoc())); return MatchOperand_Success; } /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT /// instructions. Legal values are: /// lsl #n 'n' in [0,31] /// asr #n 'n' in [1,32] /// n == 32 encoded as n == 0. ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseShifterImm(OperandVector &Operands) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); if (Tok.isNot(AsmToken::Identifier)) { Error(S, "shift operator 'asr' or 'lsl' expected"); return MatchOperand_ParseFail; } StringRef ShiftName = Tok.getString(); bool isASR; if (ShiftName == "lsl" || ShiftName == "LSL") isASR = false; else if (ShiftName == "asr" || ShiftName == "ASR") isASR = true; else { Error(S, "shift operator 'asr' or 'lsl' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat the operator. // A '#' and a shift amount. if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) { Error(Parser.getTok().getLoc(), "'#' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. SMLoc ExLoc = Parser.getTok().getLoc(); const MCExpr *ShiftAmount; SMLoc EndLoc; if (getParser().parseExpression(ShiftAmount, EndLoc)) { Error(ExLoc, "malformed shift expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); if (!CE) { Error(ExLoc, "shift amount must be an immediate"); return MatchOperand_ParseFail; } int64_t Val = CE->getValue(); if (isASR) { // Shift amount must be in [1,32] if (Val < 1 || Val > 32) { Error(ExLoc, "'asr' shift amount must be in range [1,32]"); return MatchOperand_ParseFail; } // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. if (isThumb() && Val == 32) { Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); return MatchOperand_ParseFail; } if (Val == 32) Val = 0; } else { // Shift amount must be in [1,32] if (Val < 0 || Val > 31) { Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); return MatchOperand_ParseFail; } } Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); return MatchOperand_Success; } /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family /// of instructions. Legal values are: /// ror #n 'n' in {0, 8, 16, 24} ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseRotImm(OperandVector &Operands) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); if (Tok.isNot(AsmToken::Identifier)) return MatchOperand_NoMatch; StringRef ShiftName = Tok.getString(); if (ShiftName != "ror" && ShiftName != "ROR") return MatchOperand_NoMatch; Parser.Lex(); // Eat the operator. // A '#' and a rotate amount. if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) { Error(Parser.getTok().getLoc(), "'#' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. SMLoc ExLoc = Parser.getTok().getLoc(); const MCExpr *ShiftAmount; SMLoc EndLoc; if (getParser().parseExpression(ShiftAmount, EndLoc)) { Error(ExLoc, "malformed rotate expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); if (!CE) { Error(ExLoc, "rotate amount must be an immediate"); return MatchOperand_ParseFail; } int64_t Val = CE->getValue(); // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) // normally, zero is represented in asm by omitting the rotate operand // entirely. if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); return MatchOperand_ParseFail; } Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); return MatchOperand_Success; } ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseModImm(OperandVector &Operands) { MCAsmParser &Parser = getParser(); MCAsmLexer &Lexer = getLexer(); int64_t Imm1, Imm2; SMLoc S = Parser.getTok().getLoc(); // 1) A mod_imm operand can appear in the place of a register name: // add r0, #mod_imm // add r0, r0, #mod_imm // to correctly handle the latter, we bail out as soon as we see an // identifier. // // 2) Similarly, we do not want to parse into complex operands: // mov r0, #mod_imm // mov r0, :lower16:(_foo) if (Parser.getTok().is(AsmToken::Identifier) || Parser.getTok().is(AsmToken::Colon)) return MatchOperand_NoMatch; // Hash (dollar) is optional as per the ARMARM if (Parser.getTok().is(AsmToken::Hash) || Parser.getTok().is(AsmToken::Dollar)) { // Avoid parsing into complex operands (#:) if (Lexer.peekTok().is(AsmToken::Colon)) return MatchOperand_NoMatch; // Eat the hash (dollar) Parser.Lex(); } SMLoc Sx1, Ex1; Sx1 = Parser.getTok().getLoc(); const MCExpr *Imm1Exp; if (getParser().parseExpression(Imm1Exp, Ex1)) { Error(Sx1, "malformed expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); if (CE) { // Immediate must fit within 32-bits Imm1 = CE->getValue(); int Enc = ARM_AM::getSOImmVal(Imm1); if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { // We have a match! Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), (Enc & 0xF00) >> 7, Sx1, Ex1)); return MatchOperand_Success; } // We have parsed an immediate which is not for us, fallback to a plain // immediate. This can happen for instruction aliases. For an example, // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite // instruction with a mod_imm operand. The alias is defined such that the // parser method is shared, that's why we have to do this here. if (Parser.getTok().is(AsmToken::EndOfStatement)) { Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); return MatchOperand_Success; } } else { // Operands like #(l1 - l2) can only be evaluated at a later stage (via an // MCFixup). Fallback to a plain immediate. Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); return MatchOperand_Success; } // From this point onward, we expect the input to be a (#bits, #rot) pair if (Parser.getTok().isNot(AsmToken::Comma)) { Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); return MatchOperand_ParseFail; } if (Imm1 & ~0xFF) { Error(Sx1, "immediate operand must a number in the range [0, 255]"); return MatchOperand_ParseFail; } // Eat the comma Parser.Lex(); // Repeat for #rot SMLoc Sx2, Ex2; Sx2 = Parser.getTok().getLoc(); // Eat the optional hash (dollar) if (Parser.getTok().is(AsmToken::Hash) || Parser.getTok().is(AsmToken::Dollar)) Parser.Lex(); const MCExpr *Imm2Exp; if (getParser().parseExpression(Imm2Exp, Ex2)) { Error(Sx2, "malformed expression"); return MatchOperand_ParseFail; } CE = dyn_cast<MCConstantExpr>(Imm2Exp); if (CE) { Imm2 = CE->getValue(); if (!(Imm2 & ~0x1E)) { // We have a match! Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); return MatchOperand_Success; } Error(Sx2, "immediate operand must an even number in the range [0, 30]"); return MatchOperand_ParseFail; } else { Error(Sx2, "constant expression expected"); return MatchOperand_ParseFail; } } ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseBitfield(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S = Parser.getTok().getLoc(); // The bitfield descriptor is really two operands, the LSB and the width. if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) { Error(Parser.getTok().getLoc(), "'#' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. const MCExpr *LSBExpr; SMLoc E = Parser.getTok().getLoc(); if (getParser().parseExpression(LSBExpr)) { Error(E, "malformed immediate expression"); return MatchOperand_ParseFail; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); if (!CE) { Error(E, "'lsb' operand must be an immediate"); return MatchOperand_ParseFail; } int64_t LSB = CE->getValue(); // The LSB must be in the range [0,31] if (LSB < 0 || LSB > 31) { Error(E, "'lsb' operand must be in the range [0,31]"); return MatchOperand_ParseFail; } E = Parser.getTok().getLoc(); // Expect another immediate operand. if (Parser.getTok().isNot(AsmToken::Comma)) { Error(Parser.getTok().getLoc(), "too few operands"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) { Error(Parser.getTok().getLoc(), "'#' expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat hash token. const MCExpr *WidthExpr; SMLoc EndLoc; if (getParser().parseExpression(WidthExpr, EndLoc)) { Error(E, "malformed immediate expression"); return MatchOperand_ParseFail; } CE = dyn_cast<MCConstantExpr>(WidthExpr); if (!CE) { Error(E, "'width' operand must be an immediate"); return MatchOperand_ParseFail; } int64_t Width = CE->getValue(); // The LSB must be in the range [1,32-lsb] if (Width < 1 || Width > 32 - LSB) { Error(E, "'width' operand must be in the range [1,32-lsb]"); return MatchOperand_ParseFail; } Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); return MatchOperand_Success; } ARMAsmParser::OperandMatchResultTy ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { // Check for a post-index addressing register operand. Specifically: // postidx_reg := '+' register {, shift} // | '-' register {, shift} // | register {, shift} // This method must return MatchOperand_NoMatch without consuming any tokens // in the case where there is no match, as other alternatives take other // parse methods. MCAsmParser &Parser = getParser(); AsmToken Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); bool haveEaten = false; bool isAdd = true; if (Tok.is(AsmToken::Plus)) { Parser.Lex(); // Eat the '+' token. haveEaten = true; } else if (Tok.is(AsmToken::Minus)) { Parser.Lex(); // Eat the '-' token. isAdd = false; haveEaten = true; } SMLoc E = Parser.getTok().getEndLoc(); int Reg = tryParseRegister(); if (Reg == -1) { if (!haveEaten) return MatchOperand_NoMatch; Error(Parser.getTok().getLoc(), "register expected"); return MatchOperand_ParseFail; } ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; unsigned ShiftImm = 0; if (Parser.getTok().is(AsmToken::Comma)) { Parser.Lex(); // Eat the ','. if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) return MatchOperand_ParseFail; // FIXME: Only approximates end...may include intervening whitespace. E = Parser.getTok().getLoc(); } Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, ShiftImm, S, E)); return MatchOperand_Success; } ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseAM3Offset(OperandVector &Operands) { // Check for a post-index addressing register operand. Specifically: // am3offset := '+' register // | '-' register // | register // | # imm // | # + imm // | # - imm // This method must return MatchOperand_NoMatch without consuming any tokens // in the case where there is no match, as other alternatives take other // parse methods. MCAsmParser &Parser = getParser(); AsmToken Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); // Do immediates first, as we always parse those if we have a '#'. if (Parser.getTok().is(AsmToken::Hash) || Parser.getTok().is(AsmToken::Dollar)) { Parser.Lex(); // Eat '#' or '$'. // Explicitly look for a '-', as we need to encode negative zero // differently. bool isNegative = Parser.getTok().is(AsmToken::Minus); const MCExpr *Offset; SMLoc E; if (getParser().parseExpression(Offset, E)) return MatchOperand_ParseFail; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); if (!CE) { Error(S, "constant expression expected"); return MatchOperand_ParseFail; } // Negative zero is encoded as the flag value INT32_MIN. int32_t Val = CE->getValue(); if (isNegative && Val == 0) Val = INT32_MIN; Operands.push_back( ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); return MatchOperand_Success; } bool haveEaten = false; bool isAdd = true; if (Tok.is(AsmToken::Plus)) { Parser.Lex(); // Eat the '+' token. haveEaten = true; } else if (Tok.is(AsmToken::Minus)) { Parser.Lex(); // Eat the '-' token. isAdd = false; haveEaten = true; } Tok = Parser.getTok(); int Reg = tryParseRegister(); if (Reg == -1) { if (!haveEaten) return MatchOperand_NoMatch; Error(Tok.getLoc(), "register expected"); return MatchOperand_ParseFail; } Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 0, S, Tok.getEndLoc())); return MatchOperand_Success; } /// Convert parsed operands to MCInst. Needed here because this instruction /// only has two register operands, but multiplication is commutative so /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, const OperandVector &Operands) { ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); // If we have a three-operand form, make sure to set Rn to be the operand // that isn't the same as Rd. unsigned RegOp = 4; if (Operands.size() == 6 && ((ARMOperand &)*Operands[4]).getReg() == ((ARMOperand &)*Operands[3]).getReg()) RegOp = 5; ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); Inst.addOperand(Inst.getOperand(0)); ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); } void ARMAsmParser::cvtThumbBranches(MCInst &Inst, const OperandVector &Operands) { int CondOp = -1, ImmOp = -1; switch(Inst.getOpcode()) { case ARM::tB: case ARM::tBcc: CondOp = 1; ImmOp = 2; break; case ARM::t2B: case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); } // first decide whether or not the branch should be conditional // by looking at it's location relative to an IT block if(inITBlock()) { // inside an IT block we cannot have any conditional branches. any // such instructions needs to be converted to unconditional form switch(Inst.getOpcode()) { case ARM::tBcc: Inst.setOpcode(ARM::tB); break; case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; } } else { // outside IT blocks we can only have unconditional branches with AL // condition code or conditional branches with non-AL condition code unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); switch(Inst.getOpcode()) { case ARM::tB: case ARM::tBcc: Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); break; case ARM::t2B: case ARM::t2Bcc: Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); break; } } // now decide on encoding size based on branch target range switch(Inst.getOpcode()) { // classify tB as either t2B or t1B based on range of immediate operand case ARM::tB: { ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); if (!op.isSignedOffset<11, 1>() && isThumbTwo()) Inst.setOpcode(ARM::t2B); break; } // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand case ARM::tBcc: { ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); if (!op.isSignedOffset<8, 1>() && isThumbTwo()) Inst.setOpcode(ARM::t2Bcc); break; } } ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); } /// Parse an ARM memory expression, return false if successful else return true /// or an error. The first token must be a '[' when called. bool ARMAsmParser::parseMemory(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc S, E; assert(Parser.getTok().is(AsmToken::LBrac) && "Token is not a Left Bracket"); S = Parser.getTok().getLoc(); Parser.Lex(); // Eat left bracket token. const AsmToken &BaseRegTok = Parser.getTok(); int BaseRegNum = tryParseRegister(); if (BaseRegNum == -1) return Error(BaseRegTok.getLoc(), "register expected"); // The next token must either be a comma, a colon or a closing bracket. const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac)) return Error(Tok.getLoc(), "malformed memory operand"); if (Tok.is(AsmToken::RBrac)) { E = Tok.getEndLoc(); Parser.Lex(); // Eat right bracket token. Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, ARM_AM::no_shift, 0, 0, false, S, E)); // If there's a pre-indexing writeback marker, '!', just add it as a token // operand. It's rather odd, but syntactically valid. if (Parser.getTok().is(AsmToken::Exclaim)) { Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); Parser.Lex(); // Eat the '!'. } return false; } assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && "Lost colon or comma in memory operand?!"); if (Tok.is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. } // If we have a ':', it's an alignment specifier. if (Parser.getTok().is(AsmToken::Colon)) { Parser.Lex(); // Eat the ':'. E = Parser.getTok().getLoc(); SMLoc AlignmentLoc = Tok.getLoc(); const MCExpr *Expr; if (getParser().parseExpression(Expr)) return true; // The expression has to be a constant. Memory references with relocations // don't come through here, as they use the <label> forms of the relevant // instructions. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); if (!CE) return Error (E, "constant expression expected"); unsigned Align = 0; switch (CE->getValue()) { default: return Error(E, "alignment specifier must be 16, 32, 64, 128, or 256 bits"); case 16: Align = 2; break; case 32: Align = 4; break; case 64: Align = 8; break; case 128: Align = 16; break; case 256: Align = 32; break; } // Now we should have the closing ']' if (Parser.getTok().isNot(AsmToken::RBrac)) return Error(Parser.getTok().getLoc(), "']' expected"); E = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat right bracket token. // Don't worry about range checking the value here. That's handled by // the is*() predicates. Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, ARM_AM::no_shift, 0, Align, false, S, E, AlignmentLoc)); // If there's a pre-indexing writeback marker, '!', just add it as a token // operand. if (Parser.getTok().is(AsmToken::Exclaim)) { Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); Parser.Lex(); // Eat the '!'. } return false; } // If we have a '#', it's an immediate offset, else assume it's a register // offset. Be friendly and also accept a plain integer (without a leading // hash) for gas compatibility. if (Parser.getTok().is(AsmToken::Hash) || Parser.getTok().is(AsmToken::Dollar) || Parser.getTok().is(AsmToken::Integer)) { if (Parser.getTok().isNot(AsmToken::Integer)) Parser.Lex(); // Eat '#' or '$'. E = Parser.getTok().getLoc(); bool isNegative = getParser().getTok().is(AsmToken::Minus); const MCExpr *Offset; if (getParser().parseExpression(Offset)) return true; // The expression has to be a constant. Memory references with relocations // don't come through here, as they use the <label> forms of the relevant // instructions. const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); if (!CE) return Error (E, "constant expression expected"); // If the constant was #-0, represent it as INT32_MIN. int32_t Val = CE->getValue(); if (isNegative && Val == 0) CE = MCConstantExpr::create(INT32_MIN, getContext()); // Now we should have the closing ']' if (Parser.getTok().isNot(AsmToken::RBrac)) return Error(Parser.getTok().getLoc(), "']' expected"); E = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat right bracket token. // Don't worry about range checking the value here. That's handled by // the is*() predicates. Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, ARM_AM::no_shift, 0, 0, false, S, E)); // If there's a pre-indexing writeback marker, '!', just add it as a token // operand. if (Parser.getTok().is(AsmToken::Exclaim)) { Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); Parser.Lex(); // Eat the '!'. } return false; } // The register offset is optionally preceded by a '+' or '-' bool isNegative = false; if (Parser.getTok().is(AsmToken::Minus)) { isNegative = true; Parser.Lex(); // Eat the '-'. } else if (Parser.getTok().is(AsmToken::Plus)) { // Nothing to do. Parser.Lex(); // Eat the '+'. } E = Parser.getTok().getLoc(); int OffsetRegNum = tryParseRegister(); if (OffsetRegNum == -1) return Error(E, "register expected"); // If there's a shift operator, handle it. ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; unsigned ShiftImm = 0; if (Parser.getTok().is(AsmToken::Comma)) { Parser.Lex(); // Eat the ','. if (parseMemRegOffsetShift(ShiftType, ShiftImm)) return true; } // Now we should have the closing ']' if (Parser.getTok().isNot(AsmToken::RBrac)) return Error(Parser.getTok().getLoc(), "']' expected"); E = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat right bracket token. Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, ShiftType, ShiftImm, 0, isNegative, S, E)); // If there's a pre-indexing writeback marker, '!', just add it as a token // operand. if (Parser.getTok().is(AsmToken::Exclaim)) { Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); Parser.Lex(); // Eat the '!'. } return false; } /// parseMemRegOffsetShift - one of these two: /// ( lsl | lsr | asr | ror ) , # shift_amount /// rrx /// return true if it parses a shift otherwise it returns false. bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, unsigned &Amount) { MCAsmParser &Parser = getParser(); SMLoc Loc = Parser.getTok().getLoc(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return true; StringRef ShiftName = Tok.getString(); if (ShiftName == "lsl" || ShiftName == "LSL" || ShiftName == "asl" || ShiftName == "ASL") St = ARM_AM::lsl; else if (ShiftName == "lsr" || ShiftName == "LSR") St = ARM_AM::lsr; else if (ShiftName == "asr" || ShiftName == "ASR") St = ARM_AM::asr; else if (ShiftName == "ror" || ShiftName == "ROR") St = ARM_AM::ror; else if (ShiftName == "rrx" || ShiftName == "RRX") St = ARM_AM::rrx; else return Error(Loc, "illegal shift operator"); Parser.Lex(); // Eat shift type token. // rrx stands alone. Amount = 0; if (St != ARM_AM::rrx) { Loc = Parser.getTok().getLoc(); // A '#' and a shift amount. const AsmToken &HashTok = Parser.getTok(); if (HashTok.isNot(AsmToken::Hash) && HashTok.isNot(AsmToken::Dollar)) return Error(HashTok.getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. const MCExpr *Expr; if (getParser().parseExpression(Expr)) return true; // Range check the immediate. // lsl, ror: 0 <= imm <= 31 // lsr, asr: 0 <= imm <= 32 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); if (!CE) return Error(Loc, "shift amount must be an immediate"); int64_t Imm = CE->getValue(); if (Imm < 0 || ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) return Error(Loc, "immediate shift value out of range"); // If <ShiftTy> #0, turn it into a no_shift. if (Imm == 0) St = ARM_AM::lsl; // For consistency, treat lsr #32 and asr #32 as having immediate value 0. if (Imm == 32) Imm = 0; Amount = Imm; } return false; } /// parseFPImm - A floating point immediate expression operand. ARMAsmParser::OperandMatchResultTy ARMAsmParser::parseFPImm(OperandVector &Operands) { MCAsmParser &Parser = getParser(); // Anything that can accept a floating point constant as an operand // needs to go through here, as the regular parseExpression is // integer only. // // This routine still creates a generic Immediate operand, containing // a bitcast of the 64-bit floating point value. The various operands // that accept floats can check whether the value is valid for them // via the standard is*() predicates. SMLoc S = Parser.getTok().getLoc(); if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) return MatchOperand_NoMatch; // Disambiguate the VMOV forms that can accept an FP immediate. // vmov.f32 <sreg>, #imm // vmov.f64 <dreg>, #imm // vmov.f32 <dreg>, #imm @ vector f32x2 // vmov.f32 <qreg>, #imm @ vector f32x4 // // There are also the NEON VMOV instructions which expect an // integer constant. Make sure we don't try to parse an FPImm // for these: // vmov.i{8|16|32|64} <dreg|qreg>, #imm ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); bool isVmovf = TyOp.isToken() && (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64"); ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || Mnemonic.getToken() == "fconsts"); if (!(isVmovf || isFconst)) return MatchOperand_NoMatch; Parser.Lex(); // Eat '#' or '$'. // Handle negation, as that still comes through as a separate token. bool isNegative = false; if (Parser.getTok().is(AsmToken::Minus)) { isNegative = true; Parser.Lex(); } const AsmToken &Tok = Parser.getTok(); SMLoc Loc = Tok.getLoc(); if (Tok.is(AsmToken::Real) && isVmovf) { APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); // If we had a '-' in front, toggle the sign bit. IntVal ^= (uint64_t)isNegative << 31; Parser.Lex(); // Eat the token. Operands.push_back(ARMOperand::CreateImm( MCConstantExpr::create(IntVal, getContext()), S, Parser.getTok().getLoc())); return MatchOperand_Success; } // Also handle plain integers. Instructions which allow floating point // immediates also allow a raw encoded 8-bit value. if (Tok.is(AsmToken::Integer) && isFconst) { int64_t Val = Tok.getIntVal(); Parser.Lex(); // Eat the token. if (Val > 255 || Val < 0) { Error(Loc, "encoded floating point value out of range"); return MatchOperand_ParseFail; } float RealVal = ARM_AM::getFPImmFloat(Val); Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); Operands.push_back(ARMOperand::CreateImm( MCConstantExpr::create(Val, getContext()), S, Parser.getTok().getLoc())); return MatchOperand_Success; } Error(Loc, "invalid floating point immediate"); return MatchOperand_ParseFail; } /// Parse a arm instruction operand. For now this parses the operand regardless /// of the mnemonic. bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { MCAsmParser &Parser = getParser(); SMLoc S, E; // Check if the current operand has a custom associated parser, if so, try to // custom parse the operand, or fallback to the general approach. OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); if (ResTy == MatchOperand_Success) return false; // If there wasn't a custom match, try the generic matcher below. Otherwise, // there was a match, but an error occurred, in which case, just return that // the operand parsing failed. if (ResTy == MatchOperand_ParseFail) return true; switch (getLexer().getKind()) { default: Error(Parser.getTok().getLoc(), "unexpected token in operand"); return true; case AsmToken::Identifier: { // If we've seen a branch mnemonic, the next operand must be a label. This // is true even if the label is a register name. So "br r1" means branch to // label "r1". bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; if (!ExpectLabel) { if (!tryParseRegisterWithWriteBack(Operands)) return false; int Res = tryParseShiftRegister(Operands); if (Res == 0) // success return false; else if (Res == -1) // irrecoverable error return true; // If this is VMRS, check for the apsr_nzcv operand. if (Mnemonic == "vmrs" && Parser.getTok().getString().equals_lower("apsr_nzcv")) { S = Parser.getTok().getLoc(); Parser.Lex(); Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); return false; } } // Fall though for the Identifier case that is not a register or a // special name. } case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) case AsmToken::Integer: // things like 1f and 2b as a branch targets case AsmToken::String: // quoted label names. case AsmToken::Dot: { // . as a branch target // This was not a register so parse other operands that start with an // identifier (like labels) as expressions and create them as immediates. const MCExpr *IdVal; S = Parser.getTok().getLoc(); if (getParser().parseExpression(IdVal)) return true; E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); return false; } case AsmToken::LBrac: return parseMemory(Operands); case AsmToken::LCurly: return parseRegisterList(Operands); case AsmToken::Dollar: case AsmToken::Hash: { // #42 -> immediate. S = Parser.getTok().getLoc(); Parser.Lex(); if (Parser.getTok().isNot(AsmToken::Colon)) { bool isNegative = Parser.getTok().is(AsmToken::Minus); const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return true; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); if (CE) { int32_t Val = CE->getValue(); if (isNegative && Val == 0) ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); } E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); // There can be a trailing '!' on operands that we want as a separate // '!' Token operand. Handle that here. For example, the compatibility // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. if (Parser.getTok().is(AsmToken::Exclaim)) { Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), Parser.getTok().getLoc())); Parser.Lex(); // Eat exclaim token } return false; } // w/ a ':' after the '#', it's just like a plain ':'. // FALLTHROUGH } case AsmToken::Colon: { S = Parser.getTok().getLoc(); // ":lower16:" and ":upper16:" expression prefixes // FIXME: Check it's an expression prefix, // e.g. (FOO - :lower16:BAR) isn't legal. ARMMCExpr::VariantKind RefKind; if (parsePrefix(RefKind)) return true; const MCExpr *SubExprVal; if (getParser().parseExpression(SubExprVal)) return true; const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, getContext()); E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); return false; } case AsmToken::Equal: { S = Parser.getTok().getLoc(); if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) return Error(S, "unexpected token in operand"); Parser.Lex(); // Eat '=' const MCExpr *SubExprVal; if (getParser().parseExpression(SubExprVal)) return true; E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal, S); Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E)); return false; } } } // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. // :lower16: and :upper16:. bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { MCAsmParser &Parser = getParser(); RefKind = ARMMCExpr::VK_ARM_None; // consume an optional '#' (GNU compatibility) if (getLexer().is(AsmToken::Hash)) Parser.Lex(); // :lower16: and :upper16: modifiers assert(getLexer().is(AsmToken::Colon) && "expected a :"); Parser.Lex(); // Eat ':' if (getLexer().isNot(AsmToken::Identifier)) { Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); return true; } enum { COFF = (1 << MCObjectFileInfo::IsCOFF), ELF = (1 << MCObjectFileInfo::IsELF), MACHO = (1 << MCObjectFileInfo::IsMachO) }; static const struct PrefixEntry { const char *Spelling; ARMMCExpr::VariantKind VariantKind; uint8_t SupportedFormats; } PrefixEntries[] = { { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, }; StringRef IDVal = Parser.getTok().getIdentifier(); const auto &Prefix = std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), [&IDVal](const PrefixEntry &PE) { return PE.Spelling == IDVal; }); if (Prefix == std::end(PrefixEntries)) { Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); return true; } uint8_t CurrentFormat; switch (getContext().getObjectFileInfo()->getObjectFileType()) { case MCObjectFileInfo::IsMachO: CurrentFormat = MACHO; break; case MCObjectFileInfo::IsELF: CurrentFormat = ELF; break; case MCObjectFileInfo::IsCOFF: CurrentFormat = COFF; break; } if (~Prefix->SupportedFormats & CurrentFormat) { Error(Parser.getTok().getLoc(), "cannot represent relocation in the current file format"); return true; } RefKind = Prefix->VariantKind; Parser.Lex(); if (getLexer().isNot(AsmToken::Colon)) { Error(Parser.getTok().getLoc(), "unexpected token after prefix"); return true; } Parser.Lex(); // Eat the last ':' return false; } /// \brief Given a mnemonic, split out possible predication code and carry /// setting letters to form a canonical mnemonic and flags. // // FIXME: Would be nice to autogen this. // FIXME: This is a bit of a maze of special cases. StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, bool &CarrySetting, unsigned &ProcessorIMod, StringRef &ITMask) { PredicationCode = ARMCC::AL; CarrySetting = false; ProcessorIMod = 0; // Ignore some mnemonics we know aren't predicated forms. // // FIXME: Would be nice to autogen this. if ((Mnemonic == "movs" && isThumb()) || Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || Mnemonic.startswith("vsel")) return Mnemonic; // First, split out any predication code. Ignore mnemonics we know aren't // predicated but do have a carry-set and so weren't caught above. if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && Mnemonic != "sbcs" && Mnemonic != "rscs") { unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) .Case("eq", ARMCC::EQ) .Case("ne", ARMCC::NE) .Case("hs", ARMCC::HS) .Case("cs", ARMCC::HS) .Case("lo", ARMCC::LO) .Case("cc", ARMCC::LO) .Case("mi", ARMCC::MI) .Case("pl", ARMCC::PL) .Case("vs", ARMCC::VS) .Case("vc", ARMCC::VC) .Case("hi", ARMCC::HI) .Case("ls", ARMCC::LS) .Case("ge", ARMCC::GE) .Case("lt", ARMCC::LT) .Case("gt", ARMCC::GT) .Case("le", ARMCC::LE) .Case("al", ARMCC::AL) .Default(~0U); if (CC != ~0U) { Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); PredicationCode = CC; } } // Next, determine if we have a carry setting bit. We explicitly ignore all // the instructions we know end in 's'. if (Mnemonic.endswith("s") && !(Mnemonic == "cps" || Mnemonic == "mls" || Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || (Mnemonic == "movs" && isThumb()))) { Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); CarrySetting = true; } // The "cps" instruction can have a interrupt mode operand which is glued into // the mnemonic. Check if this is the case, split it and parse the imod op if (Mnemonic.startswith("cps")) { // Split out any imod code. unsigned IMod = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) .Case("ie", ARM_PROC::IE) .Case("id", ARM_PROC::ID) .Default(~0U); if (IMod != ~0U) { Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); ProcessorIMod = IMod; } } // The "it" instruction has the condition mask on the end of the mnemonic. if (Mnemonic.startswith("it")) { ITMask = Mnemonic.slice(2, Mnemonic.size()); Mnemonic = Mnemonic.slice(0, 2); } return Mnemonic; } /// \brief Given a canonical mnemonic, determine if the instruction ever allows /// inclusion of carry set or predication code operands. // // FIXME: It would be nice to autogen this. void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode) { CanAcceptCarrySet = Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) { // These mnemonics are never predicable CanAcceptPredicationCode = false; } else if (!isThumb()) { // Some instructions are only predicable in Thumb mode CanAcceptPredicationCode = Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); } else if (isThumbOne()) { if (hasV6MOps()) CanAcceptPredicationCode = Mnemonic != "movs"; else CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; } else CanAcceptPredicationCode = true; } // \brief Some Thumb instructions have two operand forms that are not // available as three operand, convert to two operand form if possible. // // FIXME: We would really like to be able to tablegen'erate this. void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, OperandVector &Operands) { if (Operands.size() != 6) return; const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); if (!Op3.isReg() || !Op4.isReg()) return; auto Op3Reg = Op3.getReg(); auto Op4Reg = Op4.getReg(); // For most Thumb2 cases we just generate the 3 operand form and reduce // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) // won't accept SP or PC so we do the transformation here taking care // with immediate range in the 'add sp, sp #imm' case. auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); if (isThumbTwo()) { if (Mnemonic != "add") return; bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || (Op5.isReg() && Op5.getReg() == ARM::PC); if (!TryTransform) { TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || (Op5.isReg() && Op5.getReg() == ARM::SP)) && !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && Op5.isImm() && !Op5.isImm0_508s4()); } if (!TryTransform) return; } else if (!isThumbOne()) return; if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) return; // If first 2 operands of a 3 operand instruction are the same // then transform to 2 operand version of the same instruction // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' bool Transform = Op3Reg == Op4Reg; // For communtative operations, we might be able to transform if we swap // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially // as tADDrsp. const ARMOperand *LastOp = &Op5; bool Swap = false; if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && ((Mnemonic == "add" && Op4Reg != ARM::SP) || Mnemonic == "and" || Mnemonic == "eor" || Mnemonic == "adc" || Mnemonic == "orr")) { Swap = true; LastOp = &Op4; Transform = true; } // If both registers are the same then remove one of them from // the operand list, with certain exceptions. if (Transform) { // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the // 2 operand forms don't exist. if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && LastOp->isReg()) Transform = false; // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into // 3-bits because the ARMARM says not to. if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) Transform = false; } if (Transform) { if (Swap) std::swap(Op4, Op5); Operands.erase(Operands.begin() + 3); } } bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands) { // FIXME: This is all horribly hacky. We really need a better way to deal // with optional operands like this in the matcher table. // The 'mov' mnemonic is special. One variant has a cc_out operand, while // another does not. Specifically, the MOVW instruction does not. So we // special case it here and remove the defaulted (non-setting) cc_out // operand if that's the instruction we're trying to match. // // We do this as post-processing of the explicit operands rather than just // conditionally adding the cc_out in the first place because we need // to check the type of the parsed immediate operand. if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && !static_cast<ARMOperand &>(*Operands[4]).isModImm() && static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) return true; // Register-register 'add' for thumb does not have a cc_out operand // when there are only two register operands. if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && static_cast<ARMOperand &>(*Operands[3]).isReg() && static_cast<ARMOperand &>(*Operands[4]).isReg() && static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) return true; // Register-register 'add' for thumb does not have a cc_out operand // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do // have to check the immediate range here since Thumb2 has a variant // that can handle a different range and has a cc_out operand. if (((isThumb() && Mnemonic == "add") || (isThumbTwo() && Mnemonic == "sub")) && Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && static_cast<ARMOperand &>(*Operands[4]).isReg() && static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) return true; // For Thumb2, add/sub immediate does not have a cc_out operand for the // imm0_4095 variant. That's the least-preferred variant when // selecting via the generic "add" mnemonic, so to know that we // should remove the cc_out operand, we have to explicitly check that // it's not one of the other variants. Ugh. if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && static_cast<ARMOperand &>(*Operands[4]).isReg() && static_cast<ARMOperand &>(*Operands[5]).isImm()) { // Nest conditions rather than one big 'if' statement for readability. // // If both registers are low, we're in an IT block, and the immediate is // in range, we should use encoding T1 instead, which has a cc_out. if (inITBlock() && isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) return false; // Check against T3. If the second register is the PC, this is an // alternate form of ADR, which uses encoding T4, so check for that too. if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) return false; // Otherwise, we use encoding T4, which does not have a cc_out // operand. return true; } // The thumb2 multiply instruction doesn't have a CCOut register, so // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to // use the 16-bit encoding or not. if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && static_cast<ARMOperand &>(*Operands[3]).isReg() && static_cast<ARMOperand &>(*Operands[4]).isReg() && static_cast<ARMOperand &>(*Operands[5]).isReg() && // If the registers aren't low regs, the destination reg isn't the // same as one of the source regs, or the cc_out operand is zero // outside of an IT block, we have to use the 32-bit encoding, so // remove the cc_out operand. (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != static_cast<ARMOperand &>(*Operands[5]).getReg() && static_cast<ARMOperand &>(*Operands[3]).getReg() != static_cast<ARMOperand &>(*Operands[4]).getReg()))) return true; // Also check the 'mul' syntax variant that doesn't specify an explicit // destination register. if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && static_cast<ARMOperand &>(*Operands[3]).isReg() && static_cast<ARMOperand &>(*Operands[4]).isReg() && // If the registers aren't low regs or the cc_out operand is zero // outside of an IT block, we have to use the 32-bit encoding, so // remove the cc_out operand. (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || !inITBlock())) return true; // Register-register 'add/sub' for thumb does not have a cc_out operand // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't // right, this will result in better diagnostics (which operand is off) // anyway. if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && (Operands.size() == 5 || Operands.size() == 6) && static_cast<ARMOperand &>(*Operands[3]).isReg() && static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && (static_cast<ARMOperand &>(*Operands[4]).isImm() || (Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[5]).isImm()))) return true; return false; } bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands) { // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON unsigned RegIdx = 3; if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { if (static_cast<ARMOperand &>(*Operands[3]).isToken() && (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) RegIdx = 4; if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || ARMMCRegisterClasses[ARM::QPRRegClassID].contains( static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) return true; } return false; } static bool isDataTypeToken(StringRef Tok) { return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || Tok == ".f" || Tok == ".d"; } // FIXME: This bit should probably be handled via an explicit match class // in the .td files that matches the suffix instead of having it be // a literal string token the way it is now. static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); } static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, unsigned VariantID); static bool RequiresVFPRegListValidation(StringRef Inst, bool &AcceptSinglePrecisionOnly, bool &AcceptDoublePrecisionOnly) { if (Inst.size() < 7) return false; if (Inst.startswith("fldm") || Inst.startswith("fstm")) { StringRef AddressingMode = Inst.substr(4, 2); if (AddressingMode == "ia" || AddressingMode == "db" || AddressingMode == "ea" || AddressingMode == "fd") { AcceptSinglePrecisionOnly = Inst[6] == 's'; AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; return true; } } return false; } /// Parse an arm instruction mnemonic followed by its operands. bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { MCAsmParser &Parser = getParser(); // FIXME: Can this be done via tablegen in some fashion? bool RequireVFPRegisterListCheck; bool AcceptSinglePrecisionOnly; bool AcceptDoublePrecisionOnly; RequireVFPRegisterListCheck = RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, AcceptDoublePrecisionOnly); // Apply mnemonic aliases before doing anything else, as the destination // mnemonic may include suffices and we want to handle them normally. // The generic tblgen'erated code does this later, at the start of // MatchInstructionImpl(), but that's too late for aliases that include // any sort of suffix. uint64_t AvailableFeatures = getAvailableFeatures(); unsigned AssemblerDialect = getParser().getAssemblerDialect(); applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); // First check for the ARM-specific .req directive. if (Parser.getTok().is(AsmToken::Identifier) && Parser.getTok().getIdentifier() == ".req") { parseDirectiveReq(Name, NameLoc); // We always return 'error' for this, as we're done with this // statement and don't need to match the 'instruction." return true; } // Create the leading tokens for the mnemonic, split by '.' characters. size_t Start = 0, Next = Name.find('.'); StringRef Mnemonic = Name.slice(Start, Next); // Split out the predication code and carry setting flag from the mnemonic. unsigned PredicationCode; unsigned ProcessorIMod; bool CarrySetting; StringRef ITMask; Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, ProcessorIMod, ITMask); // In Thumb1, only the branch (B) instruction can be predicated. if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { Parser.eatToEndOfStatement(); return Error(NameLoc, "conditional execution not supported in Thumb1"); } Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); // Handle the IT instruction ITMask. Convert it to a bitmask. This // is the mask as it will be for the IT encoding if the conditional // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case // where the conditional bit0 is zero, the instruction post-processing // will adjust the mask accordingly. if (Mnemonic == "it") { SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); if (ITMask.size() > 3) { Parser.eatToEndOfStatement(); return Error(Loc, "too many conditions on IT instruction"); } unsigned Mask = 8; for (unsigned i = ITMask.size(); i != 0; --i) { char pos = ITMask[i - 1]; if (pos != 't' && pos != 'e') { Parser.eatToEndOfStatement(); return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); } Mask >>= 1; if (ITMask[i - 1] == 't') Mask |= 8; } Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); } // FIXME: This is all a pretty gross hack. We should automatically handle // optional operands like this via tblgen. // Next, add the CCOut and ConditionCode operands, if needed. // // For mnemonics which can ever incorporate a carry setting bit or predication // code, our matching model involves us always generating CCOut and // ConditionCode operands to match the mnemonic "as written" and then we let // the matcher deal with finding the right instruction or generating an // appropriate error. bool CanAcceptCarrySet, CanAcceptPredicationCode; getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); // If we had a carry-set on an instruction that can't do that, issue an // error. if (!CanAcceptCarrySet && CarrySetting) { Parser.eatToEndOfStatement(); return Error(NameLoc, "instruction '" + Mnemonic + "' can not set flags, but 's' suffix specified"); } // If we had a predication code on an instruction that can't do that, issue an // error. if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { Parser.eatToEndOfStatement(); return Error(NameLoc, "instruction '" + Mnemonic + "' is not predicable, but condition code specified"); } // Add the carry setting operand, if necessary. if (CanAcceptCarrySet) { SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, Loc)); } // Add the predication code operand, if necessary. if (CanAcceptPredicationCode) { SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + CarrySetting); Operands.push_back(ARMOperand::CreateCondCode( ARMCC::CondCodes(PredicationCode), Loc)); } // Add the processor imod operand, if necessary. if (ProcessorIMod) { Operands.push_back(ARMOperand::CreateImm( MCConstantExpr::create(ProcessorIMod, getContext()), NameLoc, NameLoc)); } else if (Mnemonic == "cps" && isMClass()) { return Error(NameLoc, "instruction 'cps' requires effect for M-class"); } // Add the remaining tokens in the mnemonic. while (Next != StringRef::npos) { Start = Next; Next = Name.find('.', Start + 1); StringRef ExtraToken = Name.slice(Start, Next); // Some NEON instructions have an optional datatype suffix that is // completely ignored. Check for that. if (isDataTypeToken(ExtraToken) && doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) continue; // For for ARM mode generate an error if the .n qualifier is used. if (ExtraToken == ".n" && !isThumb()) { SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); Parser.eatToEndOfStatement(); return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " "arm mode"); } // The .n qualifier is always discarded as that is what the tables // and matcher expect. In ARM mode the .w qualifier has no effect, // so discard it to avoid errors that can be caused by the matcher. if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); } } // Read the remaining operands. if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. if (parseOperand(Operands, Mnemonic)) { Parser.eatToEndOfStatement(); return true; } while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Parse and remember the operand. if (parseOperand(Operands, Mnemonic)) { Parser.eatToEndOfStatement(); return true; } } } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token in argument list"); } Parser.Lex(); // Consume the EndOfStatement if (RequireVFPRegisterListCheck) { ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) return Error(Op.getStartLoc(), "VFP/Neon single precision register expected"); if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) return Error(Op.getStartLoc(), "VFP/Neon double precision register expected"); } tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); // Some instructions, mostly Thumb, have forms for the same mnemonic that // do and don't have a cc_out optional-def operand. With some spot-checks // of the operand list, we can figure out which variant we're trying to // parse and adjust accordingly before actually matching. We shouldn't ever // try to remove a cc_out operand that was explicitly set on the // mnemonic, of course (CarrySetting == true). Reason number #317 the // table driven matcher doesn't fit well with the ARM instruction set. if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) Operands.erase(Operands.begin() + 1); // Some instructions have the same mnemonic, but don't always // have a predicate. Distinguish them here and delete the // predicate if needed. if (shouldOmitPredicateOperand(Mnemonic, Operands)) Operands.erase(Operands.begin() + 1); // ARM mode 'blx' need special handling, as the register operand version // is predicable, but the label operand version is not. So, we can't rely // on the Mnemonic based checking to correctly figure out when to put // a k_CondCode operand in the list. If we're trying to match the label // version, remove the k_CondCode operand here. if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && static_cast<ARMOperand &>(*Operands[2]).isImm()) Operands.erase(Operands.begin() + 1); // Adjust operands of ldrexd/strexd to MCK_GPRPair. // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, // a single GPRPair reg operand is used in the .td file to replace the two // GPRs. However, when parsing from asm, the two GRPs cannot be automatically // expressed as a GPRPair, so we have to manually merge them. // FIXME: We would really like to be able to tablegen'erate this. if (!isThumb() && Operands.size() > 4 && (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || Mnemonic == "stlexd")) { bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); unsigned Idx = isLoad ? 2 : 3; ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); // Adjust only if Op1 and Op2 are GPRs. if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && MRC.contains(Op2.getReg())) { unsigned Reg1 = Op1.getReg(); unsigned Reg2 = Op2.getReg(); unsigned Rt = MRI->getEncodingValue(Reg1); unsigned Rt2 = MRI->getEncodingValue(Reg2); // Rt2 must be Rt + 1 and Rt must be even. if (Rt + 1 != Rt2 || (Rt & 1)) { Error(Op2.getStartLoc(), isLoad ? "destination operands must be sequential" : "source operands must be sequential"); return true; } unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); Operands[Idx] = ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); Operands.erase(Operands.begin() + Idx + 1); } } // GNU Assembler extension (compatibility) if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); if (Op3.isMem()) { assert(Op2.isReg() && "expected register argument"); unsigned SuperReg = MRI->getMatchingSuperReg( Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); assert(SuperReg && "expected register pair"); unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); Operands.insert( Operands.begin() + 3, ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); } } // FIXME: As said above, this is all a pretty gross hack. This instruction // does not fit with other "subs" and tblgen. // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction // so the Mnemonic is the original name "subs" and delete the predicate // operand so it will match the table entry. if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && static_cast<ARMOperand &>(*Operands[4]).isReg() && static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && static_cast<ARMOperand &>(*Operands[5]).isImm()) { Operands.front() = ARMOperand::CreateToken(Name, NameLoc); Operands.erase(Operands.begin() + 1); } return false; } // Validate context-sensitive operand constraints. // return 'true' if register list contains non-low GPR registers, // 'false' otherwise. If Reg is in the register list or is HiReg, set // 'containsReg' to true. static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, unsigned Reg, unsigned HiReg, bool &containsReg) { containsReg = false; for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { unsigned OpReg = Inst.getOperand(i).getReg(); if (OpReg == Reg) containsReg = true; // Anything other than a low register isn't legal here. if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) return true; } return false; } // Check if the specified regisgter is in the register list of the inst, // starting at the indicated operand number. static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { unsigned OpReg = Inst.getOperand(i).getReg(); if (OpReg == Reg) return true; } return false; } // Return true if instruction has the interesting property of being // allowed in IT blocks, but not being predicable. static bool instIsBreakpoint(const MCInst &Inst) { return Inst.getOpcode() == ARM::tBKPT || Inst.getOpcode() == ARM::BKPT || Inst.getOpcode() == ARM::tHLT || Inst.getOpcode() == ARM::HLT; } bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, unsigned ListNo, bool IsARPop) { const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); if (!IsARPop && ListContainsSP) return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), "SP may not be in the register list"); else if (ListContainsPC && ListContainsLR) return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), "PC and LR may not be in the register list simultaneously"); else if (inITBlock() && !lastInITBlock() && ListContainsPC) return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), "instruction must be outside of IT block or the last " "instruction in an IT block"); return false; } bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, unsigned ListNo) { const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); if (ListContainsSP && ListContainsPC) return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), "SP and PC may not be in the register list"); else if (ListContainsSP) return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), "SP may not be in the register list"); else if (ListContainsPC) return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), "PC may not be in the register list"); return false; } // FIXME: We would really like to be able to tablegen'erate this. bool ARMAsmParser::validateInstruction(MCInst &Inst, const OperandVector &Operands) { const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); SMLoc Loc = Operands[0]->getStartLoc(); // Check the IT block state first. // NOTE: BKPT and HLT instructions have the interesting property of being // allowed in IT blocks, but not being predicable. They just always execute. if (inITBlock() && !instIsBreakpoint(Inst)) { unsigned Bit = 1; if (ITState.FirstCond) ITState.FirstCond = false; else Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; // The instruction must be predicable. if (!MCID.isPredicable()) return Error(Loc, "instructions in IT block must be predicable"); unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); unsigned ITCond = Bit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); if (Cond != ITCond) { // Find the condition code Operand to get its SMLoc information. SMLoc CondLoc; for (unsigned I = 1; I < Operands.size(); ++I) if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) CondLoc = Operands[I]->getStartLoc(); return Error(CondLoc, "incorrect condition in IT block; got '" + StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + "', but expected '" + ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); } // Check for non-'al' condition codes outside of the IT block. } else if (isThumbTwo() && MCID.isPredicable() && Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != ARMCC::AL && Inst.getOpcode() != ARM::tBcc && Inst.getOpcode() != ARM::t2Bcc) return Error(Loc, "predicated instructions must be in IT block"); const unsigned Opcode = Inst.getOpcode(); switch (Opcode) { case ARM::LDRD: case ARM::LDRD_PRE: case ARM::LDRD_POST: { const unsigned RtReg = Inst.getOperand(0).getReg(); // Rt can't be R14. if (RtReg == ARM::LR) return Error(Operands[3]->getStartLoc(), "Rt can't be R14"); const unsigned Rt = MRI->getEncodingValue(RtReg); // Rt must be even-numbered. if ((Rt & 1) == 1) return Error(Operands[3]->getStartLoc(), "Rt must be even-numbered"); // Rt2 must be Rt + 1. const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); if (Rt2 != Rt + 1) return Error(Operands[3]->getStartLoc(), "destination operands must be sequential"); if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); // For addressing modes with writeback, the base register needs to be // different from the destination registers. if (Rn == Rt || Rn == Rt2) return Error(Operands[3]->getStartLoc(), "base register needs to be different from destination " "registers"); } return false; } case ARM::t2LDRDi8: case ARM::t2LDRD_PRE: case ARM::t2LDRD_POST: { // Rt2 must be different from Rt. unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); if (Rt2 == Rt) return Error(Operands[3]->getStartLoc(), "destination operands can't be identical"); return false; } case ARM::t2BXJ: { const unsigned RmReg = Inst.getOperand(0).getReg(); // Rm = SP is no longer unpredictable in v8-A if (RmReg == ARM::SP && !hasV8Ops()) return Error(Operands[2]->getStartLoc(), "r13 (SP) is an unpredictable operand to BXJ"); return false; } case ARM::STRD: { // Rt2 must be Rt + 1. unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); if (Rt2 != Rt + 1) return Error(Operands[3]->getStartLoc(), "source operands must be sequential"); return false; } case ARM::STRD_PRE: case ARM::STRD_POST: { // Rt2 must be Rt + 1. unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); if (Rt2 != Rt + 1) return Error(Operands[3]->getStartLoc(), "source operands must be sequential"); return false; } case ARM::STR_PRE_IMM: case ARM::STR_PRE_REG: case ARM::STR_POST_IMM: case ARM::STR_POST_REG: case ARM::STRH_PRE: case ARM::STRH_POST: case ARM::STRB_PRE_IMM: case ARM::STRB_PRE_REG: case ARM::STRB_POST_IMM: case ARM::STRB_POST_REG: { // Rt must be different from Rn. const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); if (Rt == Rn) return Error(Operands[3]->getStartLoc(), "source register and base register can't be identical"); return false; } case ARM::LDR_PRE_IMM: case ARM::LDR_PRE_REG: case ARM::LDR_POST_IMM: case ARM::LDR_POST_REG: case ARM::LDRH_PRE: case ARM::LDRH_POST: case ARM::LDRSH_PRE: case ARM::LDRSH_POST: case ARM::LDRB_PRE_IMM: case ARM::LDRB_PRE_REG: case ARM::LDRB_POST_IMM: case ARM::LDRB_POST_REG: case ARM::LDRSB_PRE: case ARM::LDRSB_POST: { // Rt must be different from Rn. const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); if (Rt == Rn) return Error(Operands[3]->getStartLoc(), "destination register and base register can't be identical"); return false; } case ARM::SBFX: case ARM::UBFX: { // Width must be in range [1, 32-lsb]. unsigned LSB = Inst.getOperand(2).getImm(); unsigned Widthm1 = Inst.getOperand(3).getImm(); if (Widthm1 >= 32 - LSB) return Error(Operands[5]->getStartLoc(), "bitfield width must be in range [1,32-lsb]"); return false; } // Notionally handles ARM::tLDMIA_UPD too. case ARM::tLDMIA: { // If we're parsing Thumb2, the .w variant is available and handles // most cases that are normally illegal for a Thumb1 LDM instruction. // We'll make the transformation in processInstruction() if necessary. // // Thumb LDM instructions are writeback iff the base register is not // in the register list. unsigned Rn = Inst.getOperand(0).getReg(); bool HasWritebackToken = (static_cast<ARMOperand &>(*Operands[3]).isToken() && static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); bool ListContainsBase; if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) return Error(Operands[3 + HasWritebackToken]->getStartLoc(), "registers must be in range r0-r7"); // If we should have writeback, then there should be a '!' token. if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) return Error(Operands[2]->getStartLoc(), "writeback operator '!' expected"); // If we should not have writeback, there must not be a '!'. This is // true even for the 32-bit wide encodings. if (ListContainsBase && HasWritebackToken) return Error(Operands[3]->getStartLoc(), "writeback operator '!' not allowed when base register " "in register list"); if (validatetLDMRegList(Inst, Operands, 3)) return true; break; } case ARM::LDMIA_UPD: case ARM::LDMDB_UPD: case ARM::LDMIB_UPD: case ARM::LDMDA_UPD: // ARM variants loading and updating the same register are only officially // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. if (!hasV7Ops()) break; if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) return Error(Operands.back()->getStartLoc(), "writeback register not allowed in register list"); break; case ARM::t2LDMIA: case ARM::t2LDMDB: if (validatetLDMRegList(Inst, Operands, 3)) return true; break; case ARM::t2STMIA: case ARM::t2STMDB: if (validatetSTMRegList(Inst, Operands, 3)) return true; break; case ARM::t2LDMIA_UPD: case ARM::t2LDMDB_UPD: case ARM::t2STMIA_UPD: case ARM::t2STMDB_UPD: { if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) return Error(Operands.back()->getStartLoc(), "writeback register not allowed in register list"); if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { if (validatetLDMRegList(Inst, Operands, 3)) return true; } else { if (validatetSTMRegList(Inst, Operands, 3)) return true; } break; } case ARM::sysLDMIA_UPD: case ARM::sysLDMDA_UPD: case ARM::sysLDMDB_UPD: case ARM::sysLDMIB_UPD: if (!listContainsReg(Inst, 3, ARM::PC)) return Error(Operands[4]->getStartLoc(), "writeback register only allowed on system LDM " "if PC in register-list"); break; case ARM::sysSTMIA_UPD: case ARM::sysSTMDA_UPD: case ARM::sysSTMDB_UPD: case ARM::sysSTMIB_UPD: return Error(Operands[2]->getStartLoc(), "system STM cannot have writeback register"); case ARM::tMUL: { // The second source operand must be the same register as the destination // operand. // // In this case, we must directly check the parsed operands because the // cvtThumbMultiply() function is written in such a way that it guarantees // this first statement is always true for the new Inst. Essentially, the // destination is unconditionally copied into the second source operand // without checking to see if it matches what we actually parsed. if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != ((ARMOperand &)*Operands[5]).getReg()) && (((ARMOperand &)*Operands[3]).getReg() != ((ARMOperand &)*Operands[4]).getReg())) { return Error(Operands[3]->getStartLoc(), "destination register must match source register"); } break; } // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, // so only issue a diagnostic for thumb1. The instructions will be // switched to the t2 encodings in processInstruction() if necessary. case ARM::tPOP: { bool ListContainsBase; if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && !isThumbTwo()) return Error(Operands[2]->getStartLoc(), "registers must be in range r0-r7 or pc"); if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) return true; break; } case ARM::tPUSH: { bool ListContainsBase; if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && !isThumbTwo()) return Error(Operands[2]->getStartLoc(), "registers must be in range r0-r7 or lr"); if (validatetSTMRegList(Inst, Operands, 2)) return true; break; } case ARM::tSTMIA_UPD: { bool ListContainsBase, InvalidLowList; InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 0, ListContainsBase); if (InvalidLowList && !isThumbTwo()) return Error(Operands[4]->getStartLoc(), "registers must be in range r0-r7"); // This would be converted to a 32-bit stm, but that's not valid if the // writeback register is in the list. if (InvalidLowList && ListContainsBase) return Error(Operands[4]->getStartLoc(), "writeback operator '!' not allowed when base register " "in register list"); if (validatetSTMRegList(Inst, Operands, 4)) return true; break; } case ARM::tADDrSP: { // If the non-SP source operand and the destination operand are not the // same, we need thumb2 (for the wide encoding), or we have an error. if (!isThumbTwo() && Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { return Error(Operands[4]->getStartLoc(), "source register must be the same as destination"); } break; } // Final range checking for Thumb unconditional branch instructions. case ARM::tB: if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) return Error(Operands[2]->getStartLoc(), "branch target out of range"); break; case ARM::t2B: { int op = (Operands[2]->isImm()) ? 2 : 3; if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) return Error(Operands[op]->getStartLoc(), "branch target out of range"); break; } // Final range checking for Thumb conditional branch instructions. case ARM::tBcc: if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) return Error(Operands[2]->getStartLoc(), "branch target out of range"); break; case ARM::t2Bcc: { int Op = (Operands[2]->isImm()) ? 2 : 3; if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) return Error(Operands[Op]->getStartLoc(), "branch target out of range"); break; } case ARM::MOVi16: case ARM::t2MOVi16: case ARM::t2MOVTi16: { // We want to avoid misleadingly allowing something like "mov r0, <symbol>" // especially when we turn it into a movw and the expression <symbol> does // not have a :lower16: or :upper16 as part of the expression. We don't // want the behavior of silently truncating, which can be unexpected and // lead to bugs that are difficult to find since this is an easy mistake // to make. int i = (Operands[3]->isImm()) ? 3 : 4; ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); if (CE) break; const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); if (!E) break; const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) return Error( Op.getStartLoc(), "immediate expression for mov requires :lower16: or :upper16"); break; } } return false; } static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { switch(Opc) { default: llvm_unreachable("unexpected opcode!"); // VST1LN case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; // VST2LN case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; // VST3LN case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; // VST3 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; // VST4LN case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; // VST4 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; } } static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { switch(Opc) { default: llvm_unreachable("unexpected opcode!"); // VLD1LN case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; // VLD2LN case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; // VLD3DUP case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; // VLD3LN case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; // VLD3 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; // VLD4LN case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; // VLD4DUP case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; // VLD4 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; } } bool ARMAsmParser::processInstruction(MCInst &Inst, const OperandVector &Operands, MCStreamer &Out) { switch (Inst.getOpcode()) { // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. case ARM::LDRT_POST: case ARM::LDRBT_POST: { const unsigned Opcode = (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM : ARM::LDRBT_POST_IMM; MCInst TmpInst; TmpInst.setOpcode(Opcode); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(MCOperand::createReg(0)); TmpInst.addOperand(MCOperand::createImm(0)); TmpInst.addOperand(Inst.getOperand(2)); TmpInst.addOperand(Inst.getOperand(3)); Inst = TmpInst; return true; } // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. case ARM::STRT_POST: case ARM::STRBT_POST: { const unsigned Opcode = (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM : ARM::STRBT_POST_IMM; MCInst TmpInst; TmpInst.setOpcode(Opcode); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(MCOperand::createReg(0)); TmpInst.addOperand(MCOperand::createImm(0)); TmpInst.addOperand(Inst.getOperand(2)); TmpInst.addOperand(Inst.getOperand(3)); Inst = TmpInst; return true; } // Alias for alternate form of 'ADR Rd, #imm' instruction. case ARM::ADDri: { if (Inst.getOperand(1).getReg() != ARM::PC || Inst.getOperand(5).getReg() != 0 || !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) return false; MCInst TmpInst; TmpInst.setOpcode(ARM::ADR); TmpInst.addOperand(Inst.getOperand(0)); if (Inst.getOperand(2).isImm()) { // Immediate (mod_imm) will be in its encoded form, we must unencode it // before passing it to the ADR instruction. unsigned Enc = Inst.getOperand(2).getImm(); TmpInst.addOperand(MCOperand::createImm( ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); } else { // Turn PC-relative expression into absolute expression. // Reading PC provides the start of the current instruction + 8 and // the transform to adr is biased by that. MCSymbol *Dot = getContext().createTempSymbol(); Out.EmitLabel(Dot); const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, MCSymbolRefExpr::VK_None, getContext()); const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, getContext()); const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, getContext()); TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); } TmpInst.addOperand(Inst.getOperand(3)); TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } // Aliases for alternate PC+imm syntax of LDR instructions. case ARM::t2LDRpcrel: // Select the narrow version if the immediate will fit. if (Inst.getOperand(1).getImm() > 0 && Inst.getOperand(1).getImm() <= 0xff && !(static_cast<ARMOperand &>(*Operands[2]).isToken() && static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) Inst.setOpcode(ARM::tLDRpci); else Inst.setOpcode(ARM::t2LDRpci); return true; case ARM::t2LDRBpcrel: Inst.setOpcode(ARM::t2LDRBpci); return true; case ARM::t2LDRHpcrel: Inst.setOpcode(ARM::t2LDRHpci); return true; case ARM::t2LDRSBpcrel: Inst.setOpcode(ARM::t2LDRSBpci); return true; case ARM::t2LDRSHpcrel: Inst.setOpcode(ARM::t2LDRSHpci); return true; // Handle NEON VST complex aliases. case ARM::VST1LNdWB_register_Asm_8: case ARM::VST1LNdWB_register_Asm_16: case ARM::VST1LNdWB_register_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(4)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(5)); // CondCode TmpInst.addOperand(Inst.getOperand(6)); Inst = TmpInst; return true; } case ARM::VST2LNdWB_register_Asm_8: case ARM::VST2LNdWB_register_Asm_16: case ARM::VST2LNdWB_register_Asm_32: case ARM::VST2LNqWB_register_Asm_16: case ARM::VST2LNqWB_register_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(4)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(5)); // CondCode TmpInst.addOperand(Inst.getOperand(6)); Inst = TmpInst; return true; } case ARM::VST3LNdWB_register_Asm_8: case ARM::VST3LNdWB_register_Asm_16: case ARM::VST3LNdWB_register_Asm_32: case ARM::VST3LNqWB_register_Asm_16: case ARM::VST3LNqWB_register_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(4)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(5)); // CondCode TmpInst.addOperand(Inst.getOperand(6)); Inst = TmpInst; return true; } case ARM::VST4LNdWB_register_Asm_8: case ARM::VST4LNdWB_register_Asm_16: case ARM::VST4LNdWB_register_Asm_32: case ARM::VST4LNqWB_register_Asm_16: case ARM::VST4LNqWB_register_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(4)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(5)); // CondCode TmpInst.addOperand(Inst.getOperand(6)); Inst = TmpInst; return true; } case ARM::VST1LNdWB_fixed_Asm_8: case ARM::VST1LNdWB_fixed_Asm_16: case ARM::VST1LNdWB_fixed_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VST2LNdWB_fixed_Asm_8: case ARM::VST2LNdWB_fixed_Asm_16: case ARM::VST2LNdWB_fixed_Asm_32: case ARM::VST2LNqWB_fixed_Asm_16: case ARM::VST2LNqWB_fixed_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VST3LNdWB_fixed_Asm_8: case ARM::VST3LNdWB_fixed_Asm_16: case ARM::VST3LNdWB_fixed_Asm_32: case ARM::VST3LNqWB_fixed_Asm_16: case ARM::VST3LNqWB_fixed_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VST4LNdWB_fixed_Asm_8: case ARM::VST4LNdWB_fixed_Asm_16: case ARM::VST4LNdWB_fixed_Asm_32: case ARM::VST4LNqWB_fixed_Asm_16: case ARM::VST4LNqWB_fixed_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VST1LNdAsm_8: case ARM::VST1LNdAsm_16: case ARM::VST1LNdAsm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VST2LNdAsm_8: case ARM::VST2LNdAsm_16: case ARM::VST2LNdAsm_32: case ARM::VST2LNqAsm_16: case ARM::VST2LNqAsm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VST3LNdAsm_8: case ARM::VST3LNdAsm_16: case ARM::VST3LNdAsm_32: case ARM::VST3LNqAsm_16: case ARM::VST3LNqAsm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VST4LNdAsm_8: case ARM::VST4LNdAsm_16: case ARM::VST4LNdAsm_32: case ARM::VST4LNqAsm_16: case ARM::VST4LNqAsm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } // Handle NEON VLD complex aliases. case ARM::VLD1LNdWB_register_Asm_8: case ARM::VLD1LNdWB_register_Asm_16: case ARM::VLD1LNdWB_register_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(4)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(5)); // CondCode TmpInst.addOperand(Inst.getOperand(6)); Inst = TmpInst; return true; } case ARM::VLD2LNdWB_register_Asm_8: case ARM::VLD2LNdWB_register_Asm_16: case ARM::VLD2LNdWB_register_Asm_32: case ARM::VLD2LNqWB_register_Asm_16: case ARM::VLD2LNqWB_register_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(4)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(5)); // CondCode TmpInst.addOperand(Inst.getOperand(6)); Inst = TmpInst; return true; } case ARM::VLD3LNdWB_register_Asm_8: case ARM::VLD3LNdWB_register_Asm_16: case ARM::VLD3LNdWB_register_Asm_32: case ARM::VLD3LNqWB_register_Asm_16: case ARM::VLD3LNqWB_register_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(4)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(5)); // CondCode TmpInst.addOperand(Inst.getOperand(6)); Inst = TmpInst; return true; } case ARM::VLD4LNdWB_register_Asm_8: case ARM::VLD4LNdWB_register_Asm_16: case ARM::VLD4LNdWB_register_Asm_32: case ARM::VLD4LNqWB_register_Asm_16: case ARM::VLD4LNqWB_register_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(4)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(5)); // CondCode TmpInst.addOperand(Inst.getOperand(6)); Inst = TmpInst; return true; } case ARM::VLD1LNdWB_fixed_Asm_8: case ARM::VLD1LNdWB_fixed_Asm_16: case ARM::VLD1LNdWB_fixed_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VLD2LNdWB_fixed_Asm_8: case ARM::VLD2LNdWB_fixed_Asm_16: case ARM::VLD2LNdWB_fixed_Asm_32: case ARM::VLD2LNqWB_fixed_Asm_16: case ARM::VLD2LNqWB_fixed_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VLD3LNdWB_fixed_Asm_8: case ARM::VLD3LNdWB_fixed_Asm_16: case ARM::VLD3LNdWB_fixed_Asm_32: case ARM::VLD3LNqWB_fixed_Asm_16: case ARM::VLD3LNqWB_fixed_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VLD4LNdWB_fixed_Asm_8: case ARM::VLD4LNdWB_fixed_Asm_16: case ARM::VLD4LNdWB_fixed_Asm_32: case ARM::VLD4LNqWB_fixed_Asm_16: case ARM::VLD4LNqWB_fixed_Asm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VLD1LNdAsm_8: case ARM::VLD1LNdAsm_16: case ARM::VLD1LNdAsm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VLD2LNdAsm_8: case ARM::VLD2LNdAsm_16: case ARM::VLD2LNdAsm_32: case ARM::VLD2LNqAsm_16: case ARM::VLD2LNqAsm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VLD3LNdAsm_8: case ARM::VLD3LNdAsm_16: case ARM::VLD3LNdAsm_32: case ARM::VLD3LNqAsm_16: case ARM::VLD3LNqAsm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } case ARM::VLD4LNdAsm_8: case ARM::VLD4LNdAsm_16: case ARM::VLD4LNdAsm_32: case ARM::VLD4LNqAsm_16: case ARM::VLD4LNqAsm_32: { MCInst TmpInst; // Shuffle the operands around so the lane index operand is in the // right place. unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(2)); // Rn TmpInst.addOperand(Inst.getOperand(3)); // alignment TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // lane TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } // VLD3DUP single 3-element structure to all lanes instructions. case ARM::VLD3DUPdAsm_8: case ARM::VLD3DUPdAsm_16: case ARM::VLD3DUPdAsm_32: case ARM::VLD3DUPqAsm_8: case ARM::VLD3DUPqAsm_16: case ARM::VLD3DUPqAsm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VLD3DUPdWB_fixed_Asm_8: case ARM::VLD3DUPdWB_fixed_Asm_16: case ARM::VLD3DUPdWB_fixed_Asm_32: case ARM::VLD3DUPqWB_fixed_Asm_8: case ARM::VLD3DUPqWB_fixed_Asm_16: case ARM::VLD3DUPqWB_fixed_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VLD3DUPdWB_register_Asm_8: case ARM::VLD3DUPdWB_register_Asm_16: case ARM::VLD3DUPdWB_register_Asm_32: case ARM::VLD3DUPqWB_register_Asm_8: case ARM::VLD3DUPqWB_register_Asm_16: case ARM::VLD3DUPqWB_register_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(3)); // Rm TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } // VLD3 multiple 3-element structure instructions. case ARM::VLD3dAsm_8: case ARM::VLD3dAsm_16: case ARM::VLD3dAsm_32: case ARM::VLD3qAsm_8: case ARM::VLD3qAsm_16: case ARM::VLD3qAsm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VLD3dWB_fixed_Asm_8: case ARM::VLD3dWB_fixed_Asm_16: case ARM::VLD3dWB_fixed_Asm_32: case ARM::VLD3qWB_fixed_Asm_8: case ARM::VLD3qWB_fixed_Asm_16: case ARM::VLD3qWB_fixed_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VLD3dWB_register_Asm_8: case ARM::VLD3dWB_register_Asm_16: case ARM::VLD3dWB_register_Asm_32: case ARM::VLD3qWB_register_Asm_8: case ARM::VLD3qWB_register_Asm_16: case ARM::VLD3qWB_register_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(3)); // Rm TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } // VLD4DUP single 3-element structure to all lanes instructions. case ARM::VLD4DUPdAsm_8: case ARM::VLD4DUPdAsm_16: case ARM::VLD4DUPdAsm_32: case ARM::VLD4DUPqAsm_8: case ARM::VLD4DUPqAsm_16: case ARM::VLD4DUPqAsm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VLD4DUPdWB_fixed_Asm_8: case ARM::VLD4DUPdWB_fixed_Asm_16: case ARM::VLD4DUPdWB_fixed_Asm_32: case ARM::VLD4DUPqWB_fixed_Asm_8: case ARM::VLD4DUPqWB_fixed_Asm_16: case ARM::VLD4DUPqWB_fixed_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VLD4DUPdWB_register_Asm_8: case ARM::VLD4DUPdWB_register_Asm_16: case ARM::VLD4DUPdWB_register_Asm_32: case ARM::VLD4DUPqWB_register_Asm_8: case ARM::VLD4DUPqWB_register_Asm_16: case ARM::VLD4DUPqWB_register_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(3)); // Rm TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } // VLD4 multiple 4-element structure instructions. case ARM::VLD4dAsm_8: case ARM::VLD4dAsm_16: case ARM::VLD4dAsm_32: case ARM::VLD4qAsm_8: case ARM::VLD4qAsm_16: case ARM::VLD4qAsm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VLD4dWB_fixed_Asm_8: case ARM::VLD4dWB_fixed_Asm_16: case ARM::VLD4dWB_fixed_Asm_32: case ARM::VLD4qWB_fixed_Asm_8: case ARM::VLD4qWB_fixed_Asm_16: case ARM::VLD4qWB_fixed_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VLD4dWB_register_Asm_8: case ARM::VLD4dWB_register_Asm_16: case ARM::VLD4dWB_register_Asm_32: case ARM::VLD4qWB_register_Asm_8: case ARM::VLD4qWB_register_Asm_16: case ARM::VLD4qWB_register_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(3)); // Rm TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } // VST3 multiple 3-element structure instructions. case ARM::VST3dAsm_8: case ARM::VST3dAsm_16: case ARM::VST3dAsm_32: case ARM::VST3qAsm_8: case ARM::VST3qAsm_16: case ARM::VST3qAsm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VST3dWB_fixed_Asm_8: case ARM::VST3dWB_fixed_Asm_16: case ARM::VST3dWB_fixed_Asm_32: case ARM::VST3qWB_fixed_Asm_8: case ARM::VST3qWB_fixed_Asm_16: case ARM::VST3qWB_fixed_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VST3dWB_register_Asm_8: case ARM::VST3dWB_register_Asm_16: case ARM::VST3dWB_register_Asm_32: case ARM::VST3qWB_register_Asm_8: case ARM::VST3qWB_register_Asm_16: case ARM::VST3qWB_register_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(3)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } // VST4 multiple 3-element structure instructions. case ARM::VST4dAsm_8: case ARM::VST4dAsm_16: case ARM::VST4dAsm_32: case ARM::VST4qAsm_8: case ARM::VST4qAsm_16: case ARM::VST4qAsm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VST4dWB_fixed_Asm_8: case ARM::VST4dWB_fixed_Asm_16: case ARM::VST4dWB_fixed_Asm_32: case ARM::VST4qWB_fixed_Asm_8: case ARM::VST4qWB_fixed_Asm_16: case ARM::VST4qWB_fixed_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(MCOperand::createReg(0)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::VST4dWB_register_Asm_8: case ARM::VST4dWB_register_Asm_16: case ARM::VST4dWB_register_Asm_32: case ARM::VST4qWB_register_Asm_8: case ARM::VST4qWB_register_Asm_16: case ARM::VST4qWB_register_Asm_32: { MCInst TmpInst; unsigned Spacing; TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn TmpInst.addOperand(Inst.getOperand(2)); // alignment TmpInst.addOperand(Inst.getOperand(3)); // Rm TmpInst.addOperand(Inst.getOperand(0)); // Vd TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 2)); TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + Spacing * 3)); TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } // Handle encoding choice for the shift-immediate instructions. case ARM::t2LSLri: case ARM::t2LSRri: case ARM::t2ASRri: { if (isARMLowRegister(Inst.getOperand(0).getReg()) && Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && !(static_cast<ARMOperand &>(*Operands[3]).isToken() && static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { unsigned NewOpc; switch (Inst.getOpcode()) { default: llvm_unreachable("unexpected opcode"); case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; case ARM::t2ASRri: NewOpc = ARM::tASRri; break; } // The Thumb1 operands aren't in the same order. Awesome, eh? MCInst TmpInst; TmpInst.setOpcode(NewOpc); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(5)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(Inst.getOperand(2)); TmpInst.addOperand(Inst.getOperand(3)); TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } return false; } // Handle the Thumb2 mode MOV complex aliases. case ARM::t2MOVsr: case ARM::t2MOVSsr: { // Which instruction to expand to depends on the CCOut operand and // whether we're in an IT block if the register operands are low // registers. bool isNarrow = false; if (isARMLowRegister(Inst.getOperand(0).getReg()) && isARMLowRegister(Inst.getOperand(1).getReg()) && isARMLowRegister(Inst.getOperand(2).getReg()) && Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) isNarrow = true; MCInst TmpInst; unsigned newOpc; switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { default: llvm_unreachable("unexpected opcode!"); case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; } TmpInst.setOpcode(newOpc); TmpInst.addOperand(Inst.getOperand(0)); // Rd if (isNarrow) TmpInst.addOperand(MCOperand::createReg( Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(2)); // Rm TmpInst.addOperand(Inst.getOperand(4)); // CondCode TmpInst.addOperand(Inst.getOperand(5)); if (!isNarrow) TmpInst.addOperand(MCOperand::createReg( Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); Inst = TmpInst; return true; } case ARM::t2MOVsi: case ARM::t2MOVSsi: { // Which instruction to expand to depends on the CCOut operand and // whether we're in an IT block if the register operands are low // registers. bool isNarrow = false; if (isARMLowRegister(Inst.getOperand(0).getReg()) && isARMLowRegister(Inst.getOperand(1).getReg()) && inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) isNarrow = true; MCInst TmpInst; unsigned newOpc; switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { default: llvm_unreachable("unexpected opcode!"); case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; } unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); if (Amount == 32) Amount = 0; TmpInst.setOpcode(newOpc); TmpInst.addOperand(Inst.getOperand(0)); // Rd if (isNarrow) TmpInst.addOperand(MCOperand::createReg( Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); TmpInst.addOperand(Inst.getOperand(1)); // Rn if (newOpc != ARM::t2RRX) TmpInst.addOperand(MCOperand::createImm(Amount)); TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); if (!isNarrow) TmpInst.addOperand(MCOperand::createReg( Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); Inst = TmpInst; return true; } // Handle the ARM mode MOV complex aliases. case ARM::ASRr: case ARM::LSRr: case ARM::LSLr: case ARM::RORr: { ARM_AM::ShiftOpc ShiftTy; switch(Inst.getOpcode()) { default: llvm_unreachable("unexpected opcode!"); case ARM::ASRr: ShiftTy = ARM_AM::asr; break; case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; case ARM::RORr: ShiftTy = ARM_AM::ror; break; } unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); MCInst TmpInst; TmpInst.setOpcode(ARM::MOVsr); TmpInst.addOperand(Inst.getOperand(0)); // Rd TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(Inst.getOperand(2)); // Rm TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); TmpInst.addOperand(Inst.getOperand(5)); // cc_out Inst = TmpInst; return true; } case ARM::ASRi: case ARM::LSRi: case ARM::LSLi: case ARM::RORi: { ARM_AM::ShiftOpc ShiftTy; switch(Inst.getOpcode()) { default: llvm_unreachable("unexpected opcode!"); case ARM::ASRi: ShiftTy = ARM_AM::asr; break; case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; case ARM::RORi: ShiftTy = ARM_AM::ror; break; } // A shift by zero is a plain MOVr, not a MOVsi. unsigned Amt = Inst.getOperand(2).getImm(); unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; // A shift by 32 should be encoded as 0 when permitted if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) Amt = 0; unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); MCInst TmpInst; TmpInst.setOpcode(Opc); TmpInst.addOperand(Inst.getOperand(0)); // Rd TmpInst.addOperand(Inst.getOperand(1)); // Rn if (Opc == ARM::MOVsi) TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty TmpInst.addOperand(Inst.getOperand(3)); // CondCode TmpInst.addOperand(Inst.getOperand(4)); TmpInst.addOperand(Inst.getOperand(5)); // cc_out Inst = TmpInst; return true; } case ARM::RRXi: { unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); MCInst TmpInst; TmpInst.setOpcode(ARM::MOVsi); TmpInst.addOperand(Inst.getOperand(0)); // Rd TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty TmpInst.addOperand(Inst.getOperand(2)); // CondCode TmpInst.addOperand(Inst.getOperand(3)); TmpInst.addOperand(Inst.getOperand(4)); // cc_out Inst = TmpInst; return true; } case ARM::t2LDMIA_UPD: { // If this is a load of a single register, then we should use // a post-indexed LDR instruction instead, per the ARM ARM. if (Inst.getNumOperands() != 5) return false; MCInst TmpInst; TmpInst.setOpcode(ARM::t2LDR_POST); TmpInst.addOperand(Inst.getOperand(4)); // Rt TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(MCOperand::createImm(4)); TmpInst.addOperand(Inst.getOperand(2)); // CondCode TmpInst.addOperand(Inst.getOperand(3)); Inst = TmpInst; return true; } case ARM::t2STMDB_UPD: { // If this is a store of a single register, then we should use // a pre-indexed STR instruction instead, per the ARM ARM. if (Inst.getNumOperands() != 5) return false; MCInst TmpInst; TmpInst.setOpcode(ARM::t2STR_PRE); TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb TmpInst.addOperand(Inst.getOperand(4)); // Rt TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(MCOperand::createImm(-4)); TmpInst.addOperand(Inst.getOperand(2)); // CondCode TmpInst.addOperand(Inst.getOperand(3)); Inst = TmpInst; return true; } case ARM::LDMIA_UPD: // If this is a load of a single register via a 'pop', then we should use // a post-indexed LDR instruction instead, per the ARM ARM. if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && Inst.getNumOperands() == 5) { MCInst TmpInst; TmpInst.setOpcode(ARM::LDR_POST_IMM); TmpInst.addOperand(Inst.getOperand(4)); // Rt TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb TmpInst.addOperand(Inst.getOperand(1)); // Rn TmpInst.addOperand(MCOperand::createReg(0)); // am2offset TmpInst.addOperand(MCOperand::createImm(4)); TmpInst.addOperand(Inst.getOperand(2)); // CondCode TmpInst.addOperand(Inst.getOperand(3)); Inst = TmpInst; return true; } break; case ARM::STMDB_UPD: // If this is a store of a single register via a 'push', then we should use // a pre-indexed STR instruction instead, per the ARM ARM. if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && Inst.getNumOperands() == 5) { MCInst TmpInst; TmpInst.setOpcode(ARM::STR_PRE_IMM); TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb TmpInst.addOperand(Inst.getOperand(4)); // Rt TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 TmpInst.addOperand(MCOperand::createImm(-4)); TmpInst.addOperand(Inst.getOperand(2)); // CondCode TmpInst.addOperand(Inst.getOperand(3)); Inst = TmpInst; } break; case ARM::t2ADDri12: // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" // mnemonic was used (not "addw"), encoding T3 is preferred. if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) break; Inst.setOpcode(ARM::t2ADDri); Inst.addOperand(MCOperand::createReg(0)); // cc_out break; case ARM::t2SUBri12: // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" // mnemonic was used (not "subw"), encoding T3 is preferred. if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) break; Inst.setOpcode(ARM::t2SUBri); Inst.addOperand(MCOperand::createReg(0)); // cc_out break; case ARM::tADDi8: // If the immediate is in the range 0-7, we want tADDi3 iff Rd was // explicitly specified. From the ARM ARM: "Encoding T1 is preferred // to encoding T2 if <Rd> is specified and encoding T2 is preferred // to encoding T1 if <Rd> is omitted." if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { Inst.setOpcode(ARM::tADDi3); return true; } break; case ARM::tSUBi8: // If the immediate is in the range 0-7, we want tADDi3 iff Rd was // explicitly specified. From the ARM ARM: "Encoding T1 is preferred // to encoding T2 if <Rd> is specified and encoding T2 is preferred // to encoding T1 if <Rd> is omitted." if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { Inst.setOpcode(ARM::tSUBi3); return true; } break; case ARM::t2ADDri: case ARM::t2SUBri: { // If the destination and first source operand are the same, and // the flags are compatible with the current IT status, use encoding T2 // instead of T3. For compatibility with the system 'as'. Make sure the // wide encoding wasn't explicit. if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || !isARMLowRegister(Inst.getOperand(0).getReg()) || (unsigned)Inst.getOperand(2).getImm() > 255 || ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || (inITBlock() && Inst.getOperand(5).getReg() != 0)) || (static_cast<ARMOperand &>(*Operands[3]).isToken() && static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) break; MCInst TmpInst; TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? ARM::tADDi8 : ARM::tSUBi8); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(5)); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(2)); TmpInst.addOperand(Inst.getOperand(3)); TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::t2ADDrr: { // If the destination and first source operand are the same, and // there's no setting of the flags, use encoding T2 instead of T3. // Note that this is only for ADD, not SUB. This mirrors the system // 'as' behaviour. Also take advantage of ADD being commutative. // Make sure the wide encoding wasn't explicit. bool Swap = false; auto DestReg = Inst.getOperand(0).getReg(); bool Transform = DestReg == Inst.getOperand(1).getReg(); if (!Transform && DestReg == Inst.getOperand(2).getReg()) { Transform = true; Swap = true; } if (!Transform || Inst.getOperand(5).getReg() != 0 || (static_cast<ARMOperand &>(*Operands[3]).isToken() && static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) break; MCInst TmpInst; TmpInst.setOpcode(ARM::tADDhirr); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); TmpInst.addOperand(Inst.getOperand(3)); TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } case ARM::tADDrSP: { // If the non-SP source operand and the destination operand are not the // same, we need to use the 32-bit encoding if it's available. if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { Inst.setOpcode(ARM::t2ADDrr); Inst.addOperand(MCOperand::createReg(0)); // cc_out return true; } break; } case ARM::tB: // A Thumb conditional branch outside of an IT block is a tBcc. if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { Inst.setOpcode(ARM::tBcc); return true; } break; case ARM::t2B: // A Thumb2 conditional branch outside of an IT block is a t2Bcc. if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ Inst.setOpcode(ARM::t2Bcc); return true; } break; case ARM::t2Bcc: // If the conditional is AL or we're in an IT block, we really want t2B. if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { Inst.setOpcode(ARM::t2B); return true; } break; case ARM::tBcc: // If the conditional is AL, we really want tB. if (Inst.getOperand(1).getImm() == ARMCC::AL) { Inst.setOpcode(ARM::tB); return true; } break; case ARM::tLDMIA: { // If the register list contains any high registers, or if the writeback // doesn't match what tLDMIA can do, we need to use the 32-bit encoding // instead if we're in Thumb2. Otherwise, this should have generated // an error in validateInstruction(). unsigned Rn = Inst.getOperand(0).getReg(); bool hasWritebackToken = (static_cast<ARMOperand &>(*Operands[3]).isToken() && static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); bool listContainsBase; if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || (!listContainsBase && !hasWritebackToken) || (listContainsBase && hasWritebackToken)) { // 16-bit encoding isn't sufficient. Switch to the 32-bit version. assert (isThumbTwo()); Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); // If we're switching to the updating version, we need to insert // the writeback tied operand. if (hasWritebackToken) Inst.insert(Inst.begin(), MCOperand::createReg(Inst.getOperand(0).getReg())); return true; } break; } case ARM::tSTMIA_UPD: { // If the register list contains any high registers, we need to use // the 32-bit encoding instead if we're in Thumb2. Otherwise, this // should have generated an error in validateInstruction(). unsigned Rn = Inst.getOperand(0).getReg(); bool listContainsBase; if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { // 16-bit encoding isn't sufficient. Switch to the 32-bit version. assert (isThumbTwo()); Inst.setOpcode(ARM::t2STMIA_UPD); return true; } break; } case ARM::tPOP: { bool listContainsBase; // If the register list contains any high registers, we need to use // the 32-bit encoding instead if we're in Thumb2. Otherwise, this // should have generated an error in validateInstruction(). if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) return false; assert (isThumbTwo()); Inst.setOpcode(ARM::t2LDMIA_UPD); // Add the base register and writeback operands. Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); return true; } case ARM::tPUSH: { bool listContainsBase; if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) return false; assert (isThumbTwo()); Inst.setOpcode(ARM::t2STMDB_UPD); // Add the base register and writeback operands. Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); return true; } case ARM::t2MOVi: { // If we can use the 16-bit encoding and the user didn't explicitly // request the 32-bit variant, transform it here. if (isARMLowRegister(Inst.getOperand(0).getReg()) && (unsigned)Inst.getOperand(1).getImm() <= 255 && ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && Inst.getOperand(4).getReg() == ARM::CPSR) || (inITBlock() && Inst.getOperand(4).getReg() == 0)) && (!static_cast<ARMOperand &>(*Operands[2]).isToken() || static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { // The operands aren't in the same order for tMOVi8... MCInst TmpInst; TmpInst.setOpcode(ARM::tMOVi8); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(4)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(Inst.getOperand(2)); TmpInst.addOperand(Inst.getOperand(3)); Inst = TmpInst; return true; } break; } case ARM::t2MOVr: { // If we can use the 16-bit encoding and the user didn't explicitly // request the 32-bit variant, transform it here. if (isARMLowRegister(Inst.getOperand(0).getReg()) && isARMLowRegister(Inst.getOperand(1).getReg()) && Inst.getOperand(2).getImm() == ARMCC::AL && Inst.getOperand(4).getReg() == ARM::CPSR && (!static_cast<ARMOperand &>(*Operands[2]).isToken() || static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { // The operands aren't the same for tMOV[S]r... (no cc_out) MCInst TmpInst; TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(Inst.getOperand(2)); TmpInst.addOperand(Inst.getOperand(3)); Inst = TmpInst; return true; } break; } case ARM::t2SXTH: case ARM::t2SXTB: case ARM::t2UXTH: case ARM::t2UXTB: { // If we can use the 16-bit encoding and the user didn't explicitly // request the 32-bit variant, transform it here. if (isARMLowRegister(Inst.getOperand(0).getReg()) && isARMLowRegister(Inst.getOperand(1).getReg()) && Inst.getOperand(2).getImm() == 0 && (!static_cast<ARMOperand &>(*Operands[2]).isToken() || static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { unsigned NewOpc; switch (Inst.getOpcode()) { default: llvm_unreachable("Illegal opcode!"); case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; } // The operands aren't the same for thumb1 (no rotate operand). MCInst TmpInst; TmpInst.setOpcode(NewOpc); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(Inst.getOperand(3)); TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } break; } case ARM::MOVsi: { ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); // rrx shifts and asr/lsr of #32 is encoded as 0 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) return false; if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { // Shifting by zero is accepted as a vanilla 'MOVr' MCInst TmpInst; TmpInst.setOpcode(ARM::MOVr); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(Inst.getOperand(3)); TmpInst.addOperand(Inst.getOperand(4)); TmpInst.addOperand(Inst.getOperand(5)); Inst = TmpInst; return true; } return false; } case ARM::ANDrsi: case ARM::ORRrsi: case ARM::EORrsi: case ARM::BICrsi: case ARM::SUBrsi: case ARM::ADDrsi: { unsigned newOpc; ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); if (SOpc == ARM_AM::rrx) return false; switch (Inst.getOpcode()) { default: llvm_unreachable("unexpected opcode!"); case ARM::ANDrsi: newOpc = ARM::ANDrr; break; case ARM::ORRrsi: newOpc = ARM::ORRrr; break; case ARM::EORrsi: newOpc = ARM::EORrr; break; case ARM::BICrsi: newOpc = ARM::BICrr; break; case ARM::SUBrsi: newOpc = ARM::SUBrr; break; case ARM::ADDrsi: newOpc = ARM::ADDrr; break; } // If the shift is by zero, use the non-shifted instruction definition. // The exception is for right shifts, where 0 == 32 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { MCInst TmpInst; TmpInst.setOpcode(newOpc); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(Inst.getOperand(2)); TmpInst.addOperand(Inst.getOperand(4)); TmpInst.addOperand(Inst.getOperand(5)); TmpInst.addOperand(Inst.getOperand(6)); Inst = TmpInst; return true; } return false; } case ARM::ITasm: case ARM::t2IT: { // The mask bits for all but the first condition are represented as // the low bit of the condition code value implies 't'. We currently // always have 1 implies 't', so XOR toggle the bits if the low bit // of the condition code is zero. MCOperand &MO = Inst.getOperand(1); unsigned Mask = MO.getImm(); unsigned OrigMask = Mask; unsigned TZ = countTrailingZeros(Mask); if ((Inst.getOperand(0).getImm() & 1) == 0) { assert(Mask && TZ <= 3 && "illegal IT mask value!"); Mask ^= (0xE << TZ) & 0xF; } MO.setImm(Mask); // Set up the IT block state according to the IT instruction we just // matched. assert(!inITBlock() && "nested IT blocks?!"); ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); ITState.Mask = OrigMask; // Use the original mask, not the updated one. ITState.CurPosition = 0; ITState.FirstCond = true; break; } case ARM::t2LSLrr: case ARM::t2LSRrr: case ARM::t2ASRrr: case ARM::t2SBCrr: case ARM::t2RORrr: case ARM::t2BICrr: { // Assemblers should use the narrow encodings of these instructions when permissible. if ((isARMLowRegister(Inst.getOperand(1).getReg()) && isARMLowRegister(Inst.getOperand(2).getReg())) && Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && (!static_cast<ARMOperand &>(*Operands[3]).isToken() || !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( ".w"))) { unsigned NewOpc; switch (Inst.getOpcode()) { default: llvm_unreachable("unexpected opcode"); case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; case ARM::t2RORrr: NewOpc = ARM::tROR; break; case ARM::t2BICrr: NewOpc = ARM::tBIC; break; } MCInst TmpInst; TmpInst.setOpcode(NewOpc); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(5)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(Inst.getOperand(2)); TmpInst.addOperand(Inst.getOperand(3)); TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } return false; } case ARM::t2ANDrr: case ARM::t2EORrr: case ARM::t2ADCrr: case ARM::t2ORRrr: { // Assemblers should use the narrow encodings of these instructions when permissible. // These instructions are special in that they are commutable, so shorter encodings // are available more often. if ((isARMLowRegister(Inst.getOperand(1).getReg()) && isARMLowRegister(Inst.getOperand(2).getReg())) && (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && (!static_cast<ARMOperand &>(*Operands[3]).isToken() || !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( ".w"))) { unsigned NewOpc; switch (Inst.getOpcode()) { default: llvm_unreachable("unexpected opcode"); case ARM::t2ADCrr: NewOpc = ARM::tADC; break; case ARM::t2ANDrr: NewOpc = ARM::tAND; break; case ARM::t2EORrr: NewOpc = ARM::tEOR; break; case ARM::t2ORRrr: NewOpc = ARM::tORR; break; } MCInst TmpInst; TmpInst.setOpcode(NewOpc); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(5)); if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(Inst.getOperand(2)); } else { TmpInst.addOperand(Inst.getOperand(2)); TmpInst.addOperand(Inst.getOperand(1)); } TmpInst.addOperand(Inst.getOperand(3)); TmpInst.addOperand(Inst.getOperand(4)); Inst = TmpInst; return true; } return false; } } return false; } unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { // 16-bit thumb arithmetic instructions either require or preclude the 'S' // suffix depending on whether they're in an IT block or not. unsigned Opc = Inst.getOpcode(); const MCInstrDesc &MCID = MII.get(Opc); if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { assert(MCID.hasOptionalDef() && "optionally flag setting instruction missing optional def operand"); assert(MCID.NumOperands == Inst.getNumOperands() && "operand count mismatch!"); // Find the optional-def operand (cc_out). unsigned OpNo; for (OpNo = 0; !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; ++OpNo) ; // If we're parsing Thumb1, reject it completely. if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) return Match_MnemonicFail; // If we're parsing Thumb2, which form is legal depends on whether we're // in an IT block. if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && !inITBlock()) return Match_RequiresITBlock; if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && inITBlock()) return Match_RequiresNotITBlock; } else if (isThumbOne()) { // Some high-register supporting Thumb1 encodings only allow both registers // to be from r0-r7 when in Thumb2. if (Opc == ARM::tADDhirr && !hasV6MOps() && isARMLowRegister(Inst.getOperand(1).getReg()) && isARMLowRegister(Inst.getOperand(2).getReg())) return Match_RequiresThumb2; // Others only require ARMv6 or later. else if (Opc == ARM::tMOVr && !hasV6Ops() && isARMLowRegister(Inst.getOperand(0).getReg()) && isARMLowRegister(Inst.getOperand(1).getReg())) return Match_RequiresV6; } for (unsigned I = 0; I < MCID.NumOperands; ++I) if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { // rGPRRegClass excludes PC, and also excluded SP before ARMv8 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) return Match_RequiresV8; else if (Inst.getOperand(I).getReg() == ARM::PC) return Match_InvalidOperand; } return Match_Success; } namespace llvm { template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { return true; // In an assembly source, no need to second-guess } } static const char *getSubtargetFeatureName(uint64_t Val); bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { MCInst Inst; unsigned MatchResult; MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); switch (MatchResult) { case Match_Success: // Context sensitive operand constraints aren't handled by the matcher, // so check them here. if (validateInstruction(Inst, Operands)) { // Still progress the IT block, otherwise one wrong condition causes // nasty cascading errors. forwardITPosition(); return true; } { // processInstruction() updates inITBlock state, we need to save it away bool wasInITBlock = inITBlock(); // Some instructions need post-processing to, for example, tweak which // encoding is selected. Loop on it while changes happen so the // individual transformations can chain off each other. E.g., // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) while (processInstruction(Inst, Operands, Out)) ; // Only after the instruction is fully processed, we can validate it if (wasInITBlock && hasV8Ops() && isThumb() && !isV8EligibleForIT(&Inst)) { Warning(IDLoc, "deprecated instruction in IT block"); } } // Only move forward at the very end so that everything in validate // and process gets a consistent answer about whether we're in an IT // block. forwardITPosition(); // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and // doesn't actually encode. if (Inst.getOpcode() == ARM::ITasm) return false; Inst.setLoc(IDLoc); Out.EmitInstruction(Inst, getSTI()); return false; case Match_MissingFeature: { assert(ErrorInfo && "Unknown missing feature!"); // Special case the error message for the very common case where only // a single subtarget feature is missing (Thumb vs. ARM, e.g.). std::string Msg = "instruction requires:"; uint64_t Mask = 1; for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { if (ErrorInfo & Mask) { Msg += " "; Msg += getSubtargetFeatureName(ErrorInfo & Mask); } Mask <<= 1; } return Error(IDLoc, Msg); } case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0ULL) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } case Match_MnemonicFail: return Error(IDLoc, "invalid instruction", ((ARMOperand &)*Operands[0]).getLocRange()); case Match_RequiresNotITBlock: return Error(IDLoc, "flag setting instruction only valid outside IT block"); case Match_RequiresITBlock: return Error(IDLoc, "instruction only valid inside IT block"); case Match_RequiresV6: return Error(IDLoc, "instruction variant requires ARMv6 or later"); case Match_RequiresThumb2: return Error(IDLoc, "instruction variant requires Thumb2"); case Match_RequiresV8: return Error(IDLoc, "instruction variant requires ARMv8 or later"); case Match_ImmRange0_15: { SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); } case Match_ImmRange0_239: { SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); } case Match_AlignedMemoryRequiresNone: case Match_DupAlignedMemoryRequiresNone: case Match_AlignedMemoryRequires16: case Match_DupAlignedMemoryRequires16: case Match_AlignedMemoryRequires32: case Match_DupAlignedMemoryRequires32: case Match_AlignedMemoryRequires64: case Match_DupAlignedMemoryRequires64: case Match_AlignedMemoryRequires64or128: case Match_DupAlignedMemoryRequires64or128: case Match_AlignedMemoryRequires64or128or256: { SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; switch (MatchResult) { default: llvm_unreachable("Missing Match_Aligned type"); case Match_AlignedMemoryRequiresNone: case Match_DupAlignedMemoryRequiresNone: return Error(ErrorLoc, "alignment must be omitted"); case Match_AlignedMemoryRequires16: case Match_DupAlignedMemoryRequires16: return Error(ErrorLoc, "alignment must be 16 or omitted"); case Match_AlignedMemoryRequires32: case Match_DupAlignedMemoryRequires32: return Error(ErrorLoc, "alignment must be 32 or omitted"); case Match_AlignedMemoryRequires64: case Match_DupAlignedMemoryRequires64: return Error(ErrorLoc, "alignment must be 64 or omitted"); case Match_AlignedMemoryRequires64or128: case Match_DupAlignedMemoryRequires64or128: return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); case Match_AlignedMemoryRequires64or128or256: return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); } } } llvm_unreachable("Implement any new match types added!"); } /// parseDirective parses the arm specific directives bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { const MCObjectFileInfo::Environment Format = getContext().getObjectFileInfo()->getObjectFileType(); bool IsMachO = Format == MCObjectFileInfo::IsMachO; bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; StringRef IDVal = DirectiveID.getIdentifier(); if (IDVal == ".word") return parseLiteralValues(4, DirectiveID.getLoc()); else if (IDVal == ".short" || IDVal == ".hword") return parseLiteralValues(2, DirectiveID.getLoc()); else if (IDVal == ".thumb") return parseDirectiveThumb(DirectiveID.getLoc()); else if (IDVal == ".arm") return parseDirectiveARM(DirectiveID.getLoc()); else if (IDVal == ".thumb_func") return parseDirectiveThumbFunc(DirectiveID.getLoc()); else if (IDVal == ".code") return parseDirectiveCode(DirectiveID.getLoc()); else if (IDVal == ".syntax") return parseDirectiveSyntax(DirectiveID.getLoc()); else if (IDVal == ".unreq") return parseDirectiveUnreq(DirectiveID.getLoc()); else if (IDVal == ".fnend") return parseDirectiveFnEnd(DirectiveID.getLoc()); else if (IDVal == ".cantunwind") return parseDirectiveCantUnwind(DirectiveID.getLoc()); else if (IDVal == ".personality") return parseDirectivePersonality(DirectiveID.getLoc()); else if (IDVal == ".handlerdata") return parseDirectiveHandlerData(DirectiveID.getLoc()); else if (IDVal == ".setfp") return parseDirectiveSetFP(DirectiveID.getLoc()); else if (IDVal == ".pad") return parseDirectivePad(DirectiveID.getLoc()); else if (IDVal == ".save") return parseDirectiveRegSave(DirectiveID.getLoc(), false); else if (IDVal == ".vsave") return parseDirectiveRegSave(DirectiveID.getLoc(), true); else if (IDVal == ".ltorg" || IDVal == ".pool") return parseDirectiveLtorg(DirectiveID.getLoc()); else if (IDVal == ".even") return parseDirectiveEven(DirectiveID.getLoc()); else if (IDVal == ".personalityindex") return parseDirectivePersonalityIndex(DirectiveID.getLoc()); else if (IDVal == ".unwind_raw") return parseDirectiveUnwindRaw(DirectiveID.getLoc()); else if (IDVal == ".movsp") return parseDirectiveMovSP(DirectiveID.getLoc()); else if (IDVal == ".arch_extension") return parseDirectiveArchExtension(DirectiveID.getLoc()); else if (IDVal == ".align") return parseDirectiveAlign(DirectiveID.getLoc()); else if (IDVal == ".thumb_set") return parseDirectiveThumbSet(DirectiveID.getLoc()); if (!IsMachO && !IsCOFF) { if (IDVal == ".arch") return parseDirectiveArch(DirectiveID.getLoc()); else if (IDVal == ".cpu") return parseDirectiveCPU(DirectiveID.getLoc()); else if (IDVal == ".eabi_attribute") return parseDirectiveEabiAttr(DirectiveID.getLoc()); else if (IDVal == ".fpu") return parseDirectiveFPU(DirectiveID.getLoc()); else if (IDVal == ".fnstart") return parseDirectiveFnStart(DirectiveID.getLoc()); else if (IDVal == ".inst") return parseDirectiveInst(DirectiveID.getLoc()); else if (IDVal == ".inst.n") return parseDirectiveInst(DirectiveID.getLoc(), 'n'); else if (IDVal == ".inst.w") return parseDirectiveInst(DirectiveID.getLoc(), 'w'); else if (IDVal == ".object_arch") return parseDirectiveObjectArch(DirectiveID.getLoc()); else if (IDVal == ".tlsdescseq") return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); } return true; } /// parseLiteralValues /// ::= .hword expression [, expression]* /// ::= .short expression [, expression]* /// ::= .word expression [, expression]* bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { MCAsmParser &Parser = getParser(); if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().parseExpression(Value)) { Parser.eatToEndOfStatement(); return false; } getParser().getStreamer().EmitValue(Value, Size, L); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) { Error(L, "unexpected token in directive"); return false; } Parser.Lex(); } } Parser.Lex(); return false; } /// parseDirectiveThumb /// ::= .thumb bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { MCAsmParser &Parser = getParser(); if (getLexer().isNot(AsmToken::EndOfStatement)) { Error(L, "unexpected token in directive"); return false; } Parser.Lex(); if (!hasThumb()) { Error(L, "target does not support Thumb mode"); return false; } if (!isThumb()) SwitchMode(); getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); return false; } /// parseDirectiveARM /// ::= .arm bool ARMAsmParser::parseDirectiveARM(SMLoc L) { MCAsmParser &Parser = getParser(); if (getLexer().isNot(AsmToken::EndOfStatement)) { Error(L, "unexpected token in directive"); return false; } Parser.Lex(); if (!hasARM()) { Error(L, "target does not support ARM mode"); return false; } if (isThumb()) SwitchMode(); getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); return false; } void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { if (NextSymbolIsThumb) { getParser().getStreamer().EmitThumbFunc(Symbol); NextSymbolIsThumb = false; } } /// parseDirectiveThumbFunc /// ::= .thumbfunc symbol_name bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { MCAsmParser &Parser = getParser(); const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); bool IsMachO = Format == MCObjectFileInfo::IsMachO; // Darwin asm has (optionally) function name after .thumb_func direction // ELF doesn't if (IsMachO) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::EndOfStatement)) { if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { Error(L, "unexpected token in .thumb_func directive"); return false; } MCSymbol *Func = getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); getParser().getStreamer().EmitThumbFunc(Func); Parser.Lex(); // Consume the identifier token. return false; } } if (getLexer().isNot(AsmToken::EndOfStatement)) { Error(Parser.getTok().getLoc(), "unexpected token in directive"); Parser.eatToEndOfStatement(); return false; } NextSymbolIsThumb = true; return false; } /// parseDirectiveSyntax /// ::= .syntax unified | divided bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) { Error(L, "unexpected token in .syntax directive"); return false; } StringRef Mode = Tok.getString(); if (Mode == "unified" || Mode == "UNIFIED") { Parser.Lex(); } else if (Mode == "divided" || Mode == "DIVIDED") { Error(L, "'.syntax divided' arm asssembly not supported"); return false; } else { Error(L, "unrecognized syntax mode in .syntax directive"); return false; } if (getLexer().isNot(AsmToken::EndOfStatement)) { Error(Parser.getTok().getLoc(), "unexpected token in directive"); return false; } Parser.Lex(); // TODO tell the MC streamer the mode // getParser().getStreamer().Emit???(); return false; } /// parseDirectiveCode /// ::= .code 16 | 32 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Integer)) { Error(L, "unexpected token in .code directive"); return false; } int64_t Val = Parser.getTok().getIntVal(); if (Val != 16 && Val != 32) { Error(L, "invalid operand to .code directive"); return false; } Parser.Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) { Error(Parser.getTok().getLoc(), "unexpected token in directive"); return false; } Parser.Lex(); if (Val == 16) { if (!hasThumb()) { Error(L, "target does not support Thumb mode"); return false; } if (!isThumb()) SwitchMode(); getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); } else { if (!hasARM()) { Error(L, "target does not support ARM mode"); return false; } if (isThumb()) SwitchMode(); getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); } return false; } /// parseDirectiveReq /// ::= name .req registername bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { MCAsmParser &Parser = getParser(); Parser.Lex(); // Eat the '.req' token. unsigned Reg; SMLoc SRegLoc, ERegLoc; if (ParseRegister(Reg, SRegLoc, ERegLoc)) { Parser.eatToEndOfStatement(); Error(SRegLoc, "register name expected"); return false; } // Shouldn't be anything else. if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { Parser.eatToEndOfStatement(); Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); return false; } Parser.Lex(); // Consume the EndOfStatement if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); return false; } return false; } /// parseDirectiveUneq /// ::= .unreq registername bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { MCAsmParser &Parser = getParser(); if (Parser.getTok().isNot(AsmToken::Identifier)) { Parser.eatToEndOfStatement(); Error(L, "unexpected input in .unreq directive."); return false; } RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); Parser.Lex(); // Eat the identifier. return false; } /// parseDirectiveArch /// ::= .arch token bool ARMAsmParser::parseDirectiveArch(SMLoc L) { StringRef Arch = getParser().parseStringToEndOfStatement().trim(); unsigned ID = ARM::parseArch(Arch); if (ID == ARM::AK_INVALID) { Error(L, "Unknown arch name"); return false; } Triple T; MCSubtargetInfo &STI = copySTI(); STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); getTargetStreamer().emitArch(ID); return false; } /// parseDirectiveEabiAttr /// ::= .eabi_attribute int, int [, "str"] /// ::= .eabi_attribute Tag_name, int [, "str"] bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { MCAsmParser &Parser = getParser(); int64_t Tag; SMLoc TagLoc; TagLoc = Parser.getTok().getLoc(); if (Parser.getTok().is(AsmToken::Identifier)) { StringRef Name = Parser.getTok().getIdentifier(); Tag = ARMBuildAttrs::AttrTypeFromString(Name); if (Tag == -1) { Error(TagLoc, "attribute name not recognised: " + Name); Parser.eatToEndOfStatement(); return false; } Parser.Lex(); } else { const MCExpr *AttrExpr; TagLoc = Parser.getTok().getLoc(); if (Parser.parseExpression(AttrExpr)) { Parser.eatToEndOfStatement(); return false; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); if (!CE) { Error(TagLoc, "expected numeric constant"); Parser.eatToEndOfStatement(); return false; } Tag = CE->getValue(); } if (Parser.getTok().isNot(AsmToken::Comma)) { Error(Parser.getTok().getLoc(), "comma expected"); Parser.eatToEndOfStatement(); return false; } Parser.Lex(); // skip comma StringRef StringValue = ""; bool IsStringValue = false; int64_t IntegerValue = 0; bool IsIntegerValue = false; if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) IsStringValue = true; else if (Tag == ARMBuildAttrs::compatibility) { IsStringValue = true; IsIntegerValue = true; } else if (Tag < 32 || Tag % 2 == 0) IsIntegerValue = true; else if (Tag % 2 == 1) IsStringValue = true; else llvm_unreachable("invalid tag type"); if (IsIntegerValue) { const MCExpr *ValueExpr; SMLoc ValueExprLoc = Parser.getTok().getLoc(); if (Parser.parseExpression(ValueExpr)) { Parser.eatToEndOfStatement(); return false; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); if (!CE) { Error(ValueExprLoc, "expected numeric constant"); Parser.eatToEndOfStatement(); return false; } IntegerValue = CE->getValue(); } if (Tag == ARMBuildAttrs::compatibility) { if (Parser.getTok().isNot(AsmToken::Comma)) IsStringValue = false; if (Parser.getTok().isNot(AsmToken::Comma)) { Error(Parser.getTok().getLoc(), "comma expected"); Parser.eatToEndOfStatement(); return false; } else { Parser.Lex(); } } if (IsStringValue) { if (Parser.getTok().isNot(AsmToken::String)) { Error(Parser.getTok().getLoc(), "bad string constant"); Parser.eatToEndOfStatement(); return false; } StringValue = Parser.getTok().getStringContents(); Parser.Lex(); } if (IsIntegerValue && IsStringValue) { assert(Tag == ARMBuildAttrs::compatibility); getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); } else if (IsIntegerValue) getTargetStreamer().emitAttribute(Tag, IntegerValue); else if (IsStringValue) getTargetStreamer().emitTextAttribute(Tag, StringValue); return false; } /// parseDirectiveCPU /// ::= .cpu str bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { StringRef CPU = getParser().parseStringToEndOfStatement().trim(); getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); // FIXME: This is using table-gen data, but should be moved to // ARMTargetParser once that is table-gen'd. if (!getSTI().isCPUStringValid(CPU)) { Error(L, "Unknown CPU name"); return false; } MCSubtargetInfo &STI = copySTI(); STI.setDefaultFeatures(CPU, ""); setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); return false; } /// parseDirectiveFPU /// ::= .fpu str bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { SMLoc FPUNameLoc = getTok().getLoc(); StringRef FPU = getParser().parseStringToEndOfStatement().trim(); unsigned ID = ARM::parseFPU(FPU); std::vector<const char *> Features; if (!ARM::getFPUFeatures(ID, Features)) { Error(FPUNameLoc, "Unknown FPU name"); return false; } MCSubtargetInfo &STI = copySTI(); for (auto Feature : Features) STI.ApplyFeatureFlag(Feature); setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); getTargetStreamer().emitFPU(ID); return false; } /// parseDirectiveFnStart /// ::= .fnstart bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { if (UC.hasFnStart()) { Error(L, ".fnstart starts before the end of previous one"); UC.emitFnStartLocNotes(); return false; } // Reset the unwind directives parser state UC.reset(); getTargetStreamer().emitFnStart(); UC.recordFnStart(L); return false; } /// parseDirectiveFnEnd /// ::= .fnend bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { // Check the ordering of unwind directives if (!UC.hasFnStart()) { Error(L, ".fnstart must precede .fnend directive"); return false; } // Reset the unwind directives parser state getTargetStreamer().emitFnEnd(); UC.reset(); return false; } /// parseDirectiveCantUnwind /// ::= .cantunwind bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { UC.recordCantUnwind(L); // Check the ordering of unwind directives if (!UC.hasFnStart()) { Error(L, ".fnstart must precede .cantunwind directive"); return false; } if (UC.hasHandlerData()) { Error(L, ".cantunwind can't be used with .handlerdata directive"); UC.emitHandlerDataLocNotes(); return false; } if (UC.hasPersonality()) { Error(L, ".cantunwind can't be used with .personality directive"); UC.emitPersonalityLocNotes(); return false; } getTargetStreamer().emitCantUnwind(); return false; } /// parseDirectivePersonality /// ::= .personality name bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { MCAsmParser &Parser = getParser(); bool HasExistingPersonality = UC.hasPersonality(); UC.recordPersonality(L); // Check the ordering of unwind directives if (!UC.hasFnStart()) { Error(L, ".fnstart must precede .personality directive"); return false; } if (UC.cantUnwind()) { Error(L, ".personality can't be used with .cantunwind directive"); UC.emitCantUnwindLocNotes(); return false; } if (UC.hasHandlerData()) { Error(L, ".personality must precede .handlerdata directive"); UC.emitHandlerDataLocNotes(); return false; } if (HasExistingPersonality) { Parser.eatToEndOfStatement(); Error(L, "multiple personality directives"); UC.emitPersonalityLocNotes(); return false; } // Parse the name of the personality routine if (Parser.getTok().isNot(AsmToken::Identifier)) { Parser.eatToEndOfStatement(); Error(L, "unexpected input in .personality directive."); return false; } StringRef Name(Parser.getTok().getIdentifier()); Parser.Lex(); MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); getTargetStreamer().emitPersonality(PR); return false; } /// parseDirectiveHandlerData /// ::= .handlerdata bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { UC.recordHandlerData(L); // Check the ordering of unwind directives if (!UC.hasFnStart()) { Error(L, ".fnstart must precede .personality directive"); return false; } if (UC.cantUnwind()) { Error(L, ".handlerdata can't be used with .cantunwind directive"); UC.emitCantUnwindLocNotes(); return false; } getTargetStreamer().emitHandlerData(); return false; } /// parseDirectiveSetFP /// ::= .setfp fpreg, spreg [, offset] bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { MCAsmParser &Parser = getParser(); // Check the ordering of unwind directives if (!UC.hasFnStart()) { Error(L, ".fnstart must precede .setfp directive"); return false; } if (UC.hasHandlerData()) { Error(L, ".setfp must precede .handlerdata directive"); return false; } // Parse fpreg SMLoc FPRegLoc = Parser.getTok().getLoc(); int FPReg = tryParseRegister(); if (FPReg == -1) { Error(FPRegLoc, "frame pointer register expected"); return false; } // Consume comma if (Parser.getTok().isNot(AsmToken::Comma)) { Error(Parser.getTok().getLoc(), "comma expected"); return false; } Parser.Lex(); // skip comma // Parse spreg SMLoc SPRegLoc = Parser.getTok().getLoc(); int SPReg = tryParseRegister(); if (SPReg == -1) { Error(SPRegLoc, "stack pointer register expected"); return false; } if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { Error(SPRegLoc, "register should be either $sp or the latest fp register"); return false; } // Update the frame pointer register UC.saveFPReg(FPReg); // Parse offset int64_t Offset = 0; if (Parser.getTok().is(AsmToken::Comma)) { Parser.Lex(); // skip comma if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) { Error(Parser.getTok().getLoc(), "'#' expected"); return false; } Parser.Lex(); // skip hash token. const MCExpr *OffsetExpr; SMLoc ExLoc = Parser.getTok().getLoc(); SMLoc EndLoc; if (getParser().parseExpression(OffsetExpr, EndLoc)) { Error(ExLoc, "malformed setfp offset"); return false; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); if (!CE) { Error(ExLoc, "setfp offset must be an immediate"); return false; } Offset = CE->getValue(); } getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), static_cast<unsigned>(SPReg), Offset); return false; } /// parseDirective /// ::= .pad offset bool ARMAsmParser::parseDirectivePad(SMLoc L) { MCAsmParser &Parser = getParser(); // Check the ordering of unwind directives if (!UC.hasFnStart()) { Error(L, ".fnstart must precede .pad directive"); return false; } if (UC.hasHandlerData()) { Error(L, ".pad must precede .handlerdata directive"); return false; } // Parse the offset if (Parser.getTok().isNot(AsmToken::Hash) && Parser.getTok().isNot(AsmToken::Dollar)) { Error(Parser.getTok().getLoc(), "'#' expected"); return false; } Parser.Lex(); // skip hash token. const MCExpr *OffsetExpr; SMLoc ExLoc = Parser.getTok().getLoc(); SMLoc EndLoc; if (getParser().parseExpression(OffsetExpr, EndLoc)) { Error(ExLoc, "malformed pad offset"); return false; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); if (!CE) { Error(ExLoc, "pad offset must be an immediate"); return false; } getTargetStreamer().emitPad(CE->getValue()); return false; } /// parseDirectiveRegSave /// ::= .save { registers } /// ::= .vsave { registers } bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { // Check the ordering of unwind directives if (!UC.hasFnStart()) { Error(L, ".fnstart must precede .save or .vsave directives"); return false; } if (UC.hasHandlerData()) { Error(L, ".save or .vsave must precede .handlerdata directive"); return false; } // RAII object to make sure parsed operands are deleted. SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; // Parse the register list if (parseRegisterList(Operands)) return false; ARMOperand &Op = (ARMOperand &)*Operands[0]; if (!IsVector && !Op.isRegList()) { Error(L, ".save expects GPR registers"); return false; } if (IsVector && !Op.isDPRRegList()) { Error(L, ".vsave expects DPR registers"); return false; } getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); return false; } /// parseDirectiveInst /// ::= .inst opcode [, ...] /// ::= .inst.n opcode [, ...] /// ::= .inst.w opcode [, ...] bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { MCAsmParser &Parser = getParser(); int Width; if (isThumb()) { switch (Suffix) { case 'n': Width = 2; break; case 'w': Width = 4; break; default: Parser.eatToEndOfStatement(); Error(Loc, "cannot determine Thumb instruction size, " "use inst.n/inst.w instead"); return false; } } else { if (Suffix) { Parser.eatToEndOfStatement(); Error(Loc, "width suffixes are invalid in ARM mode"); return false; } Width = 4; } if (getLexer().is(AsmToken::EndOfStatement)) { Parser.eatToEndOfStatement(); Error(Loc, "expected expression following directive"); return false; } for (;;) { const MCExpr *Expr; if (getParser().parseExpression(Expr)) { Error(Loc, "expected expression"); return false; } const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); if (!Value) { Error(Loc, "expected constant expression"); return false; } switch (Width) { case 2: if (Value->getValue() > 0xffff) { Error(Loc, "inst.n operand is too big, use inst.w instead"); return false; } break; case 4: if (Value->getValue() > 0xffffffff) { Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); return false; } break; default: llvm_unreachable("only supported widths are 2 and 4"); } getTargetStreamer().emitInst(Value->getValue(), Suffix); if (getLexer().is(AsmToken::EndOfStatement)) break; if (getLexer().isNot(AsmToken::Comma)) { Error(Loc, "unexpected token in directive"); return false; } Parser.Lex(); } Parser.Lex(); return false; } /// parseDirectiveLtorg /// ::= .ltorg | .pool bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { getTargetStreamer().emitCurrentConstantPool(); return false; } bool ARMAsmParser::parseDirectiveEven(SMLoc L) { const MCSection *Section = getStreamer().getCurrentSection().first; if (getLexer().isNot(AsmToken::EndOfStatement)) { TokError("unexpected token in directive"); return false; } if (!Section) { getStreamer().InitSections(false); Section = getStreamer().getCurrentSection().first; } assert(Section && "must have section to emit alignment"); if (Section->UseCodeAlign()) getStreamer().EmitCodeAlignment(2); else getStreamer().EmitValueToAlignment(2); return false; } /// parseDirectivePersonalityIndex /// ::= .personalityindex index bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { MCAsmParser &Parser = getParser(); bool HasExistingPersonality = UC.hasPersonality(); UC.recordPersonalityIndex(L); if (!UC.hasFnStart()) { Parser.eatToEndOfStatement(); Error(L, ".fnstart must precede .personalityindex directive"); return false; } if (UC.cantUnwind()) { Parser.eatToEndOfStatement(); Error(L, ".personalityindex cannot be used with .cantunwind"); UC.emitCantUnwindLocNotes(); return false; } if (UC.hasHandlerData()) { Parser.eatToEndOfStatement(); Error(L, ".personalityindex must precede .handlerdata directive"); UC.emitHandlerDataLocNotes(); return false; } if (HasExistingPersonality) { Parser.eatToEndOfStatement(); Error(L, "multiple personality directives"); UC.emitPersonalityLocNotes(); return false; } const MCExpr *IndexExpression; SMLoc IndexLoc = Parser.getTok().getLoc(); if (Parser.parseExpression(IndexExpression)) { Parser.eatToEndOfStatement(); return false; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); if (!CE) { Parser.eatToEndOfStatement(); Error(IndexLoc, "index must be a constant number"); return false; } if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { Parser.eatToEndOfStatement(); Error(IndexLoc, "personality routine index should be in range [0-3]"); return false; } getTargetStreamer().emitPersonalityIndex(CE->getValue()); return false; } /// parseDirectiveUnwindRaw /// ::= .unwind_raw offset, opcode [, opcode...] bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { MCAsmParser &Parser = getParser(); if (!UC.hasFnStart()) { Parser.eatToEndOfStatement(); Error(L, ".fnstart must precede .unwind_raw directives"); return false; } int64_t StackOffset; const MCExpr *OffsetExpr; SMLoc OffsetLoc = getLexer().getLoc(); if (getLexer().is(AsmToken::EndOfStatement) || getParser().parseExpression(OffsetExpr)) { Error(OffsetLoc, "expected expression"); Parser.eatToEndOfStatement(); return false; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); if (!CE) { Error(OffsetLoc, "offset must be a constant"); Parser.eatToEndOfStatement(); return false; } StackOffset = CE->getValue(); if (getLexer().isNot(AsmToken::Comma)) { Error(getLexer().getLoc(), "expected comma"); Parser.eatToEndOfStatement(); return false; } Parser.Lex(); SmallVector<uint8_t, 16> Opcodes; for (;;) { const MCExpr *OE; SMLoc OpcodeLoc = getLexer().getLoc(); if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { Error(OpcodeLoc, "expected opcode expression"); Parser.eatToEndOfStatement(); return false; } const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); if (!OC) { Error(OpcodeLoc, "opcode value must be a constant"); Parser.eatToEndOfStatement(); return false; } const int64_t Opcode = OC->getValue(); if (Opcode & ~0xff) { Error(OpcodeLoc, "invalid opcode"); Parser.eatToEndOfStatement(); return false; } Opcodes.push_back(uint8_t(Opcode)); if (getLexer().is(AsmToken::EndOfStatement)) break; if (getLexer().isNot(AsmToken::Comma)) { Error(getLexer().getLoc(), "unexpected token in directive"); Parser.eatToEndOfStatement(); return false; } Parser.Lex(); } getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); Parser.Lex(); return false; } /// parseDirectiveTLSDescSeq /// ::= .tlsdescseq tls-variable bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { MCAsmParser &Parser = getParser(); if (getLexer().isNot(AsmToken::Identifier)) { TokError("expected variable after '.tlsdescseq' directive"); Parser.eatToEndOfStatement(); return false; } const MCSymbolRefExpr *SRE = MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) { Error(Parser.getTok().getLoc(), "unexpected token"); Parser.eatToEndOfStatement(); return false; } getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); return false; } /// parseDirectiveMovSP /// ::= .movsp reg [, #offset] bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { MCAsmParser &Parser = getParser(); if (!UC.hasFnStart()) { Parser.eatToEndOfStatement(); Error(L, ".fnstart must precede .movsp directives"); return false; } if (UC.getFPReg() != ARM::SP) { Parser.eatToEndOfStatement(); Error(L, "unexpected .movsp directive"); return false; } SMLoc SPRegLoc = Parser.getTok().getLoc(); int SPReg = tryParseRegister(); if (SPReg == -1) { Parser.eatToEndOfStatement(); Error(SPRegLoc, "register expected"); return false; } if (SPReg == ARM::SP || SPReg == ARM::PC) { Parser.eatToEndOfStatement(); Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); return false; } int64_t Offset = 0; if (Parser.getTok().is(AsmToken::Comma)) { Parser.Lex(); if (Parser.getTok().isNot(AsmToken::Hash)) { Error(Parser.getTok().getLoc(), "expected #constant"); Parser.eatToEndOfStatement(); return false; } Parser.Lex(); const MCExpr *OffsetExpr; SMLoc OffsetLoc = Parser.getTok().getLoc(); if (Parser.parseExpression(OffsetExpr)) { Parser.eatToEndOfStatement(); Error(OffsetLoc, "malformed offset expression"); return false; } const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); if (!CE) { Parser.eatToEndOfStatement(); Error(OffsetLoc, "offset must be an immediate constant"); return false; } Offset = CE->getValue(); } getTargetStreamer().emitMovSP(SPReg, Offset); UC.saveFPReg(SPReg); return false; } /// parseDirectiveObjectArch /// ::= .object_arch name bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { MCAsmParser &Parser = getParser(); if (getLexer().isNot(AsmToken::Identifier)) { Error(getLexer().getLoc(), "unexpected token"); Parser.eatToEndOfStatement(); return false; } StringRef Arch = Parser.getTok().getString(); SMLoc ArchLoc = Parser.getTok().getLoc(); getLexer().Lex(); unsigned ID = ARM::parseArch(Arch); if (ID == ARM::AK_INVALID) { Error(ArchLoc, "unknown architecture '" + Arch + "'"); Parser.eatToEndOfStatement(); return false; } getTargetStreamer().emitObjectArch(ID); if (getLexer().isNot(AsmToken::EndOfStatement)) { Error(getLexer().getLoc(), "unexpected token"); Parser.eatToEndOfStatement(); } return false; } /// parseDirectiveAlign /// ::= .align bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { // NOTE: if this is not the end of the statement, fall back to the target // agnostic handling for this directive which will correctly handle this. if (getLexer().isNot(AsmToken::EndOfStatement)) return true; // '.align' is target specifically handled to mean 2**2 byte alignment. if (getStreamer().getCurrentSection().first->UseCodeAlign()) getStreamer().EmitCodeAlignment(4, 0); else getStreamer().EmitValueToAlignment(4, 0, 1, 0); return false; } /// parseDirectiveThumbSet /// ::= .thumb_set name, value bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { MCAsmParser &Parser = getParser(); StringRef Name; if (Parser.parseIdentifier(Name)) { TokError("expected identifier after '.thumb_set'"); Parser.eatToEndOfStatement(); return false; } if (getLexer().isNot(AsmToken::Comma)) { TokError("expected comma after name '" + Name + "'"); Parser.eatToEndOfStatement(); return false; } Lex(); MCSymbol *Sym; const MCExpr *Value; if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, Parser, Sym, Value)) return true; getTargetStreamer().emitThumbSet(Sym, Value); return false; } /// Force static initialization. extern "C" void LLVMInitializeARMAsmParser() { RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); } #define GET_REGISTER_MATCHER #define GET_SUBTARGET_FEATURE_NAME #define GET_MATCHER_IMPLEMENTATION #include "ARMGenAsmMatcher.inc" // FIXME: This structure should be moved inside ARMTargetParser // when we start to table-generate them, and we can use the ARM // flags below, that were generated by table-gen. static const struct { const unsigned Kind; const uint64_t ArchCheck; const FeatureBitset Features; } Extensions[] = { { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, { ARM::AEK_CRYPTO, Feature_HasV8, {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, // FIXME: Only available in A-class, isel not predicated { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, // FIXME: Unsupported extensions. { ARM::AEK_OS, Feature_None, {} }, { ARM::AEK_IWMMXT, Feature_None, {} }, { ARM::AEK_IWMMXT2, Feature_None, {} }, { ARM::AEK_MAVERICK, Feature_None, {} }, { ARM::AEK_XSCALE, Feature_None, {} }, }; /// parseDirectiveArchExtension /// ::= .arch_extension [no]feature bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { MCAsmParser &Parser = getParser(); if (getLexer().isNot(AsmToken::Identifier)) { Error(getLexer().getLoc(), "unexpected token"); Parser.eatToEndOfStatement(); return false; } StringRef Name = Parser.getTok().getString(); SMLoc ExtLoc = Parser.getTok().getLoc(); getLexer().Lex(); bool EnableFeature = true; if (Name.startswith_lower("no")) { EnableFeature = false; Name = Name.substr(2); } unsigned FeatureKind = ARM::parseArchExt(Name); if (FeatureKind == ARM::AEK_INVALID) Error(ExtLoc, "unknown architectural extension: " + Name); for (const auto &Extension : Extensions) { if (Extension.Kind != FeatureKind) continue; if (Extension.Features.none()) report_fatal_error("unsupported architectural extension: " + Name); if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { Error(ExtLoc, "architectural extension '" + Name + "' is not " "allowed for the current base architecture"); return false; } MCSubtargetInfo &STI = copySTI(); FeatureBitset ToggleFeatures = EnableFeature ? (~STI.getFeatureBits() & Extension.Features) : ( STI.getFeatureBits() & Extension.Features); uint64_t Features = ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); setAvailableFeatures(Features); return false; } Error(ExtLoc, "unknown architectural extension: " + Name); Parser.eatToEndOfStatement(); return false; } // Define this matcher function after the auto-generated include so we // have the match class enum definitions. unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, unsigned Kind) { ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); // If the kind is a token for a literal immediate, check if our asm // operand matches. This is for InstAliases which have a fixed-value // immediate in the syntax. switch (Kind) { default: break; case MCK__35_0: if (Op.isImm()) if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) if (CE->getValue() == 0) return Match_Success; break; case MCK_ModImm: if (Op.isImm()) { const MCExpr *SOExpr = Op.getImm(); int64_t Value; if (!SOExpr->evaluateAsAbsolute(Value)) return Match_Success; assert((Value >= INT32_MIN && Value <= UINT32_MAX) && "expression value must be representable in 32 bits"); } break; case MCK_rGPR: if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) return Match_Success; break; case MCK_GPRPair: if (Op.isReg() && MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) return Match_Success; break; } return Match_InvalidOperand; }