//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that ARM uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "ARMISelLowering.h" #include "ARMCallingConv.h" #include "ARMConstantPoolValue.h" #include "ARMMachineFunctionInfo.h" #include "ARMPerfectShuffle.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "ARMTargetObjectFile.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" #include <utility> using namespace llvm; #define DEBUG_TYPE "arm-isel" STATISTIC(NumTailCalls, "Number of tail calls"); STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt"); STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments"); static cl::opt<bool> ARMInterworking("arm-interworking", cl::Hidden, cl::desc("Enable / disable ARM interworking (for debugging only)"), cl::init(true)); namespace { class ARMCCState : public CCState { public: ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, SmallVectorImpl<CCValAssign> &locs, LLVMContext &C, ParmContext PC) : CCState(CC, isVarArg, MF, locs, C) { assert(((PC == Call) || (PC == Prologue)) && "ARMCCState users must specify whether their context is call" "or prologue generation."); CallOrPrologue = PC; } }; } // The APCS parameter registers. static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT, MVT PromotedBitwiseVT) { if (VT != PromotedLdStVT) { setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT); setOperationAction(ISD::STORE, VT, Promote); AddPromotedToType (ISD::STORE, VT, PromotedLdStVT); } MVT ElemTy = VT.getVectorElementType(); if (ElemTy != MVT::i64 && ElemTy != MVT::f64) setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); if (ElemTy == MVT::i32) { setOperationAction(ISD::SINT_TO_FP, VT, Custom); setOperationAction(ISD::UINT_TO_FP, VT, Custom); setOperationAction(ISD::FP_TO_SINT, VT, Custom); setOperationAction(ISD::FP_TO_UINT, VT, Custom); } else { setOperationAction(ISD::SINT_TO_FP, VT, Expand); setOperationAction(ISD::UINT_TO_FP, VT, Expand); setOperationAction(ISD::FP_TO_SINT, VT, Expand); setOperationAction(ISD::FP_TO_UINT, VT, Expand); } setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); setOperationAction(ISD::SELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); if (VT.isInteger()) { setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); } // Promote all bit-wise operations. if (VT.isInteger() && VT != PromotedBitwiseVT) { setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT); } // Neon does not support vector divide/remainder operations. setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64) for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) setOperationAction(Opcode, VT, Legal); } void ARMTargetLowering::addDRTypeForNEON(MVT VT) { addRegisterClass(VT, &ARM::DPRRegClass); addTypeForNEON(VT, MVT::f64, MVT::v2i32); } void ARMTargetLowering::addQRTypeForNEON(MVT VT) { addRegisterClass(VT, &ARM::DPairRegClass); addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); } ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM, const ARMSubtarget &STI) : TargetLowering(TM), Subtarget(&STI) { RegInfo = Subtarget->getRegisterInfo(); Itins = Subtarget->getInstrItineraryData(); setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); if (Subtarget->isTargetMachO()) { // Uses VFP for Thumb libfuncs if available. if (Subtarget->isThumb() && Subtarget->hasVFP2() && Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) { static const struct { const RTLIB::Libcall Op; const char * const Name; const ISD::CondCode Cond; } LibraryCalls[] = { // Single-precision floating-point arithmetic. { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID }, { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID }, { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID }, { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID }, // Double-precision floating-point arithmetic. { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID }, { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID }, { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID }, { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID }, // Single-precision comparisons. { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE }, { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE }, { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE }, { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE }, { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE }, { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE }, { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE }, { RTLIB::O_F32, "__unordsf2vfp", ISD::SETEQ }, // Double-precision comparisons. { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE }, { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE }, { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE }, { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE }, { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE }, { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE }, { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE }, { RTLIB::O_F64, "__unorddf2vfp", ISD::SETEQ }, // Floating-point to integer conversions. // i64 conversions are done via library routines even when generating VFP // instructions, so use the same ones. { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID }, { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID }, // Conversions between floating types. { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID }, { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID }, // Integer to floating-point conversions. // i64 conversions are done via library routines even when generating VFP // instructions, so use the same ones. // FIXME: There appears to be some naming inconsistency in ARM libgcc: // e.g., __floatunsidf vs. __floatunssidfvfp. { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID }, { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID }, }; for (const auto &LC : LibraryCalls) { setLibcallName(LC.Op, LC.Name); if (LC.Cond != ISD::SETCC_INVALID) setCmpLibcallCC(LC.Op, LC.Cond); } } // Set the correct calling convention for ARMv7k WatchOS. It's just // AAPCS_VFP for functions as simple as libcalls. if (Subtarget->isTargetWatchOS()) { for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP); } } // These libcalls are not available in 32-bit. setLibcallName(RTLIB::SHL_I128, nullptr); setLibcallName(RTLIB::SRL_I128, nullptr); setLibcallName(RTLIB::SRA_I128, nullptr); // RTLIB if (Subtarget->isAAPCS_ABI() && (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || Subtarget->isTargetAndroid())) { static const struct { const RTLIB::Libcall Op; const char * const Name; const CallingConv::ID CC; const ISD::CondCode Cond; } LibraryCalls[] = { // Double-precision floating-point arithmetic helper functions // RTABI chapter 4.1.2, Table 2 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Double-precision floating-point comparison helper functions // RTABI chapter 4.1.2, Table 3 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ }, // Single-precision floating-point arithmetic helper functions // RTABI chapter 4.1.2, Table 4 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Single-precision floating-point comparison helper functions // RTABI chapter 4.1.2, Table 5 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ }, // Floating-point to integer conversions. // RTABI chapter 4.1.2, Table 6 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Conversions between floating types. // RTABI chapter 4.1.2, Table 7 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Integer to floating-point conversions. // RTABI chapter 4.1.2, Table 8 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Long long helper functions // RTABI chapter 4.2, Table 9 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Integer division functions // RTABI chapter 4.3.1 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, }; for (const auto &LC : LibraryCalls) { setLibcallName(LC.Op, LC.Name); setLibcallCallingConv(LC.Op, LC.CC); if (LC.Cond != ISD::SETCC_INVALID) setCmpLibcallCC(LC.Op, LC.Cond); } // EABI dependent RTLIB if (TM.Options.EABIVersion == EABI::EABI4 || TM.Options.EABIVersion == EABI::EABI5) { static const struct { const RTLIB::Libcall Op; const char *const Name; const CallingConv::ID CC; const ISD::CondCode Cond; } MemOpsLibraryCalls[] = { // Memory operations // RTABI chapter 4.3.4 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, }; for (const auto &LC : MemOpsLibraryCalls) { setLibcallName(LC.Op, LC.Name); setLibcallCallingConv(LC.Op, LC.CC); if (LC.Cond != ISD::SETCC_INVALID) setCmpLibcallCC(LC.Op, LC.Cond); } } } if (Subtarget->isTargetWindows()) { static const struct { const RTLIB::Libcall Op; const char * const Name; const CallingConv::ID CC; } LibraryCalls[] = { { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP }, { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP }, { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP }, { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP }, { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP }, { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP }, { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP }, { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP }, { RTLIB::SDIV_I32, "__rt_sdiv", CallingConv::ARM_AAPCS_VFP }, { RTLIB::UDIV_I32, "__rt_udiv", CallingConv::ARM_AAPCS_VFP }, { RTLIB::SDIV_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS_VFP }, { RTLIB::UDIV_I64, "__rt_udiv64", CallingConv::ARM_AAPCS_VFP }, }; for (const auto &LC : LibraryCalls) { setLibcallName(LC.Op, LC.Name); setLibcallCallingConv(LC.Op, LC.CC); } } // Use divmod compiler-rt calls for iOS 5.0 and later. if (Subtarget->isTargetWatchOS() || (Subtarget->isTargetIOS() && !Subtarget->getTargetTriple().isOSVersionLT(5, 0))) { setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); } // The half <-> float conversion functions are always soft-float, but are // needed for some targets which use a hard-float calling convention by // default. if (Subtarget->isAAPCS_ABI()) { setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS); } else { setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS); setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS); setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS); } // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have // a __gnu_ prefix (which is the default). if (Subtarget->isTargetAEABI()) { setLibcallName(RTLIB::FPROUND_F32_F16, "__aeabi_f2h"); setLibcallName(RTLIB::FPROUND_F64_F16, "__aeabi_d2h"); setLibcallName(RTLIB::FPEXT_F16_F32, "__aeabi_h2f"); } if (Subtarget->isThumb1Only()) addRegisterClass(MVT::i32, &ARM::tGPRRegClass); else addRegisterClass(MVT::i32, &ARM::GPRRegClass); if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { addRegisterClass(MVT::f32, &ARM::SPRRegClass); addRegisterClass(MVT::f64, &ARM::DPRRegClass); } for (MVT VT : MVT::vector_valuetypes()) { for (MVT InnerVT : MVT::vector_valuetypes()) { setTruncStoreAction(VT, InnerVT, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); } setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); } setOperationAction(ISD::ConstantFP, MVT::f32, Custom); setOperationAction(ISD::ConstantFP, MVT::f64, Custom); setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom); setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom); if (Subtarget->hasNEON()) { addDRTypeForNEON(MVT::v2f32); addDRTypeForNEON(MVT::v8i8); addDRTypeForNEON(MVT::v4i16); addDRTypeForNEON(MVT::v2i32); addDRTypeForNEON(MVT::v1i64); addQRTypeForNEON(MVT::v4f32); addQRTypeForNEON(MVT::v2f64); addQRTypeForNEON(MVT::v16i8); addQRTypeForNEON(MVT::v8i16); addQRTypeForNEON(MVT::v4i32); addQRTypeForNEON(MVT::v2i64); // v2f64 is legal so that QR subregs can be extracted as f64 elements, but // neither Neon nor VFP support any arithmetic operations on it. // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively // supported for v4f32. setOperationAction(ISD::FADD, MVT::v2f64, Expand); setOperationAction(ISD::FSUB, MVT::v2f64, Expand); setOperationAction(ISD::FMUL, MVT::v2f64, Expand); // FIXME: Code duplication: FDIV and FREM are expanded always, see // ARMTargetLowering::addTypeForNEON method for details. setOperationAction(ISD::FDIV, MVT::v2f64, Expand); setOperationAction(ISD::FREM, MVT::v2f64, Expand); // FIXME: Create unittest. // In another words, find a way when "copysign" appears in DAG with vector // operands. setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); // FIXME: Code duplication: SETCC has custom operation action, see // ARMTargetLowering::addTypeForNEON method for details. setOperationAction(ISD::SETCC, MVT::v2f64, Expand); // FIXME: Create unittest for FNEG and for FABS. setOperationAction(ISD::FNEG, MVT::v2f64, Expand); setOperationAction(ISD::FABS, MVT::v2f64, Expand); setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); setOperationAction(ISD::FSIN, MVT::v2f64, Expand); setOperationAction(ISD::FCOS, MVT::v2f64, Expand); setOperationAction(ISD::FPOWI, MVT::v2f64, Expand); setOperationAction(ISD::FPOW, MVT::v2f64, Expand); setOperationAction(ISD::FLOG, MVT::v2f64, Expand); setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); setOperationAction(ISD::FEXP, MVT::v2f64, Expand); setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR. setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); setOperationAction(ISD::FRINT, MVT::v2f64, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); setOperationAction(ISD::FMA, MVT::v2f64, Expand); setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); setOperationAction(ISD::FSIN, MVT::v4f32, Expand); setOperationAction(ISD::FCOS, MVT::v4f32, Expand); setOperationAction(ISD::FPOWI, MVT::v4f32, Expand); setOperationAction(ISD::FPOW, MVT::v4f32, Expand); setOperationAction(ISD::FLOG, MVT::v4f32, Expand); setOperationAction(ISD::FLOG2, MVT::v4f32, Expand); setOperationAction(ISD::FLOG10, MVT::v4f32, Expand); setOperationAction(ISD::FEXP, MVT::v4f32, Expand); setOperationAction(ISD::FEXP2, MVT::v4f32, Expand); setOperationAction(ISD::FCEIL, MVT::v4f32, Expand); setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand); setOperationAction(ISD::FRINT, MVT::v4f32, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand); // Mark v2f32 intrinsics. setOperationAction(ISD::FSQRT, MVT::v2f32, Expand); setOperationAction(ISD::FSIN, MVT::v2f32, Expand); setOperationAction(ISD::FCOS, MVT::v2f32, Expand); setOperationAction(ISD::FPOWI, MVT::v2f32, Expand); setOperationAction(ISD::FPOW, MVT::v2f32, Expand); setOperationAction(ISD::FLOG, MVT::v2f32, Expand); setOperationAction(ISD::FLOG2, MVT::v2f32, Expand); setOperationAction(ISD::FLOG10, MVT::v2f32, Expand); setOperationAction(ISD::FEXP, MVT::v2f32, Expand); setOperationAction(ISD::FEXP2, MVT::v2f32, Expand); setOperationAction(ISD::FCEIL, MVT::v2f32, Expand); setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand); setOperationAction(ISD::FRINT, MVT::v2f32, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand); setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand); // Neon does not support some operations on v1i64 and v2i64 types. setOperationAction(ISD::MUL, MVT::v1i64, Expand); // Custom handling for some quad-vector types to detect VMULL. setOperationAction(ISD::MUL, MVT::v8i16, Custom); setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v2i64, Custom); // Custom handling for some vector types to avoid expensive expansions setOperationAction(ISD::SDIV, MVT::v4i16, Custom); setOperationAction(ISD::SDIV, MVT::v8i8, Custom); setOperationAction(ISD::UDIV, MVT::v4i16, Custom); setOperationAction(ISD::UDIV, MVT::v8i8, Custom); setOperationAction(ISD::SETCC, MVT::v1i64, Expand); setOperationAction(ISD::SETCC, MVT::v2i64, Expand); // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with // a destination type that is wider than the source, and nor does // it have a FP_TO_[SU]INT instruction with a narrower destination than // source. setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom); setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand); // NEON does not have single instruction CTPOP for vectors with element // types wider than 8-bits. However, custom lowering can leverage the // v8i8/v16i8 vcnt instruction. setOperationAction(ISD::CTPOP, MVT::v2i32, Custom); setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); setOperationAction(ISD::CTPOP, MVT::v4i16, Custom); setOperationAction(ISD::CTPOP, MVT::v8i16, Custom); // NEON does not have single instruction CTTZ for vectors. setOperationAction(ISD::CTTZ, MVT::v8i8, Custom); setOperationAction(ISD::CTTZ, MVT::v4i16, Custom); setOperationAction(ISD::CTTZ, MVT::v2i32, Custom); setOperationAction(ISD::CTTZ, MVT::v1i64, Custom); setOperationAction(ISD::CTTZ, MVT::v16i8, Custom); setOperationAction(ISD::CTTZ, MVT::v8i16, Custom); setOperationAction(ISD::CTTZ, MVT::v4i32, Custom); setOperationAction(ISD::CTTZ, MVT::v2i64, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom); // NEON only has FMA instructions as of VFP4. if (!Subtarget->hasVFP4()) { setOperationAction(ISD::FMA, MVT::v2f32, Expand); setOperationAction(ISD::FMA, MVT::v4f32, Expand); } setTargetDAGCombine(ISD::INTRINSIC_VOID); setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::ANY_EXTEND); setTargetDAGCombine(ISD::BUILD_VECTOR); setTargetDAGCombine(ISD::VECTOR_SHUFFLE); setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::FP_TO_SINT); setTargetDAGCombine(ISD::FP_TO_UINT); setTargetDAGCombine(ISD::FDIV); setTargetDAGCombine(ISD::LOAD); // It is legal to extload from v4i8 to v4i16 or v4i32. for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16, MVT::v2i32}) { for (MVT VT : MVT::integer_vector_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal); setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal); setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal); } } } // ARM and Thumb2 support UMLAL/SMLAL. if (!Subtarget->isThumb1Only()) setTargetDAGCombine(ISD::ADDC); if (Subtarget->isFPOnlySP()) { // When targeting a floating-point unit with only single-precision // operations, f64 is legal for the few double-precision instructions which // are present However, no double-precision operations other than moves, // loads and stores are provided by the hardware. setOperationAction(ISD::FADD, MVT::f64, Expand); setOperationAction(ISD::FSUB, MVT::f64, Expand); setOperationAction(ISD::FMUL, MVT::f64, Expand); setOperationAction(ISD::FMA, MVT::f64, Expand); setOperationAction(ISD::FDIV, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FGETSIGN, MVT::f64, Expand); setOperationAction(ISD::FNEG, MVT::f64, Expand); setOperationAction(ISD::FABS, MVT::f64, Expand); setOperationAction(ISD::FSQRT, MVT::f64, Expand); setOperationAction(ISD::FSIN, MVT::f64, Expand); setOperationAction(ISD::FCOS, MVT::f64, Expand); setOperationAction(ISD::FPOWI, MVT::f64, Expand); setOperationAction(ISD::FPOW, MVT::f64, Expand); setOperationAction(ISD::FLOG, MVT::f64, Expand); setOperationAction(ISD::FLOG2, MVT::f64, Expand); setOperationAction(ISD::FLOG10, MVT::f64, Expand); setOperationAction(ISD::FEXP, MVT::f64, Expand); setOperationAction(ISD::FEXP2, MVT::f64, Expand); setOperationAction(ISD::FCEIL, MVT::f64, Expand); setOperationAction(ISD::FTRUNC, MVT::f64, Expand); setOperationAction(ISD::FRINT, MVT::f64, Expand); setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); setOperationAction(ISD::FFLOOR, MVT::f64, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom); setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom); } computeRegisterProperties(Subtarget->getRegisterInfo()); // ARM does not have floating-point extending loads. for (MVT VT : MVT::fp_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); } // ... or truncating stores setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); // ARM does not have i1 sign extending load. for (MVT VT : MVT::integer_valuetypes()) setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); // ARM supports all 4 flavors of integer indexed load / store. if (!Subtarget->isThumb1Only()) { for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, MVT::i1, Legal); setIndexedLoadAction(im, MVT::i8, Legal); setIndexedLoadAction(im, MVT::i16, Legal); setIndexedLoadAction(im, MVT::i32, Legal); setIndexedStoreAction(im, MVT::i1, Legal); setIndexedStoreAction(im, MVT::i8, Legal); setIndexedStoreAction(im, MVT::i16, Legal); setIndexedStoreAction(im, MVT::i32, Legal); } } setOperationAction(ISD::SADDO, MVT::i32, Custom); setOperationAction(ISD::UADDO, MVT::i32, Custom); setOperationAction(ISD::SSUBO, MVT::i32, Custom); setOperationAction(ISD::USUBO, MVT::i32, Custom); // i64 operation support. setOperationAction(ISD::MUL, MVT::i64, Expand); setOperationAction(ISD::MULHU, MVT::i32, Expand); if (Subtarget->isThumb1Only()) { setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); } if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops() || (Subtarget->isThumb2() && !Subtarget->hasDSP())) setOperationAction(ISD::MULHS, MVT::i32, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL, MVT::i64, Custom); setOperationAction(ISD::SRA, MVT::i64, Custom); if (!Subtarget->isThumb1Only()) { // FIXME: We should do this for Thumb1 as well. setOperationAction(ISD::ADDC, MVT::i32, Custom); setOperationAction(ISD::ADDE, MVT::i32, Custom); setOperationAction(ISD::SUBC, MVT::i32, Custom); setOperationAction(ISD::SUBE, MVT::i32, Custom); } if (!Subtarget->isThumb1Only()) setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); // ARM does not have ROTL. setOperationAction(ISD::ROTL, MVT::i32, Expand); for (MVT VT : MVT::vector_valuetypes()) { setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); } setOperationAction(ISD::CTTZ, MVT::i32, Custom); setOperationAction(ISD::CTPOP, MVT::i32, Expand); if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) setOperationAction(ISD::CTLZ, MVT::i32, Expand); // These just redirect to CTTZ and CTLZ on ARM. setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand); // @llvm.readcyclecounter requires the Performance Monitors extension. // Default to the 0 expansion on unsupported platforms. // FIXME: Technically there are older ARM CPUs that have // implementation-specific ways of obtaining this information. if (Subtarget->hasPerfMon()) setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); // Only ARMv6 has BSWAP. if (!Subtarget->hasV6Ops()) setOperationAction(ISD::BSWAP, MVT::i32, Expand); if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) && !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) { // These are expanded into libcalls if the cpu doesn't have HW divider. setOperationAction(ISD::SDIV, MVT::i32, LibCall); setOperationAction(ISD::UDIV, MVT::i32, LibCall); } setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); // Register based DivRem for AEABI (RTABI 4.2) if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid()) { setOperationAction(ISD::SREM, MVT::i64, Custom); setOperationAction(ISD::UREM, MVT::i64, Custom); setLibcallName(RTLIB::SDIVREM_I8, "__aeabi_idivmod"); setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod"); setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod"); setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod"); setLibcallName(RTLIB::UDIVREM_I8, "__aeabi_uidivmod"); setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod"); setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod"); setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod"); setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS); setOperationAction(ISD::SDIVREM, MVT::i32, Custom); setOperationAction(ISD::UDIVREM, MVT::i32, Custom); } else { setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); } setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::BlockAddress, MVT::i32, Custom); setOperationAction(ISD::TRAP, MVT::Other, Legal); // Use the default implementation. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Expand); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment()) setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); else setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use // the default expansion. If we are targeting a single threaded system, // then set them all for expand so we can lower them later into their // non-atomic form. if (TM.Options.ThreadModel == ThreadModel::Single) setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand); else if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) { // ATOMIC_FENCE needs custom lowering; the others should have been expanded // to ldrex/strex loops already. setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); // On v8, we have particularly efficient implementations of atomic fences // if they can be combined with nearby atomic loads and stores. if (!Subtarget->hasV8Ops()) { // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc. setInsertFencesForAtomic(true); } } else { // If there's anything we can use as a barrier, go through custom lowering // for ATOMIC_FENCE. setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Subtarget->hasAnyDataBarrier() ? Custom : Expand); // Set them all for expansion, which will force libcalls. setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the // Unordered/Monotonic case. setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); } setOperationAction(ISD::PREFETCH, MVT::Other, Custom); // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes. if (!Subtarget->hasV6Ops()) { setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); } setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR // iff target supports vfp2. setOperationAction(ISD::BITCAST, MVT::i64, Custom); setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); } // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); if (Subtarget->useSjLjEH()) setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); setOperationAction(ISD::SETCC, MVT::i32, Expand); setOperationAction(ISD::SETCC, MVT::f32, Expand); setOperationAction(ISD::SETCC, MVT::f64, Expand); setOperationAction(ISD::SELECT, MVT::i32, Custom); setOperationAction(ISD::SELECT, MVT::f32, Custom); setOperationAction(ISD::SELECT, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::BR_JT, MVT::Other, Custom); // We don't support sin/cos/fmod/copysign/pow setOperationAction(ISD::FSIN, MVT::f64, Expand); setOperationAction(ISD::FSIN, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f32, Expand); if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); } setOperationAction(ISD::FPOW, MVT::f64, Expand); setOperationAction(ISD::FPOW, MVT::f32, Expand); if (!Subtarget->hasVFP4()) { setOperationAction(ISD::FMA, MVT::f64, Expand); setOperationAction(ISD::FMA, MVT::f32, Expand); } // Various VFP goodness if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) { // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded. if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) { setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); } // fp16 is a special v7 extension that adds f16 <-> f32 conversions. if (!Subtarget->hasFP16()) { setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); } } // Combine sin / cos into one node or libcall if possible. if (Subtarget->hasSinCos()) { setLibcallName(RTLIB::SINCOS_F32, "sincosf"); setLibcallName(RTLIB::SINCOS_F64, "sincos"); if (Subtarget->isTargetWatchOS()) { setLibcallCallingConv(RTLIB::SINCOS_F32, CallingConv::ARM_AAPCS_VFP); setLibcallCallingConv(RTLIB::SINCOS_F64, CallingConv::ARM_AAPCS_VFP); } if (Subtarget->isTargetIOS() || Subtarget->isTargetWatchOS()) { // For iOS, we don't want to the normal expansion of a libcall to // sincos. We want to issue a libcall to __sincos_stret. setOperationAction(ISD::FSINCOS, MVT::f64, Custom); setOperationAction(ISD::FSINCOS, MVT::f32, Custom); } } // FP-ARMv8 implements a lot of rounding-like FP operations. if (Subtarget->hasFPARMv8()) { setOperationAction(ISD::FFLOOR, MVT::f32, Legal); setOperationAction(ISD::FCEIL, MVT::f32, Legal); setOperationAction(ISD::FROUND, MVT::f32, Legal); setOperationAction(ISD::FTRUNC, MVT::f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); setOperationAction(ISD::FRINT, MVT::f32, Legal); setOperationAction(ISD::FMINNUM, MVT::f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal); setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); if (!Subtarget->isFPOnlySP()) { setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction(ISD::FCEIL, MVT::f64, Legal); setOperationAction(ISD::FROUND, MVT::f64, Legal); setOperationAction(ISD::FTRUNC, MVT::f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); setOperationAction(ISD::FRINT, MVT::f64, Legal); setOperationAction(ISD::FMINNUM, MVT::f64, Legal); setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); } } if (Subtarget->hasNEON()) { // vmin and vmax aren't available in a scalar form, so we use // a NEON instruction with an undef lane instead. setOperationAction(ISD::FMINNAN, MVT::f32, Legal); setOperationAction(ISD::FMAXNAN, MVT::f32, Legal); setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal); setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal); setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal); setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal); } // We have target-specific dag combine patterns for the following nodes: // ARMISD::VMOVRRD - No need to call setTargetDAGCombine setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::SUB); setTargetDAGCombine(ISD::MUL); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::XOR); if (Subtarget->hasV6Ops()) setTargetDAGCombine(ISD::SRL); setStackPointerRegisterToSaveRestore(ARM::SP); if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() || !Subtarget->hasVFP2()) setSchedulingPreference(Sched::RegPressure); else setSchedulingPreference(Sched::Hybrid); //// temporary - rewrite interface to use type MaxStoresPerMemset = 8; MaxStoresPerMemsetOptSize = 4; MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores MaxStoresPerMemcpyOptSize = 2; MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores MaxStoresPerMemmoveOptSize = 2; // On ARM arguments smaller than 4 bytes are extended, so all arguments // are at least 4 bytes aligned. setMinStackArgumentAlignment(4); // Prefer likely predicted branches to selects on out-of-order cores. PredictableSelectIsExpensive = Subtarget->isLikeA9(); setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2); } bool ARMTargetLowering::useSoftFloat() const { return Subtarget->useSoftFloat(); } // FIXME: It might make sense to define the representative register class as the // nearest super-register that has a non-null superset. For example, DPR_VFP2 is // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently, // SPR's representative would be DPR_VFP2. This should work well if register // pressure tracking were modified such that a register use would increment the // pressure of the register class's representative and all of it's super // classes' representatives transitively. We have not implemented this because // of the difficulty prior to coalescing of modeling operand register classes // due to the common occurrence of cross class copies and subregister insertions // and extractions. std::pair<const TargetRegisterClass *, uint8_t> ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const { const TargetRegisterClass *RRC = nullptr; uint8_t Cost = 1; switch (VT.SimpleTy) { default: return TargetLowering::findRepresentativeClass(TRI, VT); // Use DPR as representative register class for all floating point // and vector types. Since there are 32 SPR registers and 32 DPR registers so // the cost is 1 for both f32 and f64. case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16: case MVT::v2i32: case MVT::v1i64: case MVT::v2f32: RRC = &ARM::DPRRegClass; // When NEON is used for SP, only half of the register file is available // because operations that define both SP and DP results will be constrained // to the VFP2 class (D0-D15). We currently model this constraint prior to // coalescing by double-counting the SP regs. See the FIXME above. if (Subtarget->useNEONForSinglePrecisionFP()) Cost = 2; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: RRC = &ARM::DPRRegClass; Cost = 2; break; case MVT::v4i64: RRC = &ARM::DPRRegClass; Cost = 4; break; case MVT::v8i64: RRC = &ARM::DPRRegClass; Cost = 8; break; } return std::make_pair(RRC, Cost); } const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((ARMISD::NodeType)Opcode) { case ARMISD::FIRST_NUMBER: break; case ARMISD::Wrapper: return "ARMISD::Wrapper"; case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC"; case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL"; case ARMISD::CALL: return "ARMISD::CALL"; case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; case ARMISD::tCALL: return "ARMISD::tCALL"; case ARMISD::BRCOND: return "ARMISD::BRCOND"; case ARMISD::BR_JT: return "ARMISD::BR_JT"; case ARMISD::BR2_JT: return "ARMISD::BR2_JT"; case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG"; case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; case ARMISD::CMP: return "ARMISD::CMP"; case ARMISD::CMN: return "ARMISD::CMN"; case ARMISD::CMPZ: return "ARMISD::CMPZ"; case ARMISD::CMPFP: return "ARMISD::CMPFP"; case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; case ARMISD::BCC_i64: return "ARMISD::BCC_i64"; case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; case ARMISD::CMOV: return "ARMISD::CMOV"; case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; case ARMISD::RRX: return "ARMISD::RRX"; case ARMISD::ADDC: return "ARMISD::ADDC"; case ARMISD::ADDE: return "ARMISD::ADDE"; case ARMISD::SUBC: return "ARMISD::SUBC"; case ARMISD::SUBE: return "ARMISD::SUBE"; case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD"; case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR"; case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP"; case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP"; case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH"; case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN"; case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC"; case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR"; case ARMISD::PRELOAD: return "ARMISD::PRELOAD"; case ARMISD::WIN__CHKSTK: return "ARMISD:::WIN__CHKSTK"; case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK"; case ARMISD::VCEQ: return "ARMISD::VCEQ"; case ARMISD::VCEQZ: return "ARMISD::VCEQZ"; case ARMISD::VCGE: return "ARMISD::VCGE"; case ARMISD::VCGEZ: return "ARMISD::VCGEZ"; case ARMISD::VCLEZ: return "ARMISD::VCLEZ"; case ARMISD::VCGEU: return "ARMISD::VCGEU"; case ARMISD::VCGT: return "ARMISD::VCGT"; case ARMISD::VCGTZ: return "ARMISD::VCGTZ"; case ARMISD::VCLTZ: return "ARMISD::VCLTZ"; case ARMISD::VCGTU: return "ARMISD::VCGTU"; case ARMISD::VTST: return "ARMISD::VTST"; case ARMISD::VSHL: return "ARMISD::VSHL"; case ARMISD::VSHRs: return "ARMISD::VSHRs"; case ARMISD::VSHRu: return "ARMISD::VSHRu"; case ARMISD::VRSHRs: return "ARMISD::VRSHRs"; case ARMISD::VRSHRu: return "ARMISD::VRSHRu"; case ARMISD::VRSHRN: return "ARMISD::VRSHRN"; case ARMISD::VQSHLs: return "ARMISD::VQSHLs"; case ARMISD::VQSHLu: return "ARMISD::VQSHLu"; case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu"; case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs"; case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu"; case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu"; case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs"; case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu"; case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu"; case ARMISD::VSLI: return "ARMISD::VSLI"; case ARMISD::VSRI: return "ARMISD::VSRI"; case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu"; case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs"; case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM"; case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM"; case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM"; case ARMISD::VDUP: return "ARMISD::VDUP"; case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE"; case ARMISD::VEXT: return "ARMISD::VEXT"; case ARMISD::VREV64: return "ARMISD::VREV64"; case ARMISD::VREV32: return "ARMISD::VREV32"; case ARMISD::VREV16: return "ARMISD::VREV16"; case ARMISD::VZIP: return "ARMISD::VZIP"; case ARMISD::VUZP: return "ARMISD::VUZP"; case ARMISD::VTRN: return "ARMISD::VTRN"; case ARMISD::VTBL1: return "ARMISD::VTBL1"; case ARMISD::VTBL2: return "ARMISD::VTBL2"; case ARMISD::VMULLs: return "ARMISD::VMULLs"; case ARMISD::VMULLu: return "ARMISD::VMULLu"; case ARMISD::UMLAL: return "ARMISD::UMLAL"; case ARMISD::SMLAL: return "ARMISD::SMLAL"; case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR"; case ARMISD::BFI: return "ARMISD::BFI"; case ARMISD::VORRIMM: return "ARMISD::VORRIMM"; case ARMISD::VBICIMM: return "ARMISD::VBICIMM"; case ARMISD::VBSL: return "ARMISD::VBSL"; case ARMISD::MEMCPY: return "ARMISD::MEMCPY"; case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP"; case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP"; case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP"; case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD"; case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD"; case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD"; case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD"; case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD"; case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD"; case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD"; case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD"; case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD"; case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD"; case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD"; case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD"; case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD"; case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD"; case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD"; case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD"; case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD"; } return nullptr; } EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT VT) const { if (!VT.isVector()) return getPointerTy(DL); return VT.changeVectorElementTypeToInteger(); } /// getRegClassFor - Return the register class that should be used for the /// specified value type. const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const { // Map v4i64 to QQ registers but do not make the type legal. Similarly map // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to // load / store 4 to 8 consecutive D registers. if (Subtarget->hasNEON()) { if (VT == MVT::v4i64) return &ARM::QQPRRegClass; if (VT == MVT::v8i64) return &ARM::QQQQPRRegClass; } return TargetLowering::getRegClassFor(VT); } // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the // source/dest is aligned and the copy size is large enough. We therefore want // to align such objects passed to memory intrinsics. bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, unsigned &PrefAlign) const { if (!isa<MemIntrinsic>(CI)) return false; MinSize = 8; // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1 // cycle faster than 4-byte aligned LDM. PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4); return true; } // Create a fast isel object. FastISel * ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const { return ARM::createFastISel(funcInfo, libInfo); } Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const { unsigned NumVals = N->getNumValues(); if (!NumVals) return Sched::RegPressure; for (unsigned i = 0; i != NumVals; ++i) { EVT VT = N->getValueType(i); if (VT == MVT::Glue || VT == MVT::Other) continue; if (VT.isFloatingPoint() || VT.isVector()) return Sched::ILP; } if (!N->isMachineOpcode()) return Sched::RegPressure; // Load are scheduled for latency even if there instruction itinerary // is not available. const TargetInstrInfo *TII = Subtarget->getInstrInfo(); const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); if (MCID.getNumDefs() == 0) return Sched::RegPressure; if (!Itins->isEmpty() && Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2) return Sched::ILP; return Sched::RegPressure; } //===----------------------------------------------------------------------===// // Lowering Code //===----------------------------------------------------------------------===// /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown condition code!"); case ISD::SETNE: return ARMCC::NE; case ISD::SETEQ: return ARMCC::EQ; case ISD::SETGT: return ARMCC::GT; case ISD::SETGE: return ARMCC::GE; case ISD::SETLT: return ARMCC::LT; case ISD::SETLE: return ARMCC::LE; case ISD::SETUGT: return ARMCC::HI; case ISD::SETUGE: return ARMCC::HS; case ISD::SETULT: return ARMCC::LO; case ISD::SETULE: return ARMCC::LS; } } /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, ARMCC::CondCodes &CondCode2) { CondCode2 = ARMCC::AL; switch (CC) { default: llvm_unreachable("Unknown FP condition!"); case ISD::SETEQ: case ISD::SETOEQ: CondCode = ARMCC::EQ; break; case ISD::SETGT: case ISD::SETOGT: CondCode = ARMCC::GT; break; case ISD::SETGE: case ISD::SETOGE: CondCode = ARMCC::GE; break; case ISD::SETOLT: CondCode = ARMCC::MI; break; case ISD::SETOLE: CondCode = ARMCC::LS; break; case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; case ISD::SETO: CondCode = ARMCC::VC; break; case ISD::SETUO: CondCode = ARMCC::VS; break; case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; case ISD::SETUGT: CondCode = ARMCC::HI; break; case ISD::SETUGE: CondCode = ARMCC::PL; break; case ISD::SETLT: case ISD::SETULT: CondCode = ARMCC::LT; break; case ISD::SETLE: case ISD::SETULE: CondCode = ARMCC::LE; break; case ISD::SETNE: case ISD::SETUNE: CondCode = ARMCC::NE; break; } } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// #include "ARMGenCallingConv.inc" /// getEffectiveCallingConv - Get the effective calling convention, taking into /// account presence of floating point hardware and calling convention /// limitations, such as support for variadic functions. CallingConv::ID ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC, bool isVarArg) const { switch (CC) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::ARM_AAPCS: case CallingConv::ARM_APCS: case CallingConv::GHC: return CC; case CallingConv::ARM_AAPCS_VFP: return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP; case CallingConv::C: if (!Subtarget->isAAPCS_ABI()) return CallingConv::ARM_APCS; else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && getTargetMachine().Options.FloatABIType == FloatABI::Hard && !isVarArg) return CallingConv::ARM_AAPCS_VFP; else return CallingConv::ARM_AAPCS; case CallingConv::Fast: if (!Subtarget->isAAPCS_ABI()) { if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg) return CallingConv::Fast; return CallingConv::ARM_APCS; } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg) return CallingConv::ARM_AAPCS_VFP; else return CallingConv::ARM_AAPCS; } } /// CCAssignFnForNode - Selects the correct CCAssignFn for the given /// CallingConvention. CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, bool Return, bool isVarArg) const { switch (getEffectiveCallingConv(CC, isVarArg)) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::ARM_APCS: return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); case CallingConv::ARM_AAPCS: return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); case CallingConv::ARM_AAPCS_VFP: return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); case CallingConv::Fast: return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); case CallingConv::GHC: return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC); } } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. SDValue ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn, SDValue ThisVal) const { // Assign locations to each value returned by this call. SmallVector<CCValAssign, 16> RVLocs; ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext(), Call); CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv, /* Return*/ true, isVarArg)); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign VA = RVLocs[i]; // Pass 'this' value directly from the argument to return value, to avoid // reg unit interference if (i == 0 && isThisReturn) { assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 && "unexpected return calling convention register assignment"); InVals.push_back(ThisVal); continue; } SDValue Val; if (VA.needsCustom()) { // Handle f64 or half of a v2f64. SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Lo.getValue(1); InFlag = Lo.getValue(2); VA = RVLocs[++i]; // skip ahead to next loc SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Hi.getValue(1); InFlag = Hi.getValue(2); if (!Subtarget->isLittle()) std::swap (Lo, Hi); Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); if (VA.getLocVT() == MVT::v2f64) { SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, DAG.getConstant(0, dl, MVT::i32)); VA = RVLocs[++i]; // skip ahead to next loc Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Lo.getValue(1); InFlag = Lo.getValue(2); VA = RVLocs[++i]; // skip ahead to next loc Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Hi.getValue(1); InFlag = Hi.getValue(2); if (!Subtarget->isLittle()) std::swap (Lo, Hi); Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, DAG.getConstant(1, dl, MVT::i32)); } } else { Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), InFlag); Chain = Val.getValue(1); InFlag = Val.getValue(2); } switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); break; } InVals.push_back(Val); } return Chain; } /// LowerMemOpCallTo - Store the argument to the stack. SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, SDLoc dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { unsigned LocMemOffset = VA.getLocMemOffset(); SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), StackPtr, PtrOff); return DAG.getStore( Chain, dl, Arg, PtrOff, MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset), false, false, 0); } void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg, RegsToPassVector &RegsToPass, CCValAssign &VA, CCValAssign &NextVA, SDValue &StackPtr, SmallVectorImpl<SDValue> &MemOpChains, ISD::ArgFlagsTy Flags) const { SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Arg); unsigned id = Subtarget->isLittle() ? 0 : 1; RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id))); if (NextVA.isRegLoc()) RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id))); else { assert(NextVA.isMemLoc()); if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout())); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id), dl, DAG, NextVA, Flags)); } } /// LowerCall - Lowering a call into a callseq_start <- /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter /// nodes. SDValue ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl<SDValue> &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool doesNotRet = CLI.DoesNotReturn; bool isVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); bool isThisReturn = false; bool isSibCall = false; auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls"); // Disable tail calls if they're not supported. if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true") isTailCall = false; if (isTailCall) { // Check if it's really possible to do a tail call. isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG); if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall()) report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail"); // We don't support GuaranteedTailCallOpt for ARM, only automatically // detected sibcalls. if (isTailCall) { ++NumTailCalls; isSibCall = true; } } // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), Call); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv, /* Return*/ false, isVarArg)); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); // For tail calls, memory operands are available in our caller's stack. if (isSibCall) NumBytes = 0; // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass if (!isSibCall) Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), dl); SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout())); RegsToPassVector RegsToPass; SmallVector<SDValue, 8> MemOpChains; // Walk the register/memloc assignments, inserting copies/loads. In the case // of tail call optimization, arguments are handled later. for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; ++i, ++realArgIdx) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[realArgIdx]; ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; bool isByVal = Flags.isByVal(); // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); break; } // f64 and v2f64 might be passed in i32 pairs and must be split into pieces if (VA.needsCustom()) { if (VA.getLocVT() == MVT::v2f64) { SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(0, dl, MVT::i32)); SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(1, dl, MVT::i32)); PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); VA = ArgLocs[++i]; // skip ahead to next loc if (VA.isRegLoc()) { PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); } else { assert(VA.isMemLoc()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1, dl, DAG, VA, Flags)); } } else { PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); } } else if (VA.isRegLoc()) { if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) { assert(VA.getLocVT() == MVT::i32 && "unexpected calling convention register assignment"); assert(!Ins.empty() && Ins[0].VT == MVT::i32 && "unexpected use of 'returned'"); isThisReturn = true; } RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else if (isByVal) { assert(VA.isMemLoc()); unsigned offset = 0; // True if this byval aggregate will be split between registers // and memory. unsigned ByValArgsCount = CCInfo.getInRegsParamsCount(); unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed(); if (CurByValIdx < ByValArgsCount) { unsigned RegBegin, RegEnd; CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); unsigned int i, j; for (i = 0, j = RegBegin; j < RegEnd; i++, j++) { SDValue Const = DAG.getConstant(4*i, dl, MVT::i32); SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(), false, false, false, DAG.InferPtrAlignment(AddArg)); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(j, Load)); } // If parameter size outsides register area, "offset" value // helps us to calculate stack slot for remained part properly. offset = RegEnd - RegBegin; CCInfo.nextInRegsParam(); } if (Flags.getByValSize() > 4*offset) { auto PtrVT = getPointerTy(DAG.getDataLayout()); unsigned LocMemOffset = VA.getLocMemOffset(); SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff); SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl); SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset); SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl, MVT::i32); SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl, MVT::i32); SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode}; MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs, Ops)); } } else if (!isSibCall) { assert(VA.isMemLoc()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, dl, DAG, VA, Flags)); } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; // Tail call byval lowering might overwrite argument registers so in case of // tail call optimization the copies to registers are lowered later. if (!isTailCall) for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // For tail calls lower the arguments to the 'real' stack slot. if (isTailCall) { // Force all the incoming stack arguments to be loaded from the stack // before any new outgoing arguments are stored to the stack, because the // outgoing stack slots may alias the incoming argument stack slots, and // the alias isn't otherwise explicit. This is slightly more conservative // than necessary, because it means that each store effectively depends // on every argument instead of just those arguments it would clobber. // Do not flag preceding copytoreg stuff together with the following stuff. InFlag = SDValue(); for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } InFlag = SDValue(); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. bool isDirect = false; bool isARMFunc = false; bool isLocalARMFunc = false; ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); auto PtrVt = getPointerTy(DAG.getDataLayout()); if (Subtarget->genLongCalls()) { assert((Subtarget->isTargetWindows() || getTargetMachine().getRelocationModel() == Reloc::Static) && "long-calls with non-static relocation model!"); // Handle a global address or an external symbol. If it's not one of // those, the target's already in a register, so we don't need to do // anything extra. if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { const GlobalValue *GV = G->getGlobal(); // Create a constant pool entry for the callee address unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0); // Get the address of the callee into a register SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad( PtrVt, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 0); } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) { const char *Sym = S->getSymbol(); // Create a constant pool entry for the callee address unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, ARMPCLabelIndex, 0); // Get the address of the callee into a register SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad( PtrVt, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 0); } } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { const GlobalValue *GV = G->getGlobal(); isDirect = true; bool isDef = GV->isStrongDefinitionForLinker(); bool isStub = (!isDef && Subtarget->isTargetMachO()) && getTargetMachine().getRelocationModel() != Reloc::Static; isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass()); // ARM call to a local ARM function is predicable. isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking); // tBX takes a register source operand. if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?"); Callee = DAG.getNode( ARMISD::WrapperPIC, dl, PtrVt, DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY)); Callee = DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), Callee, MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false, true, 0); } else if (Subtarget->isTargetCOFF()) { assert(Subtarget->isTargetWindows() && "Windows is the only supported COFF target"); unsigned TargetFlags = GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG; Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0, TargetFlags); if (GV->hasDLLImportStorageClass()) Callee = DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee), MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false, false, 0); } else { // On ELF targets for PIC code, direct calls should go through the PLT unsigned OpFlags = 0; if (Subtarget->isTargetELF() && getTargetMachine().getRelocationModel() == Reloc::PIC_) OpFlags = ARMII::MO_PLT; Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, OpFlags); } } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { isDirect = true; bool isStub = Subtarget->isTargetMachO() && getTargetMachine().getRelocationModel() != Reloc::Static; isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass()); // tBX takes a register source operand. const char *Sym = S->getSymbol(); if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, ARMPCLabelIndex, 4); SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad( PtrVt, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 0); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel); } else { unsigned OpFlags = 0; // On ELF targets for PIC code, direct calls should go through the PLT if (Subtarget->isTargetELF() && getTargetMachine().getRelocationModel() == Reloc::PIC_) OpFlags = ARMII::MO_PLT; Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, OpFlags); } } // FIXME: handle tail calls differently. unsigned CallOpc; if (Subtarget->isThumb()) { if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) CallOpc = ARMISD::CALL_NOLINK; else CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; } else { if (!isDirect && !Subtarget->hasV5TOps()) CallOpc = ARMISD::CALL_NOLINK; else if (doesNotRet && isDirect && Subtarget->hasRAS() && // Emit regular call when code size is the priority !MF.getFunction()->optForMinSize()) // "mov lr, pc; b _foo" to avoid confusing the RSP CallOpc = ARMISD::CALL_NOLINK; else CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL; } std::vector<SDValue> Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. if (!isTailCall) { const uint32_t *Mask; const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo(); if (isThisReturn) { // For 'this' returns, use the R0-preserving mask if applicable Mask = ARI->getThisReturnPreservedMask(MF, CallConv); if (!Mask) { // Set isThisReturn to false if the calling convention is not one that // allows 'returned' to be modeled in this way, so LowerCallResult does // not try to pass 'this' straight through isThisReturn = false; Mask = ARI->getCallPreservedMask(MF, CallConv); } } else Mask = ARI->getCallPreservedMask(MF, CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); } if (InFlag.getNode()) Ops.push_back(InFlag); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); if (isTailCall) { MF.getFrameInfo()->setHasTailCall(); return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops); } // Returns a chain and a flag for retval copy to use. Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); InFlag = Chain.getValue(1); Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), DAG.getIntPtrConstant(0, dl, true), InFlag, dl); if (!Ins.empty()) InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals, isThisReturn, isThisReturn ? OutVals[0] : SDValue()); } /// HandleByVal - Every parameter *after* a byval parameter is passed /// on the stack. Remember the next parameter register to allocate, /// and then confiscate the rest of the parameter registers to insure /// this. void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size, unsigned Align) const { assert((State->getCallOrPrologue() == Prologue || State->getCallOrPrologue() == Call) && "unhandled ParmContext"); // Byval (as with any stack) slots are always at least 4 byte aligned. Align = std::max(Align, 4U); unsigned Reg = State->AllocateReg(GPRArgRegs); if (!Reg) return; unsigned AlignInRegs = Align / 4; unsigned Waste = (ARM::R4 - Reg) % AlignInRegs; for (unsigned i = 0; i < Waste; ++i) Reg = State->AllocateReg(GPRArgRegs); if (!Reg) return; unsigned Excess = 4 * (ARM::R4 - Reg); // Special case when NSAA != SP and parameter size greater than size of // all remained GPR regs. In that case we can't split parameter, we must // send it to stack. We also must set NCRN to R4, so waste all // remained registers. const unsigned NSAAOffset = State->getNextStackOffset(); if (NSAAOffset != 0 && Size > Excess) { while (State->AllocateReg(GPRArgRegs)) ; return; } // First register for byval parameter is the first register that wasn't // allocated before this method call, so it would be "reg". // If parameter is small enough to be saved in range [reg, r4), then // the end (first after last) register would be reg + param-size-in-regs, // else parameter would be splitted between registers and stack, // end register would be r4 in this case. unsigned ByValRegBegin = Reg; unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4); State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd); // Note, first register is allocated in the beginning of function already, // allocate remained amount of registers we need. for (unsigned i = Reg + 1; i != ByValRegEnd; ++i) State->AllocateReg(GPRArgRegs); // A byval parameter that is split between registers and memory needs its // size truncated here. // In the case where the entire structure fits in registers, we set the // size in memory to zero. Size = std::max<int>(Size - Excess, 0); } /// MatchingStackOffset - Return true if the given stack call argument is /// already available in the same position (relatively) of the caller's /// incoming argument stack. static bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, const TargetInstrInfo *TII) { unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; int FI = INT_MAX; if (Arg.getOpcode() == ISD::CopyFromReg) { unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); if (!TargetRegisterInfo::isVirtualRegister(VR)) return false; MachineInstr *Def = MRI->getVRegDef(VR); if (!Def) return false; if (!Flags.isByVal()) { if (!TII->isLoadFromStackSlot(Def, FI)) return false; } else { return false; } } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { if (Flags.isByVal()) // ByVal argument is passed in as a pointer but it's now being // dereferenced. e.g. // define @foo(%struct.X* %A) { // tail call @bar(%struct.X* byval %A) // } return false; SDValue Ptr = Ld->getBasePtr(); FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); if (!FINode) return false; FI = FINode->getIndex(); } else return false; assert(FI != INT_MAX); if (!MFI->isFixedObjectIndex(FI)) return false; return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const { const Function *CallerF = DAG.getMachineFunction().getFunction(); CallingConv::ID CallerCC = CallerF->getCallingConv(); bool CCMatch = CallerCC == CalleeCC; assert(Subtarget->supportsTailCall()); // Look for obvious safe cases to perform tail call optimization that do not // require ABI changes. This is what gcc calls sibcall. // Do not sibcall optimize vararg calls unless the call site is not passing // any arguments. if (isVarArg && !Outs.empty()) return false; // Exception-handling functions need a special set of instructions to indicate // a return to the hardware. Tail-calling another function would probably // break this. if (CallerF->hasFnAttribute("interrupt")) return false; // Also avoid sibcall optimization if either caller or callee uses struct // return semantics. if (isCalleeStructRet || isCallerStructRet) return false; // Externally-defined functions with weak linkage should not be // tail-called on ARM when the OS does not support dynamic // pre-emption of symbols, as the AAELF spec requires normal calls // to undefined weak functions to be replaced with a NOP or jump to the // next instruction. The behaviour of branch instructions in this // situation (as used for tail calls) is implementation-defined, so we // cannot rely on the linker replacing the tail call with a return. if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { const GlobalValue *GV = G->getGlobal(); const Triple &TT = getTargetMachine().getTargetTriple(); if (GV->hasExternalWeakLinkage() && (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) return false; } // If the calling conventions do not match, then we'd better make sure the // results are returned in the same way as what the caller expects. if (!CCMatch) { SmallVector<CCValAssign, 16> RVLocs1; ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1, *DAG.getContext(), Call); CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg)); SmallVector<CCValAssign, 16> RVLocs2; ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2, *DAG.getContext(), Call); CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg)); if (RVLocs1.size() != RVLocs2.size()) return false; for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) return false; if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) return false; if (RVLocs1[i].isRegLoc()) { if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) return false; } else { if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) return false; } } } // If Caller's vararg or byval argument has been split between registers and // stack, do not perform tail call, since part of the argument is in caller's // local frame. const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction(). getInfo<ARMFunctionInfo>(); if (AFI_Caller->getArgRegsSaveSize()) return false; // If the callee takes no arguments then go on to check the results of the // call. if (!Outs.empty()) { // Check if stack adjustment is needed. For now, do not do this if any // argument is passed on the stack. SmallVector<CCValAssign, 16> ArgLocs; ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), Call); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC, false, isVarArg)); if (CCInfo.getNextStackOffset()) { MachineFunction &MF = DAG.getMachineFunction(); // Check if the arguments are already laid out in the right way as // the caller's fixed stack objects. MachineFrameInfo *MFI = MF.getFrameInfo(); const MachineRegisterInfo *MRI = &MF.getRegInfo(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; ++i, ++realArgIdx) { CCValAssign &VA = ArgLocs[i]; EVT RegVT = VA.getLocVT(); SDValue Arg = OutVals[realArgIdx]; ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; if (VA.getLocInfo() == CCValAssign::Indirect) return false; if (VA.needsCustom()) { // f64 and vector types are split into multiple registers or // register/stack-slot combinations. The types will not match // the registers; give up on memory f64 refs until we figure // out what to do about this. if (!VA.isRegLoc()) return false; if (!ArgLocs[++i].isRegLoc()) return false; if (RegVT == MVT::v2f64) { if (!ArgLocs[++i].isRegLoc()) return false; if (!ArgLocs[++i].isRegLoc()) return false; } } else if (!VA.isRegLoc()) { if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI, TII)) return false; } } } } return true; } bool ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true, isVarArg)); } static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, SDLoc DL, SelectionDAG &DAG) { const MachineFunction &MF = DAG.getMachineFunction(); const Function *F = MF.getFunction(); StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString(); // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset // version of the "preferred return address". These offsets affect the return // instruction if this is a return from PL1 without hypervisor extensions. // IRQ/FIQ: +4 "subs pc, lr, #4" // SWI: 0 "subs pc, lr, #0" // ABORT: +4 "subs pc, lr, #4" // UNDEF: +4/+2 "subs pc, lr, #0" // UNDEF varies depending on where the exception came from ARM or Thumb // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0. int64_t LROffset; if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" || IntKind == "ABORT") LROffset = 4; else if (IntKind == "SWI" || IntKind == "UNDEF") LROffset = 0; else report_fatal_error("Unsupported interrupt attribute. If present, value " "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF"); RetOps.insert(RetOps.begin() + 1, DAG.getConstant(LROffset, DL, MVT::i32, false)); return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps); } SDValue ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, SDLoc dl, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to a location. SmallVector<CCValAssign, 16> RVLocs; // CCState - Info about the registers and stack slots. ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext(), Call); // Analyze outgoing return values. CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true, isVarArg)); SDValue Flag; SmallVector<SDValue, 4> RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) bool isLittleEndian = Subtarget->isLittle(); MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); AFI->setReturnRegsCount(RVLocs.size()); // Copy the result values into the output registers. for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); ++i, ++realRVLocIdx) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Arg = OutVals[realRVLocIdx]; switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); break; } if (VA.needsCustom()) { if (VA.getLocVT() == MVT::v2f64) { // Extract the first half and return it in two registers. SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(0, dl, MVT::i32)); SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Half); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs.getValue(isLittleEndian ? 0 : 1), Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); VA = RVLocs[++i]; // skip ahead to next loc Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs.getValue(isLittleEndian ? 1 : 0), Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); VA = RVLocs[++i]; // skip ahead to next loc // Extract the 2nd half and fall through to handle it as an f64 value. Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(1, dl, MVT::i32)); } // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is // available. SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Arg); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(isLittleEndian ? 0 : 1), Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); VA = RVLocs[++i]; // skip ahead to next loc Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(isLittleEndian ? 1 : 0), Flag); } else Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); // Guarantee that all emitted copies are // stuck together, avoiding something bad. Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // Update chain and glue. RetOps[0] = Chain; if (Flag.getNode()) RetOps.push_back(Flag); // CPUs which aren't M-class use a special sequence to return from // exceptions (roughly, any instruction setting pc and cpsr simultaneously, // though we use "subs pc, lr, #N"). // // M-class CPUs actually use a normal return sequence with a special // (hardware-provided) value in LR, so the normal code path works. if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") && !Subtarget->isMClass()) { if (Subtarget->isThumb1Only()) report_fatal_error("interrupt attribute is not supported in Thumb1"); return LowerInterruptReturn(RetOps, dl, DAG); } return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps); } bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { if (N->getNumValues() != 1) return false; if (!N->hasNUsesOfValue(1, 0)) return false; SDValue TCChain = Chain; SDNode *Copy = *N->use_begin(); if (Copy->getOpcode() == ISD::CopyToReg) { // If the copy has a glue operand, we conservatively assume it isn't safe to // perform a tail call. if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) return false; TCChain = Copy->getOperand(0); } else if (Copy->getOpcode() == ARMISD::VMOVRRD) { SDNode *VMov = Copy; // f64 returned in a pair of GPRs. SmallPtrSet<SDNode*, 2> Copies; for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); UI != UE; ++UI) { if (UI->getOpcode() != ISD::CopyToReg) return false; Copies.insert(*UI); } if (Copies.size() > 2) return false; for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); UI != UE; ++UI) { SDValue UseChain = UI->getOperand(0); if (Copies.count(UseChain.getNode())) // Second CopyToReg Copy = *UI; else { // We are at the top of this chain. // If the copy has a glue operand, we conservatively assume it // isn't safe to perform a tail call. if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue) return false; // First CopyToReg TCChain = UseChain; } } } else if (Copy->getOpcode() == ISD::BITCAST) { // f32 returned in a single GPR. if (!Copy->hasOneUse()) return false; Copy = *Copy->use_begin(); if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0)) return false; // If the copy has a glue operand, we conservatively assume it isn't safe to // perform a tail call. if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) return false; TCChain = Copy->getOperand(0); } else { return false; } bool HasRet = false; for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); UI != UE; ++UI) { if (UI->getOpcode() != ARMISD::RET_FLAG && UI->getOpcode() != ARMISD::INTRET_FLAG) return false; HasRet = true; } if (!HasRet) return false; Chain = TCChain; return true; } bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { if (!Subtarget->supportsTailCall()) return false; auto Attr = CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); if (!CI->isTailCall() || Attr.getValueAsString() == "true") return false; return true; } // Trying to write a 64 bit value so need to split into two 32 bit values first, // and pass the lower and high parts through. static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); SDValue WriteValue = Op->getOperand(2); // This function is only supposed to be called for i64 type argument. assert(WriteValue.getValueType() == MVT::i64 && "LowerWRITE_REGISTER called for non-i64 type argument."); SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue, DAG.getConstant(0, DL, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue, DAG.getConstant(1, DL, MVT::i32)); SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi }; return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops); } // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is // one of the above mentioned nodes. It has to be wrapped because otherwise // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only // be used to form addressing mode. These wrapped nodes will be selected // into MOVi. static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) { EVT PtrVT = Op.getValueType(); // FIXME there is no actual debug info here SDLoc dl(Op); ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); SDValue Res; if (CP->isMachineConstantPoolEntry()) Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlignment()); else Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment()); return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); } unsigned ARMTargetLowering::getJumpTableEncoding() const { return MachineJumpTableInfo::EK_Inline; } SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); unsigned ARMPCLabelIndex = 0; SDLoc DL(Op); EVT PtrVT = getPointerTy(DAG.getDataLayout()); const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); SDValue CPAddr; if (RelocM == Reloc::Static) { CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4); } else { unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex, ARMCP::CPBlockAddress, PCAdj); CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); } CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 0); if (RelocM == Reloc::Static) return Result; SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32); return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model SDValue ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const { SDLoc dl(GA); EVT PtrVT = getPointerTy(DAG.getDataLayout()); unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true); SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 0); SDValue Chain = Argument.getValue(1); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); // call __tls_get_addr. ArgListTy Args; ArgListEntry Entry; Entry.Node = Argument; Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext()); Args.push_back(Entry); // FIXME: is there useful debug info available here? TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(Chain) .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()), DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args), 0); std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); return CallResult.first; } // Lower ISD::GlobalTLSAddress using the "initial exec" or // "local exec" model. SDValue ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, SelectionDAG &DAG, TLSModel::Model model) const { const GlobalValue *GV = GA->getGlobal(); SDLoc dl(GA); SDValue Offset; SDValue Chain = DAG.getEntryNode(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); // Get the Thread Pointer SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); if (model == TLSModel::InitialExec) { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); // Initial exec model. unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true); Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); Offset = DAG.getLoad( PtrVT, dl, Chain, Offset, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 0); Chain = Offset.getValue(1); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); Offset = DAG.getLoad( PtrVT, dl, Chain, Offset, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 0); } else { // local exec model assert(model == TLSModel::LocalExec); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF); Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); Offset = DAG.getLoad( PtrVT, dl, Chain, Offset, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 0); } // The address of the thread local variable is the add of the thread // pointer with the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); } SDValue ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { // TODO: implement the "local dynamic" model assert(Subtarget->isTargetELF() && "TLS not implemented for non-ELF targets"); GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); if (DAG.getTarget().Options.EmulatedTLS) return LowerToTLSEmulatedModel(GA, DAG); TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal()); switch (model) { case TLSModel::GeneralDynamic: case TLSModel::LocalDynamic: return LowerToTLSGeneralDynamicModel(GA, DAG); case TLSModel::InitialExec: case TLSModel::LocalExec: return LowerToTLSExecModels(GA, DAG, model); } llvm_unreachable("bogus TLS model"); } SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc dl(Op); const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { bool UseGOT_PREL = !(GV->hasHiddenVisibility() || GV->hasLocalLinkage()); MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc dl(Op); unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, /*AddCurrentAddress=*/UseGOT_PREL); SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); SDValue Result = DAG.getLoad( PtrVT, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 0); SDValue Chain = Result.getValue(1); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); if (UseGOT_PREL) Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false, false, 0); return Result; } // If we have T2 ops, we can materialize the address directly via movt/movw // pair. This is always cheaper. if (Subtarget->useMovt(DAG.getMachineFunction())) { ++NumMovwMovt; // FIXME: Once remat is capable of dealing with instructions with register // operands, expand this into two nodes. return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, DAG.getTargetGlobalAddress(GV, dl, PtrVT)); } else { SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); return DAG.getLoad( PtrVT, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 0); } } SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc dl(Op); const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); if (Subtarget->useMovt(DAG.getMachineFunction())) ++NumMovwMovt; // FIXME: Once remat is capable of dealing with instructions with register // operands, expand this into multiple nodes unsigned Wrapper = RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper; SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY); SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G); if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false, false, 0); return Result; } SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported"); assert(Subtarget->useMovt(DAG.getMachineFunction()) && "Windows on ARM expects to use movw/movt"); const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); const ARMII::TOF TargetFlags = (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Result; SDLoc DL(Op); ++NumMovwMovt; // FIXME: Once remat is capable of dealing with instructions with register // operands, expand this into two nodes. Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0, TargetFlags)); if (GV->hasDLLImportStorageClass()) Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false, false, 0); return Result; } SDValue ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Val = DAG.getConstant(0, dl, MVT::i32); return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1), Val); } SDValue ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0), Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32)); } SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other, Op.getOperand(0)); } SDValue ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const { unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); SDLoc dl(Op); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::arm_rbit: { assert(Op.getOperand(1).getValueType() == MVT::i32 && "RBIT intrinsic must have i32 type!"); return DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Op.getOperand(1)); } case Intrinsic::arm_thread_pointer: { EVT PtrVT = getPointerTy(DAG.getDataLayout()); return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); } case Intrinsic::eh_sjlj_lsda: { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); SDValue CPAddr; unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex, ARMCP::CPLSDA, PCAdj); CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); SDValue Result = DAG.getLoad( PtrVT, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 0); if (RelocM == Reloc::PIC_) { SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); } return Result; } case Intrinsic::arm_neon_vmulls: case Intrinsic::arm_neon_vmullu: { unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls) ? ARMISD::VMULLs : ARMISD::VMULLu; return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::arm_neon_vminnm: case Intrinsic::arm_neon_vmaxnm: { unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm) ? ISD::FMINNUM : ISD::FMAXNUM; return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::arm_neon_vminu: case Intrinsic::arm_neon_vmaxu: { if (Op.getValueType().isFloatingPoint()) return SDValue(); unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu) ? ISD::UMIN : ISD::UMAX; return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::arm_neon_vmins: case Intrinsic::arm_neon_vmaxs: { // v{min,max}s is overloaded between signed integers and floats. if (!Op.getValueType().isFloatingPoint()) { unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins) ? ISD::SMIN : ISD::SMAX; return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins) ? ISD::FMINNAN : ISD::FMAXNAN; return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } } } static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { // FIXME: handle "fence singlethread" more efficiently. SDLoc dl(Op); if (!Subtarget->hasDataBarrier()) { // Some ARMv6 cpus can support data barriers with an mcr instruction. // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get // here. assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() && "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!"); return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0), DAG.getConstant(0, dl, MVT::i32)); } ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1)); AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue()); ARM_MB::MemBOpt Domain = ARM_MB::ISH; if (Subtarget->isMClass()) { // Only a full system barrier exists in the M-class architectures. Domain = ARM_MB::SY; } else if (Subtarget->isSwift() && Ord == Release) { // Swift happens to implement ISHST barriers in a way that's compatible with // Release semantics but weaker than ISH so we'd be fools not to use // it. Beware: other processors probably don't! Domain = ARM_MB::ISHST; } return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0), DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32), DAG.getConstant(Domain, dl, MVT::i32)); } static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { // ARM pre v5TE and Thumb1 does not have preload instructions. if (!(Subtarget->isThumb2() || (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps()))) // Just preserve the chain. return Op.getOperand(0); SDLoc dl(Op); unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1; if (!isRead && (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension())) // ARMv7 with MP extension has PLDW. return Op.getOperand(0); unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); if (Subtarget->isThumb()) { // Invert the bits. isRead = ~isRead & 1; isData = ~isData & 1; } return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0), Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32), DAG.getConstant(isData, dl, MVT::i32)); } static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>(); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDLoc dl(Op); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, SDValue &Root, SelectionDAG &DAG, SDLoc dl) const { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); const TargetRegisterClass *RC; if (AFI->isThumb1OnlyFunction()) RC = &ARM::tGPRRegClass; else RC = &ARM::GPRRegClass; // Transform the arguments stored in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); SDValue ArgValue2; if (NextVA.isMemLoc()) { MachineFrameInfo *MFI = MF.getFrameInfo(); int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true); // Create load node to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); ArgValue2 = DAG.getLoad( MVT::i32, dl, Root, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, false, false, 0); } else { Reg = MF.addLiveIn(NextVA.getLocReg(), RC); ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); } if (!Subtarget->isLittle()) std::swap (ArgValue, ArgValue2); return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); } // The remaining GPRs hold either the beginning of variable-argument // data, or the beginning of an aggregate passed by value (usually // byval). Either way, we allocate stack slots adjacent to the data // provided by our caller, and store the unallocated registers there. // If this is a variadic function, the va_list pointer will begin with // these values; otherwise, this reassembles a (byval) structure that // was split between registers and memory. // Return: The frame index registers were stored into. int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, const Value *OrigArg, unsigned InRegsParamRecordIdx, int ArgOffset, unsigned ArgSize) const { // Currently, two use-cases possible: // Case #1. Non-var-args function, and we meet first byval parameter. // Setup first unallocated register as first byval register; // eat all remained registers // (these two actions are performed by HandleByVal method). // Then, here, we initialize stack frame with // "store-reg" instructions. // Case #2. Var-args function, that doesn't contain byval parameters. // The same: eat all remained unallocated registers, // initialize stack frame. MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); unsigned RBegin, REnd; if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) { CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd); } else { unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs); RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx]; REnd = ARM::R4; } if (REnd != RBegin) ArgOffset = -4 * (ARM::R4 - RBegin); auto PtrVT = getPointerTy(DAG.getDataLayout()); int FrameIndex = MFI->CreateFixedObject(ArgSize, ArgOffset, false); SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT); SmallVector<SDValue, 4> MemOps; const TargetRegisterClass *RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass; for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) { unsigned VReg = MF.addLiveIn(Reg, RC); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(OrigArg, 4 * i), false, false, 0); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT)); } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); return FrameIndex; } // Setup stack frame, the va_list pointer will start from. void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, unsigned ArgOffset, unsigned TotalArgRegsSaveSize, bool ForceMutable) const { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); // Try to store any remaining integer argument regs // to their spots on the stack so that they may be loaded by deferencing // the result of va_next. // If there is no regs to be stored, just point address after last // argument passed via stack. int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr, CCInfo.getInRegsParamsCount(), CCInfo.getNextStackOffset(), 4); AFI->setVarArgsFrameIndex(FrameIndex); } SDValue ARMTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), Prologue); CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv, /* Return*/ false, isVarArg)); SmallVector<SDValue, 16> ArgValues; SDValue ArgValue; Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); unsigned CurArgIdx = 0; // Initially ArgRegsSaveSize is zero. // Then we increase this value each time we meet byval parameter. // We also increase this value in case of varargs function. AFI->setArgRegsSaveSize(0); // Calculate the amount of stack space that we need to allocate to store // byval and variadic arguments that are passed in registers. // We need to know this before we allocate the first byval or variadic // argument, as they will be allocated a stack slot below the CFA (Canonical // Frame Address, the stack pointer at entry to the function). unsigned ArgRegBegin = ARM::R4; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount()) break; CCValAssign &VA = ArgLocs[i]; unsigned Index = VA.getValNo(); ISD::ArgFlagsTy Flags = Ins[Index].Flags; if (!Flags.isByVal()) continue; assert(VA.isMemLoc() && "unexpected byval pointer in reg"); unsigned RBegin, REnd; CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd); ArgRegBegin = std::min(ArgRegBegin, RBegin); CCInfo.nextInRegsParam(); } CCInfo.rewindByValRegsInfo(); int lastInsIndex = -1; if (isVarArg && MFI->hasVAStart()) { unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs); if (RegIdx != array_lengthof(GPRArgRegs)) ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]); } unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin); AFI->setArgRegsSaveSize(TotalArgRegsSaveSize); auto PtrVT = getPointerTy(DAG.getDataLayout()); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (Ins[VA.getValNo()].isOrigArg()) { std::advance(CurOrigArg, Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx); CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex(); } // Arguments stored in registers. if (VA.isRegLoc()) { EVT RegVT = VA.getLocVT(); if (VA.needsCustom()) { // f64 and vector types are split up into multiple registers or // combinations of registers and stack slots. if (VA.getLocVT() == MVT::v2f64) { SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); VA = ArgLocs[++i]; // skip ahead to next loc SDValue ArgValue2; if (VA.isMemLoc()) { int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); ArgValue2 = DAG.getLoad( MVT::f64, dl, Chain, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, false, false, 0); } else { ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); } ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue, ArgValue1, DAG.getIntPtrConstant(0, dl)); ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue, ArgValue2, DAG.getIntPtrConstant(1, dl)); } else ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); } else { const TargetRegisterClass *RC; if (RegVT == MVT::f32) RC = &ARM::SPRRegClass; else if (RegVT == MVT::f64) RC = &ARM::DPRRegClass; else if (RegVT == MVT::v2f64) RC = &ARM::QPRRegClass; else if (RegVT == MVT::i32) RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass; else llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); // Transform the arguments in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); } // If this is an 8 or 16-bit value, it is really passed promoted // to 32 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); break; case CCValAssign::SExt: ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); break; case CCValAssign::ZExt: ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); break; } InVals.push_back(ArgValue); } else { // VA.isRegLoc() // sanity check assert(VA.isMemLoc()); assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); int index = VA.getValNo(); // Some Ins[] entries become multiple ArgLoc[] entries. // Process them only once. if (index != lastInsIndex) { ISD::ArgFlagsTy Flags = Ins[index].Flags; // FIXME: For now, all byval parameter objects are marked mutable. // This can be changed with more analysis. // In case of tail call optimization mark all arguments mutable. // Since they could be overwritten by lowering of arguments in case of // a tail call. if (Flags.isByVal()) { assert(Ins[index].isOrigArg() && "Byval arguments cannot be implicit"); unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed(); int FrameIndex = StoreByValRegs( CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex, VA.getLocMemOffset(), Flags.getByValSize()); InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT)); CCInfo.nextInRegsParam(); } else { unsigned FIOffset = VA.getLocMemOffset(); int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, FIOffset, true); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back(DAG.getLoad( VA.getValVT(), dl, Chain, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, false, false, 0)); } lastInsIndex = index; } } } // varargs if (isVarArg && MFI->hasVAStart()) VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset(), TotalArgRegsSaveSize); AFI->setArgumentStackSize(CCInfo.getNextStackOffset()); return Chain; } /// isFloatingPointZero - Return true if this is +0.0. static bool isFloatingPointZero(SDValue Op) { if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) return CFP->getValueAPF().isPosZero(); else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { // Maybe this has already been legalized into the constant pool? if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { SDValue WrapperOp = Op.getOperand(1).getOperand(0); if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) return CFP->getValueAPF().isPosZero(); } } else if (Op->getOpcode() == ISD::BITCAST && Op->getValueType(0) == MVT::f64) { // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64) // created by LowerConstantFP(). SDValue BitcastOp = Op->getOperand(0); if (BitcastOp->getOpcode() == ARMISD::VMOVIMM && isNullConstant(BitcastOp->getOperand(0))) return true; } return false; } /// Returns appropriate ARM CMP (cmp) and corresponding condition code for /// the given operands. SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &ARMcc, SelectionDAG &DAG, SDLoc dl) const { if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { unsigned C = RHSC->getZExtValue(); if (!isLegalICmpImmediate(C)) { // Constant does not fit, try adjusting it by one? switch (CC) { default: break; case ISD::SETLT: case ISD::SETGE: if (C != 0x80000000 && isLegalICmpImmediate(C-1)) { CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; RHS = DAG.getConstant(C - 1, dl, MVT::i32); } break; case ISD::SETULT: case ISD::SETUGE: if (C != 0 && isLegalICmpImmediate(C-1)) { CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; RHS = DAG.getConstant(C - 1, dl, MVT::i32); } break; case ISD::SETLE: case ISD::SETGT: if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) { CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; RHS = DAG.getConstant(C + 1, dl, MVT::i32); } break; case ISD::SETULE: case ISD::SETUGT: if (C != 0xffffffff && isLegalICmpImmediate(C+1)) { CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; RHS = DAG.getConstant(C + 1, dl, MVT::i32); } break; } } } ARMCC::CondCodes CondCode = IntCCToARMCC(CC); ARMISD::NodeType CompareType; switch (CondCode) { default: CompareType = ARMISD::CMP; break; case ARMCC::EQ: case ARMCC::NE: // Uses only Z Flag CompareType = ARMISD::CMPZ; break; } ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS); } /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, SDLoc dl) const { assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64); SDValue Cmp; if (!isFloatingPointZero(RHS)) Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS); else Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS); return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp); } /// duplicateCmp - Glue values can have only one use, so this function /// duplicates a comparison node. SDValue ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const { unsigned Opc = Cmp.getOpcode(); SDLoc DL(Cmp); if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ) return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation"); Cmp = Cmp.getOperand(0); Opc = Cmp.getOpcode(); if (Opc == ARMISD::CMPFP) Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); else { assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"); Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0)); } return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp); } std::pair<SDValue, SDValue> ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG, SDValue &ARMcc) const { assert(Op.getValueType() == MVT::i32 && "Unsupported value type"); SDValue Value, OverflowCmp; SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDLoc dl(Op); // FIXME: We are currently always generating CMPs because we don't support // generating CMN through the backend. This is not as good as the natural // CMP case because it causes a register dependency and cannot be folded // later. switch (Op.getOpcode()) { default: llvm_unreachable("Unknown overflow instruction!"); case ISD::SADDO: ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32); Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS); OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS); break; case ISD::UADDO: ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32); Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS); OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS); break; case ISD::SSUBO: ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32); Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS); OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS); break; case ISD::USUBO: ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32); Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS); OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS); break; } // switch (...) return std::make_pair(Value, OverflowCmp); } SDValue ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const { // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) return SDValue(); SDValue Value, OverflowCmp; SDValue ARMcc; std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDLoc dl(Op); // We use 0 and 1 as false and true values. SDValue TVal = DAG.getConstant(1, dl, MVT::i32); SDValue FVal = DAG.getConstant(0, dl, MVT::i32); EVT VT = Op.getValueType(); SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal, ARMcc, CCR, OverflowCmp); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); } SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { SDValue Cond = Op.getOperand(0); SDValue SelectTrue = Op.getOperand(1); SDValue SelectFalse = Op.getOperand(2); SDLoc dl(Op); unsigned Opc = Cond.getOpcode(); if (Cond.getResNo() == 1 && (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || Opc == ISD::USUBO)) { if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0))) return SDValue(); SDValue Value, OverflowCmp; SDValue ARMcc; std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); EVT VT = Op.getValueType(); return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR, OverflowCmp, DAG); } // Convert: // // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond) // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond) // if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) { const ConstantSDNode *CMOVTrue = dyn_cast<ConstantSDNode>(Cond.getOperand(0)); const ConstantSDNode *CMOVFalse = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); if (CMOVTrue && CMOVFalse) { unsigned CMOVTrueVal = CMOVTrue->getZExtValue(); unsigned CMOVFalseVal = CMOVFalse->getZExtValue(); SDValue True; SDValue False; if (CMOVTrueVal == 1 && CMOVFalseVal == 0) { True = SelectTrue; False = SelectFalse; } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) { True = SelectFalse; False = SelectTrue; } if (True.getNode() && False.getNode()) { EVT VT = Op.getValueType(); SDValue ARMcc = Cond.getOperand(2); SDValue CCR = Cond.getOperand(3); SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG); assert(True.getValueType() == VT); return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG); } } } // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the // undefined bits before doing a full-word comparison with zero. Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond, DAG.getConstant(1, dl, Cond.getValueType())); return DAG.getSelectCC(dl, Cond, DAG.getConstant(0, dl, Cond.getValueType()), SelectTrue, SelectFalse, ISD::SETNE); } static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode, bool &swpCmpOps, bool &swpVselOps) { // Start by selecting the GE condition code for opcodes that return true for // 'equality' if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE || CC == ISD::SETULE) CondCode = ARMCC::GE; // and GT for opcodes that return false for 'equality'. else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT || CC == ISD::SETULT) CondCode = ARMCC::GT; // Since we are constrained to GE/GT, if the opcode contains 'less', we need // to swap the compare operands. if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT || CC == ISD::SETULT) swpCmpOps = true; // Both GT and GE are ordered comparisons, and return false for 'unordered'. // If we have an unordered opcode, we need to swap the operands to the VSEL // instruction (effectively negating the condition). // // This also has the effect of swapping which one of 'less' or 'greater' // returns true, so we also swap the compare operands. It also switches // whether we return true for 'equality', so we compensate by picking the // opposite condition code to our original choice. if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE || CC == ISD::SETUGT) { swpCmpOps = !swpCmpOps; swpVselOps = !swpVselOps; CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT; } // 'ordered' is 'anything but unordered', so use the VS condition code and // swap the VSEL operands. if (CC == ISD::SETO) { CondCode = ARMCC::VS; swpVselOps = true; } // 'unordered or not equal' is 'anything but equal', so use the EQ condition // code and swap the VSEL operands. if (CC == ISD::SETUNE) { CondCode = ARMCC::EQ; swpVselOps = true; } } SDValue ARMTargetLowering::getCMOV(SDLoc dl, EVT VT, SDValue FalseVal, SDValue TrueVal, SDValue ARMcc, SDValue CCR, SDValue Cmp, SelectionDAG &DAG) const { if (Subtarget->isFPOnlySP() && VT == MVT::f64) { FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), FalseVal); TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), TrueVal); SDValue TrueLow = TrueVal.getValue(0); SDValue TrueHigh = TrueVal.getValue(1); SDValue FalseLow = FalseVal.getValue(0); SDValue FalseHigh = FalseVal.getValue(1); SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow, ARMcc, CCR, Cmp); SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh, ARMcc, CCR, duplicateCmp(Cmp, DAG)); return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High); } else { return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp); } } SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); SDValue TrueVal = Op.getOperand(2); SDValue FalseVal = Op.getOperand(3); SDLoc dl(Op); if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) { DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC, dl); // If softenSetCCOperands only returned one value, we should compare it to // zero. if (!RHS.getNode()) { RHS = DAG.getConstant(0, dl, LHS.getValueType()); CC = ISD::SETNE; } } if (LHS.getValueType() == MVT::i32) { // Try to generate VSEL on ARMv8. // The VSEL instruction can't use all the usual ARM condition // codes: it only has two bits to select the condition code, so it's // constrained to use only GE, GT, VS and EQ. // // To implement all the various ISD::SETXXX opcodes, we sometimes need to // swap the operands of the previous compare instruction (effectively // inverting the compare condition, swapping 'less' and 'greater') and // sometimes need to swap the operands to the VSEL (which inverts the // condition in the sense of firing whenever the previous condition didn't) if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 || TrueVal.getValueType() == MVT::f64)) { ARMCC::CondCodes CondCode = IntCCToARMCC(CC); if (CondCode == ARMCC::LT || CondCode == ARMCC::LE || CondCode == ARMCC::VC || CondCode == ARMCC::NE) { CC = ISD::getSetCCInverse(CC, true); std::swap(TrueVal, FalseVal); } } SDValue ARMcc; SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG); } ARMCC::CondCodes CondCode, CondCode2; FPCCToARMCC(CC, CondCode, CondCode2); // Try to generate VMAXNM/VMINNM on ARMv8. if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 || TrueVal.getValueType() == MVT::f64)) { bool swpCmpOps = false; bool swpVselOps = false; checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps); if (CondCode == ARMCC::GT || CondCode == ARMCC::GE || CondCode == ARMCC::VS || CondCode == ARMCC::EQ) { if (swpCmpOps) std::swap(LHS, RHS); if (swpVselOps) std::swap(TrueVal, FalseVal); } } SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG); if (CondCode2 != ARMCC::AL) { SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32); // FIXME: Needs another CMP because flag can have but one use. SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG); } return Result; } /// canChangeToInt - Given the fp compare operand, return true if it is suitable /// to morph to an integer compare sequence. static bool canChangeToInt(SDValue Op, bool &SeenZero, const ARMSubtarget *Subtarget) { SDNode *N = Op.getNode(); if (!N->hasOneUse()) // Otherwise it requires moving the value from fp to integer registers. return false; if (!N->getNumValues()) return false; EVT VT = Op.getValueType(); if (VT != MVT::f32 && !Subtarget->isFPBrccSlow()) // f32 case is generally profitable. f64 case only makes sense when vcmpe + // vmrs are very slow, e.g. cortex-a8. return false; if (isFloatingPointZero(Op)) { SeenZero = true; return true; } return ISD::isNormalLoad(N); } static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) { if (isFloatingPointZero(Op)) return DAG.getConstant(0, SDLoc(Op), MVT::i32); if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); llvm_unreachable("Unknown VFP cmp argument!"); } static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, SDValue &RetVal1, SDValue &RetVal2) { SDLoc dl(Op); if (isFloatingPointZero(Op)) { RetVal1 = DAG.getConstant(0, dl, MVT::i32); RetVal2 = DAG.getConstant(0, dl, MVT::i32); return; } if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) { SDValue Ptr = Ld->getBasePtr(); RetVal1 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); EVT PtrType = Ptr.getValueType(); unsigned NewAlign = MinAlign(Ld->getAlignment(), 4); SDValue NewPtr = DAG.getNode(ISD::ADD, dl, PtrType, Ptr, DAG.getConstant(4, dl, PtrType)); RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr, Ld->getPointerInfo().getWithOffset(4), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), NewAlign); return; } llvm_unreachable("Unknown VFP cmp argument!"); } /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some /// f32 and even f64 comparisons to integer ones. SDValue ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); bool LHSSeenZero = false; bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget); bool RHSSeenZero = false; bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget); if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) { // If unsafe fp math optimization is enabled and there are no other uses of // the CMP operands, and the condition code is EQ or NE, we can optimize it // to an integer comparison. if (CC == ISD::SETOEQ) CC = ISD::SETEQ; else if (CC == ISD::SETUNE) CC = ISD::SETNE; SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32); SDValue ARMcc; if (LHS.getValueType() == MVT::f32) { LHS = DAG.getNode(ISD::AND, dl, MVT::i32, bitcastf32Toi32(LHS, DAG), Mask); RHS = DAG.getNode(ISD::AND, dl, MVT::i32, bitcastf32Toi32(RHS, DAG), Mask); SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, Cmp); } SDValue LHS1, LHS2; SDValue RHS1, RHS2; expandf64Toi32(LHS, DAG, LHS1, LHS2); expandf64Toi32(RHS, DAG, RHS1, RHS2); LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask); RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask); ARMCC::CondCodes CondCode = IntCCToARMCC(CC); ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest }; return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops); } return SDValue(); } SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) { DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC, dl); // If softenSetCCOperands only returned one value, we should compare it to // zero. if (!RHS.getNode()) { RHS = DAG.getConstant(0, dl, LHS.getValueType()); CC = ISD::SETNE; } } if (LHS.getValueType() == MVT::i32) { SDValue ARMcc; SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, Cmp); } assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); if (getTargetMachine().Options.UnsafeFPMath && (CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETNE || CC == ISD::SETUNE)) { SDValue Result = OptimizeVFPBrcond(Op, DAG); if (Result.getNode()) return Result; } ARMCC::CondCodes CondCode, CondCode2; FPCCToARMCC(CC, CondCode, CondCode2); SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp }; SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); if (CondCode2 != ARMCC::AL) { ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32); SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) }; Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); } return Res; } SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Table = Op.getOperand(1); SDValue Index = Op.getOperand(2); SDLoc dl(Op); EVT PTy = getPointerTy(DAG.getDataLayout()); JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI); Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy)); SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); if (Subtarget->isThumb2()) { // Thumb2 uses a two-level jump. That is, it jumps into the jump table // which does another jump to the destination. This also makes it easier // to translate it to TBB / TBH later. // FIXME: This might not work if the function is extremely large. return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, Addr, Op.getOperand(2), JTI); } if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), false, false, false, 0); Chain = Addr.getValue(1); Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table); return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI); } else { Addr = DAG.getLoad(PTy, dl, Chain, Addr, MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), false, false, false, 0); Chain = Addr.getValue(1); return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI); } } static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); SDLoc dl(Op); if (Op.getValueType().getVectorElementType() == MVT::i32) { if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32) return Op; return DAG.UnrollVectorOp(Op.getNode()); } assert(Op.getOperand(0).getValueType() == MVT::v4f32 && "Invalid type for custom lowering!"); if (VT != MVT::v4i16) return DAG.UnrollVectorOp(Op.getNode()); Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Op); } SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT.isVector()) return LowerVectorFP_TO_INT(Op, DAG); if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) { RTLIB::Libcall LC; if (Op.getOpcode() == ISD::FP_TO_SINT) LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); else LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0), /*isSigned*/ false, SDLoc(Op)).first; } return Op; } static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); SDLoc dl(Op); if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) { if (VT.getVectorElementType() == MVT::f32) return Op; return DAG.UnrollVectorOp(Op.getNode()); } assert(Op.getOperand(0).getValueType() == MVT::v4i16 && "Invalid type for custom lowering!"); if (VT != MVT::v4f32) return DAG.UnrollVectorOp(Op.getNode()); unsigned CastOpc; unsigned Opc; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid opcode!"); case ISD::SINT_TO_FP: CastOpc = ISD::SIGN_EXTEND; Opc = ISD::SINT_TO_FP; break; case ISD::UINT_TO_FP: CastOpc = ISD::ZERO_EXTEND; Opc = ISD::UINT_TO_FP; break; } Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0)); return DAG.getNode(Opc, dl, VT, Op); } SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT.isVector()) return LowerVectorINT_TO_FP(Op, DAG); if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) { RTLIB::Libcall LC; if (Op.getOpcode() == ISD::SINT_TO_FP) LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); else LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0), /*isSigned*/ false, SDLoc(Op)).first; } return Op; } SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { // Implement fcopysign with a fabs and a conditional fneg. SDValue Tmp0 = Op.getOperand(0); SDValue Tmp1 = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); EVT SrcVT = Tmp1.getValueType(); bool InGPR = Tmp0.getOpcode() == ISD::BITCAST || Tmp0.getOpcode() == ARMISD::VMOVDRR; bool UseNEON = !InGPR && Subtarget->hasNEON(); if (UseNEON) { // Use VBSL to copy the sign bit. unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80); SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32, DAG.getTargetConstant(EncodedVal, dl, MVT::i32)); EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64; if (VT == MVT::f64) Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT, DAG.getNode(ISD::BITCAST, dl, OpVT, Mask), DAG.getConstant(32, dl, MVT::i32)); else /*if (VT == MVT::f32)*/ Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0); if (SrcVT == MVT::f32) { Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1); if (VT == MVT::f64) Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT, DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1), DAG.getConstant(32, dl, MVT::i32)); } else if (VT == MVT::f32) Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64, DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1), DAG.getConstant(32, dl, MVT::i32)); Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0); Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1); SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff), dl, MVT::i32); AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes); SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask, DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes)); SDValue Res = DAG.getNode(ISD::OR, dl, OpVT, DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask), DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot)); if (VT == MVT::f32) { Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res); Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res, DAG.getConstant(0, dl, MVT::i32)); } else { Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res); } return Res; } // Bitcast operand 1 to i32. if (SrcVT == MVT::f64) Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Tmp1).getValue(1); Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1); // Or in the signbit with integer operations. SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32); SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32); Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1); if (VT == MVT::f32) { Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2); return DAG.getNode(ISD::BITCAST, dl, MVT::f32, DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1)); } // f64: Or the high part with signbit and then combine two parts. Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Tmp0); SDValue Lo = Tmp0.getValue(0); SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2); Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1); return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); } SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MFI->setReturnAddressIsTaken(true); if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); if (Depth) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(4, dl, MVT::i32); return DAG.getLoad(VT, dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), MachinePointerInfo(), false, false, false, 0); } // Return LR, which contains the return address. Mark it an implicit live-in. unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); } SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { const ARMBaseRegisterInfo &ARI = *static_cast<const ARMBaseRegisterInfo*>(RegInfo); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MFI->setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc dl(Op); // FIXME probably not meaningful unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); unsigned FrameReg = ARI.getFrameRegister(MF); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo(), false, false, false, 0); return FrameAddr; } // FIXME? Maybe this could be a TableGen attribute on some registers and // this table could be generated automatically from RegInfo. unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT, SelectionDAG &DAG) const { unsigned Reg = StringSwitch<unsigned>(RegName) .Case("sp", ARM::SP) .Default(0); if (Reg) return Reg; report_fatal_error(Twine("Invalid register name \"" + StringRef(RegName) + "\".")); } // Result is 64 bit value so split into two 32 bit values and return as a // pair of values. static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) { SDLoc DL(N); // This function is only supposed to be called for i64 type destination. assert(N->getValueType(0) == MVT::i64 && "ExpandREAD_REGISTER called for non-i64 type result."); SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL, DAG.getVTList(MVT::i32, MVT::i32, MVT::Other), N->getOperand(0), N->getOperand(1)); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0), Read.getValue(1))); Results.push_back(Read.getOperand(0)); } /// \p BC is a bitcast that is about to be turned into a VMOVDRR. /// When \p DstVT, the destination type of \p BC, is on the vector /// register bank and the source of bitcast, \p Op, operates on the same bank, /// it might be possible to combine them, such that everything stays on the /// vector register bank. /// \p return The node that would replace \p BT, if the combine /// is possible. static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC, SelectionDAG &DAG) { SDValue Op = BC->getOperand(0); EVT DstVT = BC->getValueType(0); // The only vector instruction that can produce a scalar (remember, // since the bitcast was about to be turned into VMOVDRR, the source // type is i64) from a vector is EXTRACT_VECTOR_ELT. // Moreover, we can do this combine only if there is one use. // Finally, if the destination type is not a vector, there is not // much point on forcing everything on the vector bank. if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || !Op.hasOneUse()) return SDValue(); // If the index is not constant, we will introduce an additional // multiply that will stick. // Give up in that case. ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1)); if (!Index) return SDValue(); unsigned DstNumElt = DstVT.getVectorNumElements(); // Compute the new index. const APInt &APIntIndex = Index->getAPIntValue(); APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt); NewIndex *= APIntIndex; // Check if the new constant index fits into i32. if (NewIndex.getBitWidth() > 32) return SDValue(); // vMTy bitcast(i64 extractelt vNi64 src, i32 index) -> // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M) SDLoc dl(Op); SDValue ExtractSrc = Op.getOperand(0); EVT VecVT = EVT::getVectorVT( *DAG.getContext(), DstVT.getScalarType(), ExtractSrc.getValueType().getVectorNumElements() * DstNumElt); SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast, DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32)); } /// ExpandBITCAST - If the target supports VFP, this function is called to /// expand a bit convert where either the source or destination type is i64 to /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64 /// operand type is illegal (e.g., v2f32 for a target that doesn't support /// vectors), since the legalizer won't know what to do with that. static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDLoc dl(N); SDValue Op = N->getOperand(0); // This function is only supposed to be called for i64 types, either as the // source or destination of the bit convert. EVT SrcVT = Op.getValueType(); EVT DstVT = N->getValueType(0); assert((SrcVT == MVT::i64 || DstVT == MVT::i64) && "ExpandBITCAST called for non-i64 type"); // Turn i64->f64 into VMOVDRR. if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { // Do not force values to GPRs (this is what VMOVDRR does for the inputs) // if we can combine the bitcast with its source. if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG)) return Val; SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, DAG.getConstant(0, dl, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, DAG.getConstant(1, dl, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, DstVT, DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi)); } // Turn f64->i64 into VMOVRRD. if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { SDValue Cvt; if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() && SrcVT.getVectorNumElements() > 1) Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op)); else Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Op); // Merge the pieces into a single i64 value. return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); } return SDValue(); } /// getZeroVector - Returns a vector of specified type with all zero elements. /// Zero vectors are used to represent vector negation and in those cases /// will be implemented with the NEON VNEG instruction. However, VNEG does /// not support i64 elements, so sometimes the zero vectors will need to be /// explicitly constructed. Regardless, use a canonical VMOV to create the /// zero vector. static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) { assert(VT.isVector() && "Expected a vector type"); // The canonical modified immediate encoding of a zero vector is....0! SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32); EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal); return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); } /// LowerShiftRightParts - Lower SRA_PARTS, which returns two /// i32 values and take a 2 x i32 value to shift plus a shift amount. SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); SDValue ARMcc; unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, DAG.getConstant(VTBits, dl, MVT::i32)); SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), ISD::SETGE, ARMcc, DAG, dl); SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two /// i32 values and take a 2 x i32 value to shift plus a shift amount. SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); SDValue ARMcc; assert(Op.getOpcode() == ISD::SHL_PARTS); SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, DAG.getConstant(VTBits, dl, MVT::i32)); SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), ISD::SETGE, ARMcc, DAG, dl); SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc, CCR, Cmp); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const { // The rounding mode is in bits 23:22 of the FPSCR. // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) // so that the shift + and get folded into a bitfield extract. SDLoc dl(Op); SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32, DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)); SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR, DAG.getConstant(1U << 22, dl, MVT::i32)); SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, DAG.getConstant(22, dl, MVT::i32)); return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, DAG.getConstant(3, dl, MVT::i32)); } static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { SDLoc dl(N); EVT VT = N->getValueType(0); if (VT.isVector()) { assert(ST->hasNEON()); // Compute the least significant set bit: LSB = X & -X SDValue X = N->getOperand(0); SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X); SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX); EVT ElemTy = VT.getVectorElementType(); if (ElemTy == MVT::i8) { // Compute with: cttz(x) = ctpop(lsb - 1) SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT, DAG.getTargetConstant(1, dl, ElemTy)); SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One); return DAG.getNode(ISD::CTPOP, dl, VT, Bits); } if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) && (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) { // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0 unsigned NumBits = ElemTy.getSizeInBits(); SDValue WidthMinus1 = DAG.getNode(ARMISD::VMOVIMM, dl, VT, DAG.getTargetConstant(NumBits - 1, dl, ElemTy)); SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB); return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ); } // Compute with: cttz(x) = ctpop(lsb - 1) // Since we can only compute the number of bits in a byte with vcnt.8, we // have to gather the result with pairwise addition (vpaddl) for i16, i32, // and i64. // Compute LSB - 1. SDValue Bits; if (ElemTy == MVT::i64) { // Load constant 0xffff'ffff'ffff'ffff to register. SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT, DAG.getTargetConstant(0x1eff, dl, MVT::i32)); Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF); } else { SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT, DAG.getTargetConstant(1, dl, ElemTy)); Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One); } // Count #bits with vcnt.8. EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits); SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8); // Gather the #bits with vpaddl (pairwise add.) EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16; SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit, DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32), Cnt8); if (ElemTy == MVT::i16) return Cnt16; EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32; SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit, DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32), Cnt16); if (ElemTy == MVT::i32) return Cnt32; assert(ElemTy == MVT::i64); SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32), Cnt32); return Cnt64; } if (!ST->hasV6T2Ops()) return SDValue(); SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0)); return DAG.getNode(ISD::CTLZ, dl, VT, rbit); } /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count /// for each 16-bit element from operand, repeated. The basic idea is to /// leverage vcnt to get the 8-bit counts, gather and add the results. /// /// Trace for v4i16: /// input = [v0 v1 v2 v3 ] (vi 16-bit element) /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element) /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi) /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6] /// [b0 b1 b2 b3 b4 b5 b6 b7] /// +[b1 b0 b3 b2 b5 b4 b7 b6] /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0, /// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits) static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDLoc DL(N); EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0)); SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0); SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1); SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2); return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3); } /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the /// bit-count for each 16-bit element from the operand. We need slightly /// different sequencing for v4i16 and v8i16 to stay within NEON's available /// 64/128-bit registers. /// /// Trace for v4i16: /// input = [v0 v1 v2 v3 ] (vi 16-bit element) /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi) /// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ] /// v4i16:Extracted = [k0 k1 k2 k3 ] static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDLoc DL(N); SDValue BitCounts = getCTPOP16BitCounts(N, DAG); if (VT.is64BitVector()) { SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended, DAG.getIntPtrConstant(0, DL)); } else { SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, BitCounts, DAG.getIntPtrConstant(0, DL)); return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted); } } /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the /// bit-count for each 32-bit element from the operand. The idea here is /// to split the vector into 16-bit elements, leverage the 16-bit count /// routine, and then combine the results. /// /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged): /// input = [v0 v1 ] (vi: 32-bit elements) /// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1]) /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi) /// vrev: N0 = [k1 k0 k3 k2 ] /// [k0 k1 k2 k3 ] /// N1 =+[k1 k0 k3 k2 ] /// [k0 k2 k1 k3 ] /// N2 =+[k1 k3 k0 k2 ] /// [k0 k2 k1 k3 ] /// Extended =+[k1 k3 k0 k2 ] /// [k0 k2 ] /// Extracted=+[k1 k3 ] /// static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDLoc DL(N); EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16; SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0)); SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG); SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16); SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0); SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1); if (VT.is64BitVector()) { SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended, DAG.getIntPtrConstant(0, DL)); } else { SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2, DAG.getIntPtrConstant(0, DL)); return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted); } } static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); assert(ST->hasNEON() && "Custom ctpop lowering requires NEON."); assert((VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && "Unexpected type for custom ctpop lowering"); if (VT.getVectorElementType() == MVT::i32) return lowerCTPOP32BitElements(N, DAG); else return lowerCTPOP16BitElements(N, DAG); } static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); SDLoc dl(N); if (!VT.isVector()) return SDValue(); // Lower vector shifts on NEON to use VSHL. assert(ST->hasNEON() && "unexpected vector shift"); // Left shifts translate directly to the vshiftu intrinsic. if (N->getOpcode() == ISD::SHL) return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl, MVT::i32), N->getOperand(0), N->getOperand(1)); assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); // NEON uses the same intrinsics for both left and right shifts. For // right shifts, the shift amounts are negative, so negate the vector of // shift amounts. EVT ShiftVT = N->getOperand(1).getValueType(); SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1)); Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ? Intrinsic::arm_neon_vshifts : Intrinsic::arm_neon_vshiftu); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(vshiftInt, dl, MVT::i32), N->getOperand(0), NegatedCount); } static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); SDLoc dl(N); // We can get here for a node like i32 = ISD::SHL i32, i64 if (VT != MVT::i64) return SDValue(); assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && "Unknown shift to lower!"); // We only lower SRA, SRL of 1 here, all others use generic lowering. if (!isOneConstant(N->getOperand(1))) return SDValue(); // If we are in thumb mode, we don't have RRX. if (ST->isThumb1Only()) return SDValue(); // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(0, dl, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(1, dl, MVT::i32)); // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and // captures the result into a carry flag. unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi); // The low part is an ARMISD::RRX operand, which shifts the carry in. Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); // Merge the pieces into a single i64 value. return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); } static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) { SDValue TmpOp0, TmpOp1; bool Invert = false; bool Swap = false; unsigned Opc = 0; SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger(); EVT VT = Op.getValueType(); ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); SDLoc dl(Op); if (CmpVT.getVectorElementType() == MVT::i64) // 64-bit comparisons are not legal. We've marked SETCC as non-Custom, // but it's possible that our operands are 64-bit but our result is 32-bit. // Bail in this case. return SDValue(); if (Op1.getValueType().isFloatingPoint()) { switch (SetCCOpcode) { default: llvm_unreachable("Illegal FP comparison"); case ISD::SETUNE: case ISD::SETNE: Invert = true; // Fallthrough case ISD::SETOEQ: case ISD::SETEQ: Opc = ARMISD::VCEQ; break; case ISD::SETOLT: case ISD::SETLT: Swap = true; // Fallthrough case ISD::SETOGT: case ISD::SETGT: Opc = ARMISD::VCGT; break; case ISD::SETOLE: case ISD::SETLE: Swap = true; // Fallthrough case ISD::SETOGE: case ISD::SETGE: Opc = ARMISD::VCGE; break; case ISD::SETUGE: Swap = true; // Fallthrough case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break; case ISD::SETUGT: Swap = true; // Fallthrough case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break; case ISD::SETUEQ: Invert = true; // Fallthrough case ISD::SETONE: // Expand this to (OLT | OGT). TmpOp0 = Op0; TmpOp1 = Op1; Opc = ISD::OR; Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0); Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1); break; case ISD::SETUO: Invert = true; // Fallthrough case ISD::SETO: // Expand this to (OLT | OGE). TmpOp0 = Op0; TmpOp1 = Op1; Opc = ISD::OR; Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0); Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1); break; } } else { // Integer comparisons. switch (SetCCOpcode) { default: llvm_unreachable("Illegal integer comparison"); case ISD::SETNE: Invert = true; case ISD::SETEQ: Opc = ARMISD::VCEQ; break; case ISD::SETLT: Swap = true; case ISD::SETGT: Opc = ARMISD::VCGT; break; case ISD::SETLE: Swap = true; case ISD::SETGE: Opc = ARMISD::VCGE; break; case ISD::SETULT: Swap = true; case ISD::SETUGT: Opc = ARMISD::VCGTU; break; case ISD::SETULE: Swap = true; case ISD::SETUGE: Opc = ARMISD::VCGEU; break; } // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). if (Opc == ARMISD::VCEQ) { SDValue AndOp; if (ISD::isBuildVectorAllZeros(Op1.getNode())) AndOp = Op0; else if (ISD::isBuildVectorAllZeros(Op0.getNode())) AndOp = Op1; // Ignore bitconvert. if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST) AndOp = AndOp.getOperand(0); if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { Opc = ARMISD::VTST; Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0)); Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1)); Invert = !Invert; } } } if (Swap) std::swap(Op0, Op1); // If one of the operands is a constant vector zero, attempt to fold the // comparison to a specialized compare-against-zero form. SDValue SingleOp; if (ISD::isBuildVectorAllZeros(Op1.getNode())) SingleOp = Op0; else if (ISD::isBuildVectorAllZeros(Op0.getNode())) { if (Opc == ARMISD::VCGE) Opc = ARMISD::VCLEZ; else if (Opc == ARMISD::VCGT) Opc = ARMISD::VCLTZ; SingleOp = Op1; } SDValue Result; if (SingleOp.getNode()) { switch (Opc) { case ARMISD::VCEQ: Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break; case ARMISD::VCGE: Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break; case ARMISD::VCLEZ: Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break; case ARMISD::VCGT: Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break; case ARMISD::VCLTZ: Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break; default: Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1); } } else { Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1); } Result = DAG.getSExtOrTrunc(Result, dl, VT); if (Invert) Result = DAG.getNOT(dl, Result, VT); return Result; } /// isNEONModifiedImm - Check if the specified splat value corresponds to a /// valid vector constant for a NEON instruction with a "modified immediate" /// operand (e.g., VMOV). If so, return the encoded value. static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, unsigned SplatBitSize, SelectionDAG &DAG, SDLoc dl, EVT &VT, bool is128Bits, NEONModImmType type) { unsigned OpCmode, Imm; // SplatBitSize is set to the smallest size that splats the vector, so a // zero vector will always have SplatBitSize == 8. However, NEON modified // immediate instructions others than VMOV do not support the 8-bit encoding // of a zero vector, and the default encoding of zero is supposed to be the // 32-bit version. if (SplatBits == 0) SplatBitSize = 32; switch (SplatBitSize) { case 8: if (type != VMOVModImm) return SDValue(); // Any 1-byte value is OK. Op=0, Cmode=1110. assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); OpCmode = 0xe; Imm = SplatBits; VT = is128Bits ? MVT::v16i8 : MVT::v8i8; break; case 16: // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. VT = is128Bits ? MVT::v8i16 : MVT::v4i16; if ((SplatBits & ~0xff) == 0) { // Value = 0x00nn: Op=x, Cmode=100x. OpCmode = 0x8; Imm = SplatBits; break; } if ((SplatBits & ~0xff00) == 0) { // Value = 0xnn00: Op=x, Cmode=101x. OpCmode = 0xa; Imm = SplatBits >> 8; break; } return SDValue(); case 32: // NEON's 32-bit VMOV supports splat values where: // * only one byte is nonzero, or // * the least significant byte is 0xff and the second byte is nonzero, or // * the least significant 2 bytes are 0xff and the third is nonzero. VT = is128Bits ? MVT::v4i32 : MVT::v2i32; if ((SplatBits & ~0xff) == 0) { // Value = 0x000000nn: Op=x, Cmode=000x. OpCmode = 0; Imm = SplatBits; break; } if ((SplatBits & ~0xff00) == 0) { // Value = 0x0000nn00: Op=x, Cmode=001x. OpCmode = 0x2; Imm = SplatBits >> 8; break; } if ((SplatBits & ~0xff0000) == 0) { // Value = 0x00nn0000: Op=x, Cmode=010x. OpCmode = 0x4; Imm = SplatBits >> 16; break; } if ((SplatBits & ~0xff000000) == 0) { // Value = 0xnn000000: Op=x, Cmode=011x. OpCmode = 0x6; Imm = SplatBits >> 24; break; } // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC if (type == OtherModImm) return SDValue(); if ((SplatBits & ~0xffff) == 0 && ((SplatBits | SplatUndef) & 0xff) == 0xff) { // Value = 0x0000nnff: Op=x, Cmode=1100. OpCmode = 0xc; Imm = SplatBits >> 8; break; } if ((SplatBits & ~0xffffff) == 0 && ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { // Value = 0x00nnffff: Op=x, Cmode=1101. OpCmode = 0xd; Imm = SplatBits >> 16; break; } // Note: there are a few 32-bit splat values (specifically: 00ffff00, // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not // VMOV.I32. A (very) minor optimization would be to replicate the value // and fall through here to test for a valid 64-bit splat. But, then the // caller would also need to check and handle the change in size. return SDValue(); case 64: { if (type != VMOVModImm) return SDValue(); // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. uint64_t BitMask = 0xff; uint64_t Val = 0; unsigned ImmMask = 1; Imm = 0; for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { if (((SplatBits | SplatUndef) & BitMask) == BitMask) { Val |= BitMask; Imm |= ImmMask; } else if ((SplatBits & BitMask) != 0) { return SDValue(); } BitMask <<= 8; ImmMask <<= 1; } if (DAG.getDataLayout().isBigEndian()) // swap higher and lower 32 bit word Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4); // Op=1, Cmode=1110. OpCmode = 0x1e; VT = is128Bits ? MVT::v2i64 : MVT::v1i64; break; } default: llvm_unreachable("unexpected size for isNEONModifiedImm"); } unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm); return DAG.getTargetConstant(EncodedVal, dl, MVT::i32); } SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const { if (!ST->hasVFP3()) return SDValue(); bool IsDouble = Op.getValueType() == MVT::f64; ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op); // Use the default (constant pool) lowering for double constants when we have // an SP-only FPU if (IsDouble && Subtarget->isFPOnlySP()) return SDValue(); // Try splatting with a VMOV.f32... APFloat FPVal = CFP->getValueAPF(); int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal); if (ImmVal != -1) { if (IsDouble || !ST->useNEONForSinglePrecisionFP()) { // We have code in place to select a valid ConstantFP already, no need to // do any mangling. return Op; } // It's a float and we are trying to use NEON operations where // possible. Lower it to a splat followed by an extract. SDLoc DL(Op); SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32); SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32, NewVal); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant, DAG.getConstant(0, DL, MVT::i32)); } // The rest of our options are NEON only, make sure that's allowed before // proceeding.. if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP())) return SDValue(); EVT VMovVT; uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue(); // It wouldn't really be worth bothering for doubles except for one very // important value, which does happen to match: 0.0. So make sure we don't do // anything stupid. if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32)) return SDValue(); // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too). SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT, false, VMOVModImm); if (NewVal != SDValue()) { SDLoc DL(Op); SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT, NewVal); if (IsDouble) return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); // It's a float: cast and extract a vector element. SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, VecConstant); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, DAG.getConstant(0, DL, MVT::i32)); } // Finally, try a VMVN.i32 NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT, false, VMVNModImm); if (NewVal != SDValue()) { SDLoc DL(Op); SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal); if (IsDouble) return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); // It's a float: cast and extract a vector element. SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, VecConstant); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, DAG.getConstant(0, DL, MVT::i32)); } return SDValue(); } // check if an VEXT instruction can handle the shuffle mask when the // vector sources of the shuffle are the same. static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { unsigned NumElts = VT.getVectorNumElements(); // Assume that the first shuffle index is not UNDEF. Fail if it is. if (M[0] < 0) return false; Imm = M[0]; // If this is a VEXT shuffle, the immediate value is the index of the first // element. The other shuffle indices must be the successive elements after // the first one. unsigned ExpectedElt = Imm; for (unsigned i = 1; i < NumElts; ++i) { // Increment the expected index. If it wraps around, just follow it // back to index zero and keep going. ++ExpectedElt; if (ExpectedElt == NumElts) ExpectedElt = 0; if (M[i] < 0) continue; // ignore UNDEF indices if (ExpectedElt != static_cast<unsigned>(M[i])) return false; } return true; } static bool isVEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseVEXT, unsigned &Imm) { unsigned NumElts = VT.getVectorNumElements(); ReverseVEXT = false; // Assume that the first shuffle index is not UNDEF. Fail if it is. if (M[0] < 0) return false; Imm = M[0]; // If this is a VEXT shuffle, the immediate value is the index of the first // element. The other shuffle indices must be the successive elements after // the first one. unsigned ExpectedElt = Imm; for (unsigned i = 1; i < NumElts; ++i) { // Increment the expected index. If it wraps around, it may still be // a VEXT but the source vectors must be swapped. ExpectedElt += 1; if (ExpectedElt == NumElts * 2) { ExpectedElt = 0; ReverseVEXT = true; } if (M[i] < 0) continue; // ignore UNDEF indices if (ExpectedElt != static_cast<unsigned>(M[i])) return false; } // Adjust the index value if the source operands will be swapped. if (ReverseVEXT) Imm -= NumElts; return true; } /// isVREVMask - Check if a vector shuffle corresponds to a VREV /// instruction with the specified blocksize. (The order of the elements /// within each block of the vector is reversed.) static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && "Only possible block sizes for VREV are: 16, 32, 64"); unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); unsigned BlockElts = M[0] + 1; // If the first shuffle index is UNDEF, be optimistic. if (M[0] < 0) BlockElts = BlockSize / EltSz; if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) return false; for (unsigned i = 0; i < NumElts; ++i) { if (M[i] < 0) continue; // ignore UNDEF indices if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) return false; } return true; } static bool isVTBLMask(ArrayRef<int> M, EVT VT) { // We can handle <8 x i8> vector shuffles. If the index in the mask is out of // range, then 0 is placed into the resulting vector. So pretty much any mask // of 8 elements can work here. return VT == MVT::v8i8 && M.size() == 8; } // Checks whether the shuffle mask represents a vector transpose (VTRN) by // checking that pairs of elements in the shuffle mask represent the same index // in each vector, incrementing the expected index by 2 at each step. // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6] // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g} // v2={e,f,g,h} // WhichResult gives the offset for each element in the mask based on which // of the two results it belongs to. // // The transpose can be represented either as: // result1 = shufflevector v1, v2, result1_shuffle_mask // result2 = shufflevector v1, v2, result2_shuffle_mask // where v1/v2 and the shuffle masks have the same number of elements // (here WhichResult (see below) indicates which result is being checked) // // or as: // results = shufflevector v1, v2, shuffle_mask // where both results are returned in one vector and the shuffle mask has twice // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we // want to check the low half and high half of the shuffle mask as if it were // the other case static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; // If the mask is twice as long as the input vector then we need to check the // upper and lower parts of the mask with a matching value for WhichResult // FIXME: A mask with only even values will be rejected in case the first // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only // M[0] is used to determine WhichResult for (unsigned i = 0; i < M.size(); i += NumElts) { if (M.size() == NumElts * 2) WhichResult = i / NumElts; else WhichResult = M[i] == 0 ? 0 : 1; for (unsigned j = 0; j < NumElts; j += 2) { if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) || (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult)) return false; } } if (M.size() == NumElts*2) WhichResult = 0; return true; } /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; for (unsigned i = 0; i < M.size(); i += NumElts) { if (M.size() == NumElts * 2) WhichResult = i / NumElts; else WhichResult = M[i] == 0 ? 0 : 1; for (unsigned j = 0; j < NumElts; j += 2) { if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) || (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult)) return false; } } if (M.size() == NumElts*2) WhichResult = 0; return true; } // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking // that the mask elements are either all even and in steps of size 2 or all odd // and in steps of size 2. // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6] // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g} // v2={e,f,g,h} // Requires similar checks to that of isVTRNMask with // respect the how results are returned. static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; for (unsigned i = 0; i < M.size(); i += NumElts) { WhichResult = M[i] == 0 ? 0 : 1; for (unsigned j = 0; j < NumElts; ++j) { if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult) return false; } } if (M.size() == NumElts*2) WhichResult = 0; // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; unsigned Half = NumElts / 2; for (unsigned i = 0; i < M.size(); i += NumElts) { WhichResult = M[i] == 0 ? 0 : 1; for (unsigned j = 0; j < NumElts; j += Half) { unsigned Idx = WhichResult; for (unsigned k = 0; k < Half; ++k) { int MIdx = M[i + j + k]; if (MIdx >= 0 && (unsigned) MIdx != Idx) return false; Idx += 2; } } } if (M.size() == NumElts*2) WhichResult = 0; // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } // Checks whether the shuffle mask represents a vector zip (VZIP) by checking // that pairs of elements of the shufflemask represent the same index in each // vector incrementing sequentially through the vectors. // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5] // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f} // v2={e,f,g,h} // Requires similar checks to that of isVTRNMask with respect the how results // are returned. static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; for (unsigned i = 0; i < M.size(); i += NumElts) { WhichResult = M[i] == 0 ? 0 : 1; unsigned Idx = WhichResult * NumElts / 2; for (unsigned j = 0; j < NumElts; j += 2) { if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) || (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts)) return false; Idx += 1; } } if (M.size() == NumElts*2) WhichResult = 0; // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; for (unsigned i = 0; i < M.size(); i += NumElts) { WhichResult = M[i] == 0 ? 0 : 1; unsigned Idx = WhichResult * NumElts / 2; for (unsigned j = 0; j < NumElts; j += 2) { if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) || (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx)) return false; Idx += 1; } } if (M.size() == NumElts*2) WhichResult = 0; // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN), /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't. static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT, unsigned &WhichResult, bool &isV_UNDEF) { isV_UNDEF = false; if (isVTRNMask(ShuffleMask, VT, WhichResult)) return ARMISD::VTRN; if (isVUZPMask(ShuffleMask, VT, WhichResult)) return ARMISD::VUZP; if (isVZIPMask(ShuffleMask, VT, WhichResult)) return ARMISD::VZIP; isV_UNDEF = true; if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) return ARMISD::VTRN; if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) return ARMISD::VUZP; if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) return ARMISD::VZIP; return 0; } /// \return true if this is a reverse operation on an vector. static bool isReverseMask(ArrayRef<int> M, EVT VT) { unsigned NumElts = VT.getVectorNumElements(); // Make sure the mask has the right size. if (NumElts != M.size()) return false; // Look for <15, ..., 3, -1, 1, 0>. for (unsigned i = 0; i != NumElts; ++i) if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i)) return false; return true; } // If N is an integer constant that can be moved into a register in one // instruction, return an SDValue of such a constant (will become a MOV // instruction). Otherwise return null. static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, const ARMSubtarget *ST, SDLoc dl) { uint64_t Val; if (!isa<ConstantSDNode>(N)) return SDValue(); Val = cast<ConstantSDNode>(N)->getZExtValue(); if (ST->isThumb1Only()) { if (Val <= 255 || ~Val <= 255) return DAG.getConstant(Val, dl, MVT::i32); } else { if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1) return DAG.getConstant(Val, dl, MVT::i32); } return SDValue(); } // If this is a case we can't handle, return null and let the default // expansion code take care of it. SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const { BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); SDLoc dl(Op); EVT VT = Op.getValueType(); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { if (SplatBitSize <= 64) { // Check if an immediate VMOV works. EVT VmovVT; SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT, VT.is128BitVector(), VMOVModImm); if (Val.getNode()) { SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); } // Try an immediate VMVN. uint64_t NegatedImm = (~SplatBits).getZExtValue(); Val = isNEONModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT, VT.is128BitVector(), VMVNModImm); if (Val.getNode()) { SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); } // Use vmov.f32 to materialize other v2f32 and v4f32 splats. if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) { int ImmVal = ARM_AM::getFP32Imm(SplatBits); if (ImmVal != -1) { SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32); return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val); } } } } // Scan through the operands to see if only one value is used. // // As an optimisation, even if more than one value is used it may be more // profitable to splat with one value then change some lanes. // // Heuristically we decide to do this if the vector has a "dominant" value, // defined as splatted to more than half of the lanes. unsigned NumElts = VT.getVectorNumElements(); bool isOnlyLowElement = true; bool usesOnlyOneValue = true; bool hasDominantValue = false; bool isConstant = true; // Map of the number of times a particular SDValue appears in the // element list. DenseMap<SDValue, unsigned> ValueCounts; SDValue Value; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; if (i > 0) isOnlyLowElement = false; if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) isConstant = false; ValueCounts.insert(std::make_pair(V, 0)); unsigned &Count = ValueCounts[V]; // Is this value dominant? (takes up more than half of the lanes) if (++Count > (NumElts / 2)) { hasDominantValue = true; Value = V; } } if (ValueCounts.size() != 1) usesOnlyOneValue = false; if (!Value.getNode() && ValueCounts.size() > 0) Value = ValueCounts.begin()->first; if (ValueCounts.size() == 0) return DAG.getUNDEF(VT); // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR. // Keep going if we are hitting this case. if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode())) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); unsigned EltSize = VT.getVectorElementType().getSizeInBits(); // Use VDUP for non-constant splats. For f32 constant splats, reduce to // i32 and try again. if (hasDominantValue && EltSize <= 32) { if (!isConstant) { SDValue N; // If we are VDUPing a value that comes directly from a vector, that will // cause an unnecessary move to and from a GPR, where instead we could // just use VDUPLANE. We can only do this if the lane being extracted // is at a constant index, as the VDUP from lane instructions only have // constant-index forms. ConstantSDNode *constIndex; if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT && (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) { // We need to create a new undef vector to use for the VDUPLANE if the // size of the vector from which we get the value is different than the // size of the vector that we need to create. We will insert the element // such that the register coalescer will remove unnecessary copies. if (VT != Value->getOperand(0).getValueType()) { unsigned index = constIndex->getAPIntValue().getLimitedValue() % VT.getVectorNumElements(); N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT), Value, DAG.getConstant(index, dl, MVT::i32)), DAG.getConstant(index, dl, MVT::i32)); } else N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, Value->getOperand(0), Value->getOperand(1)); } else N = DAG.getNode(ARMISD::VDUP, dl, VT, Value); if (!usesOnlyOneValue) { // The dominant value was splatted as 'N', but we now have to insert // all differing elements. for (unsigned I = 0; I < NumElts; ++I) { if (Op.getOperand(I) == Value) continue; SmallVector<SDValue, 3> Ops; Ops.push_back(N); Ops.push_back(Op.getOperand(I)); Ops.push_back(DAG.getConstant(I, dl, MVT::i32)); N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops); } } return N; } if (VT.getVectorElementType().isFloatingPoint()) { SmallVector<SDValue, 8> Ops; for (unsigned i = 0; i < NumElts; ++i) Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op.getOperand(i))); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); Val = LowerBUILD_VECTOR(Val, DAG, ST); if (Val.getNode()) return DAG.getNode(ISD::BITCAST, dl, VT, Val); } if (usesOnlyOneValue) { SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl); if (isConstant && Val.getNode()) return DAG.getNode(ARMISD::VDUP, dl, VT, Val); } } // If all elements are constants and the case above didn't get hit, fall back // to the default expansion, which will generate a load from the constant // pool. if (isConstant) return SDValue(); // Empirical tests suggest this is rarely worth it for vectors of length <= 2. if (NumElts >= 4) { SDValue shuffle = ReconstructShuffle(Op, DAG); if (shuffle != SDValue()) return shuffle; } // Vectors with 32- or 64-bit elements can be built by directly assigning // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands // will be legalized. if (EltSize >= 32) { // Do the expansion with floating-point types, since that is what the VFP // registers are defined to use, and since i64 is not legal. EVT EltVT = EVT::getFloatingPointVT(EltSize); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); SmallVector<SDValue, 8> Ops; for (unsigned i = 0; i < NumElts; ++i) Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i))); SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); return DAG.getNode(ISD::BITCAST, dl, VT, Val); } // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we // know the default expansion would otherwise fall back on something even // worse. For a vector with one or two non-undef values, that's // scalar_to_vector for the elements followed by a shuffle (provided the // shuffle is valid for the target) and materialization element by element // on the stack followed by a load for everything else. if (!isConstant && !usesOnlyOneValue) { SDValue Vec = DAG.getUNDEF(VT); for (unsigned i = 0 ; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); } return Vec; } return SDValue(); } // Gather data to see if the operation can be modelled as a // shuffle in combination with VEXTs. SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); SDLoc dl(Op); EVT VT = Op.getValueType(); unsigned NumElts = VT.getVectorNumElements(); struct ShuffleSourceInfo { SDValue Vec; unsigned MinElt; unsigned MaxElt; // We may insert some combination of BITCASTs and VEXT nodes to force Vec to // be compatible with the shuffle we intend to construct. As a result // ShuffleVec will be some sliding window into the original Vec. SDValue ShuffleVec; // Code should guarantee that element i in Vec starts at element "WindowBase // + i * WindowScale in ShuffleVec". int WindowBase; int WindowScale; bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } ShuffleSourceInfo(SDValue Vec) : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0), WindowScale(1) {} }; // First gather all vectors used as an immediate source for this BUILD_VECTOR // node. SmallVector<ShuffleSourceInfo, 2> Sources; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { // A shuffle can only come from building a vector from various // elements of other vectors. return SDValue(); } else if (!isa<ConstantSDNode>(V.getOperand(1))) { // Furthermore, shuffles require a constant mask, whereas extractelts // accept variable indices. return SDValue(); } // Add this element source to the list if it's not already there. SDValue SourceVec = V.getOperand(0); auto Source = std::find(Sources.begin(), Sources.end(), SourceVec); if (Source == Sources.end()) Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); // Update the minimum and maximum lane number seen. unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); Source->MinElt = std::min(Source->MinElt, EltNo); Source->MaxElt = std::max(Source->MaxElt, EltNo); } // Currently only do something sane when at most two source vectors // are involved. if (Sources.size() > 2) return SDValue(); // Find out the smallest element size among result and two sources, and use // it as element size to build the shuffle_vector. EVT SmallestEltTy = VT.getVectorElementType(); for (auto &Source : Sources) { EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); if (SrcEltTy.bitsLT(SmallestEltTy)) SmallestEltTy = SrcEltTy; } unsigned ResMultiplier = VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits(); NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); // If the source vector is too wide or too narrow, we may nevertheless be able // to construct a compatible shuffle either by concatenating it with UNDEF or // extracting a suitable range of elements. for (auto &Src : Sources) { EVT SrcVT = Src.ShuffleVec.getValueType(); if (SrcVT.getSizeInBits() == VT.getSizeInBits()) continue; // This stage of the search produces a source with the same element type as // the original, but with a total width matching the BUILD_VECTOR output. EVT EltVT = SrcVT.getVectorElementType(); unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits(); EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); if (SrcVT.getSizeInBits() < VT.getSizeInBits()) { if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits()) return SDValue(); // We can pad out the smaller vector for free, so if it's part of a // shuffle... Src.ShuffleVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, DAG.getUNDEF(Src.ShuffleVec.getValueType())); continue; } if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits()) return SDValue(); if (Src.MaxElt - Src.MinElt >= NumSrcElts) { // Span too large for a VEXT to cope return SDValue(); } if (Src.MinElt >= NumSrcElts) { // The extraction can just take the second half Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(NumSrcElts, dl, MVT::i32)); Src.WindowBase = -NumSrcElts; } else if (Src.MaxElt < NumSrcElts) { // The extraction can just take the first half Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(0, dl, MVT::i32)); } else { // An actual VEXT is needed SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(0, dl, MVT::i32)); SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(NumSrcElts, dl, MVT::i32)); Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1, VEXTSrc2, DAG.getConstant(Src.MinElt, dl, MVT::i32)); Src.WindowBase = -Src.MinElt; } } // Another possible incompatibility occurs from the vector element types. We // can fix this by bitcasting the source vectors to the same type we intend // for the shuffle. for (auto &Src : Sources) { EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); if (SrcEltTy == SmallestEltTy) continue; assert(ShuffleVT.getVectorElementType() == SmallestEltTy); Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); Src.WindowBase *= Src.WindowScale; } // Final sanity check before we try to actually produce a shuffle. DEBUG( for (auto Src : Sources) assert(Src.ShuffleVec.getValueType() == ShuffleVT); ); // The stars all align, our next step is to produce the mask for the shuffle. SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits(); for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { SDValue Entry = Op.getOperand(i); if (Entry.getOpcode() == ISD::UNDEF) continue; auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0)); int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit // trunc. So only std::min(SrcBits, DestBits) actually get defined in this // segment. EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); int BitsDefined = std::min(OrigEltTy.getSizeInBits(), VT.getVectorElementType().getSizeInBits()); int LanesDefined = BitsDefined / BitsPerShuffleLane; // This source is expected to fill ResMultiplier lanes of the final shuffle, // starting at the appropriate offset. int *LaneMask = &Mask[i * ResMultiplier]; int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; ExtractBase += NumElts * (Src - Sources.begin()); for (int j = 0; j < LanesDefined; ++j) LaneMask[j] = ExtractBase + j; } // Final check before we try to produce nonsense... if (!isShuffleMaskLegal(Mask, ShuffleVT)) return SDValue(); // We can't handle more than two sources. This should have already // been checked before this point. assert(Sources.size() <= 2 && "Too many sources!"); SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; for (unsigned i = 0; i < Sources.size(); ++i) ShuffleOps[i] = Sources[i].ShuffleVec; SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], ShuffleOps[1], &Mask[0]); return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. bool ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, EVT VT) const { if (VT.getVectorNumElements() == 4 && (VT.is128BitVector() || VT.is64BitVector())) { unsigned PFIndexes[4]; for (unsigned i = 0; i != 4; ++i) { if (M[i] < 0) PFIndexes[i] = 8; else PFIndexes[i] = M[i]; } // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); if (Cost <= 4) return true; } bool ReverseVEXT, isV_UNDEF; unsigned Imm, WhichResult; unsigned EltSize = VT.getVectorElementType().getSizeInBits(); return (EltSize >= 32 || ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isVREVMask(M, VT, 64) || isVREVMask(M, VT, 32) || isVREVMask(M, VT, 16) || isVEXTMask(M, VT, ReverseVEXT, Imm) || isVTBLMask(M, VT) || isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) || ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT))); } /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit /// the specified operations to build the shuffle. static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, SDLoc dl) { unsigned OpNum = (PFEntry >> 26) & 0x0F; unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); enum { OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> OP_VREV, OP_VDUP0, OP_VDUP1, OP_VDUP2, OP_VDUP3, OP_VEXT1, OP_VEXT2, OP_VEXT3, OP_VUZPL, // VUZP, left result OP_VUZPR, // VUZP, right result OP_VZIPL, // VZIP, left result OP_VZIPR, // VZIP, right result OP_VTRNL, // VTRN, left result OP_VTRNR // VTRN, right result }; if (OpNum == OP_COPY) { if (LHSID == (1*9+2)*9+3) return LHS; assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); return RHS; } SDValue OpLHS, OpRHS; OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); EVT VT = OpLHS.getValueType(); switch (OpNum) { default: llvm_unreachable("Unknown shuffle opcode!"); case OP_VREV: // VREV divides the vector in half and swaps within the half. if (VT.getVectorElementType() == MVT::i32 || VT.getVectorElementType() == MVT::f32) return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); // vrev <4 x i16> -> VREV32 if (VT.getVectorElementType() == MVT::i16) return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS); // vrev <4 x i8> -> VREV16 assert(VT.getVectorElementType() == MVT::i8); return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS); case OP_VDUP0: case OP_VDUP1: case OP_VDUP2: case OP_VDUP3: return DAG.getNode(ARMISD::VDUPLANE, dl, VT, OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32)); case OP_VEXT1: case OP_VEXT2: case OP_VEXT3: return DAG.getNode(ARMISD::VEXT, dl, VT, OpLHS, OpRHS, DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32)); case OP_VUZPL: case OP_VUZPR: return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); case OP_VZIPL: case OP_VZIPR: return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); case OP_VTRNL: case OP_VTRNR: return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); } } static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, ArrayRef<int> ShuffleMask, SelectionDAG &DAG) { // Check to see if we can use the VTBL instruction. SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc DL(Op); SmallVector<SDValue, 8> VTBLMask; for (ArrayRef<int>::iterator I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I) VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32)); if (V2.getNode()->getOpcode() == ISD::UNDEF) return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask)); return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask)); } static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); SDValue OpLHS = Op.getOperand(0); EVT VT = OpLHS.getValueType(); assert((VT == MVT::v8i16 || VT == MVT::v16i8) && "Expect an v8i16/v16i8 type"); OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS); // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now, // extract the first 8 bytes into the top double word and the last 8 bytes // into the bottom double word. The v8i16 case is similar. unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4; return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS, DAG.getConstant(ExtractNum, DL, MVT::i32)); } static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); // Convert shuffles that are directly supported on NEON to target-specific // DAG nodes, instead of keeping them as shuffles and matching them again // during code selection. This is more efficient and avoids the possibility // of inconsistencies between legalization and selection. // FIXME: floating-point vectors should be canonicalized to integer vectors // of the same time so that they get CSEd properly. ArrayRef<int> ShuffleMask = SVN->getMask(); unsigned EltSize = VT.getVectorElementType().getSizeInBits(); if (EltSize <= 32) { if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) { int Lane = SVN->getSplatIndex(); // If this is undef splat, generate it via "just" vdup, if possible. if (Lane == -1) Lane = 0; // Test if V1 is a SCALAR_TO_VECTOR. if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); } // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR // (and probably will turn into a SCALAR_TO_VECTOR once legalization // reaches it). if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && !isa<ConstantSDNode>(V1.getOperand(0))) { bool IsScalarToVector = true; for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) if (V1.getOperand(i).getOpcode() != ISD::UNDEF) { IsScalarToVector = false; break; } if (IsScalarToVector) return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); } return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i32)); } bool ReverseVEXT; unsigned Imm; if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { if (ReverseVEXT) std::swap(V1, V2); return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, DAG.getConstant(Imm, dl, MVT::i32)); } if (isVREVMask(ShuffleMask, VT, 64)) return DAG.getNode(ARMISD::VREV64, dl, VT, V1); if (isVREVMask(ShuffleMask, VT, 32)) return DAG.getNode(ARMISD::VREV32, dl, VT, V1); if (isVREVMask(ShuffleMask, VT, 16)) return DAG.getNode(ARMISD::VREV16, dl, VT, V1); if (V2->getOpcode() == ISD::UNDEF && isSingletonVEXTMask(ShuffleMask, VT, Imm)) { return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1, DAG.getConstant(Imm, dl, MVT::i32)); } // Check for Neon shuffles that modify both input vectors in place. // If both results are used, i.e., if there are two shuffles with the same // source operands and with masks corresponding to both results of one of // these operations, DAG memoization will ensure that a single node is // used for both shuffles. unsigned WhichResult; bool isV_UNDEF; if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask( ShuffleMask, VT, WhichResult, isV_UNDEF)) { if (isV_UNDEF) V2 = V1; return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2) .getValue(WhichResult); } // Also check for these shuffles through CONCAT_VECTORS: we canonicalize // shuffles that produce a result larger than their operands with: // shuffle(concat(v1, undef), concat(v2, undef)) // -> // shuffle(concat(v1, v2), undef) // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine). // // This is useful in the general case, but there are special cases where // native shuffles produce larger results: the two-result ops. // // Look through the concat when lowering them: // shuffle(concat(v1, v2), undef) // -> // concat(VZIP(v1, v2):0, :1) // if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->getOpcode() == ISD::UNDEF) { SDValue SubV1 = V1->getOperand(0); SDValue SubV2 = V1->getOperand(1); EVT SubVT = SubV1.getValueType(); // We expect these to have been canonicalized to -1. assert(std::all_of(ShuffleMask.begin(), ShuffleMask.end(), [&](int i) { return i < (int)VT.getVectorNumElements(); }) && "Unexpected shuffle index into UNDEF operand!"); if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask( ShuffleMask, SubVT, WhichResult, isV_UNDEF)) { if (isV_UNDEF) SubV2 = SubV1; assert((WhichResult == 0) && "In-place shuffle of concat can only have one result!"); SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT), SubV1, SubV2); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0), Res.getValue(1)); } } } // If the shuffle is not directly supported and it has 4 elements, use // the PerfectShuffle-generated table to synthesize it from other shuffles. unsigned NumElts = VT.getVectorNumElements(); if (NumElts == 4) { unsigned PFIndexes[4]; for (unsigned i = 0; i != 4; ++i) { if (ShuffleMask[i] < 0) PFIndexes[i] = 8; else PFIndexes[i] = ShuffleMask[i]; } // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); if (Cost <= 4) return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); } // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs. if (EltSize >= 32) { // Do the expansion with floating-point types, since that is what the VFP // registers are defined to use, and since i64 is not legal. EVT EltVT = EVT::getFloatingPointVT(EltSize); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1); V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2); SmallVector<SDValue, 8> Ops; for (unsigned i = 0; i < NumElts; ++i) { if (ShuffleMask[i] < 0) Ops.push_back(DAG.getUNDEF(EltVT)); else Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ShuffleMask[i] < (int)NumElts ? V1 : V2, DAG.getConstant(ShuffleMask[i] & (NumElts-1), dl, MVT::i32))); } SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); return DAG.getNode(ISD::BITCAST, dl, VT, Val); } if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT)) return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG); if (VT == MVT::v8i8) { SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG); if (NewOp.getNode()) return NewOp; } return SDValue(); } static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { // INSERT_VECTOR_ELT is legal only for immediate indexes. SDValue Lane = Op.getOperand(2); if (!isa<ConstantSDNode>(Lane)) return SDValue(); return Op; } static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { // EXTRACT_VECTOR_ELT is legal only for immediate indexes. SDValue Lane = Op.getOperand(1); if (!isa<ConstantSDNode>(Lane)) return SDValue(); SDValue Vec = Op.getOperand(0); if (Op.getValueType() == MVT::i32 && Vec.getValueType().getVectorElementType().getSizeInBits() < 32) { SDLoc dl(Op); return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); } return Op; } static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { // The only time a CONCAT_VECTORS operation can have legal types is when // two 64-bit vectors are concatenated to a 128-bit vector. assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && "unexpected CONCAT_VECTORS"); SDLoc dl(Op); SDValue Val = DAG.getUNDEF(MVT::v2f64); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); if (Op0.getOpcode() != ISD::UNDEF) Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0), DAG.getIntPtrConstant(0, dl)); if (Op1.getOpcode() != ISD::UNDEF) Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1), DAG.getIntPtrConstant(1, dl)); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val); } /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each /// element has been zero/sign-extended, depending on the isSigned parameter, /// from an integer type half its size. static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, bool isSigned) { // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32. EVT VT = N->getValueType(0); if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) { SDNode *BVN = N->getOperand(0).getNode(); if (BVN->getValueType(0) != MVT::v4i32 || BVN->getOpcode() != ISD::BUILD_VECTOR) return false; unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0; unsigned HiElt = 1 - LoElt; ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt)); ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt)); ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2)); ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2)); if (!Lo0 || !Hi0 || !Lo1 || !Hi1) return false; if (isSigned) { if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 && Hi1->getSExtValue() == Lo1->getSExtValue() >> 32) return true; } else { if (Hi0->isNullValue() && Hi1->isNullValue()) return true; } return false; } if (N->getOpcode() != ISD::BUILD_VECTOR) return false; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDNode *Elt = N->getOperand(i).getNode(); if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { unsigned EltSize = VT.getVectorElementType().getSizeInBits(); unsigned HalfSize = EltSize / 2; if (isSigned) { if (!isIntN(HalfSize, C->getSExtValue())) return false; } else { if (!isUIntN(HalfSize, C->getZExtValue())) return false; } continue; } return false; } return true; } /// isSignExtended - Check if a node is a vector value that is sign-extended /// or a constant BUILD_VECTOR with sign-extended elements. static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N)) return true; if (isExtendedBUILD_VECTOR(N, DAG, true)) return true; return false; } /// isZeroExtended - Check if a node is a vector value that is zero-extended /// or a constant BUILD_VECTOR with zero-extended elements. static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N)) return true; if (isExtendedBUILD_VECTOR(N, DAG, false)) return true; return false; } static EVT getExtensionTo64Bits(const EVT &OrigVT) { if (OrigVT.getSizeInBits() >= 64) return OrigVT; assert(OrigVT.isSimple() && "Expecting a simple value type"); MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; switch (OrigSimpleTy) { default: llvm_unreachable("Unexpected Vector Type"); case MVT::v2i8: case MVT::v2i16: return MVT::v2i32; case MVT::v4i8: return MVT::v4i16; } } /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL. /// We insert the required extension here to get the vector to fill a D register. static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG, const EVT &OrigTy, const EVT &ExtTy, unsigned ExtOpcode) { // The vector originally had a size of OrigTy. It was then extended to ExtTy. // We expect the ExtTy to be 128-bits total. If the OrigTy is less than // 64-bits we need to insert a new extension so that it will be 64-bits. assert(ExtTy.is128BitVector() && "Unexpected extension size"); if (OrigTy.getSizeInBits() >= 64) return N; // Must extend size to at least 64 bits to be used as an operand for VMULL. EVT NewVT = getExtensionTo64Bits(OrigTy); return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); } /// SkipLoadExtensionForVMULL - return a load of the original vector size that /// does not do any sign/zero extension. If the original vector is less /// than 64 bits, an appropriate extension will be added after the load to /// reach a total size of 64 bits. We have to add the extension separately /// because ARM does not have a sign/zero extending load for vectors. static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) { EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT()); // The load already has the right type. if (ExtendedTy == LD->getMemoryVT()) return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), LD->getAlignment()); // We need to create a zextload/sextload. We cannot just create a load // followed by a zext/zext node because LowerMUL is also run during normal // operation legalization where we can't create illegal types. return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy, LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(), LD->isNonTemporal(), LD->getAlignment()); } /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND, /// extending load, or BUILD_VECTOR with extended elements, return the /// unextended value. The unextended vector should be 64 bits so that it can /// be used as an operand to a VMULL instruction. If the original vector size /// before extension is less than 64 bits we add a an extension to resize /// the vector to 64 bits. static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) { if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) return AddRequiredExtensionForVMULL(N->getOperand(0), DAG, N->getOperand(0)->getValueType(0), N->getValueType(0), N->getOpcode()); if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) return SkipLoadExtensionForVMULL(LD, DAG); // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will // have been legalized as a BITCAST from v4i32. if (N->getOpcode() == ISD::BITCAST) { SDNode *BVN = N->getOperand(0).getNode(); assert(BVN->getOpcode() == ISD::BUILD_VECTOR && BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"); unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0; return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32, BVN->getOperand(LowElt), BVN->getOperand(LowElt+2)); } // Construct a new BUILD_VECTOR with elements truncated to half the size. assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); EVT VT = N->getValueType(0); unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2; unsigned NumElts = VT.getVectorNumElements(); MVT TruncVT = MVT::getIntegerVT(EltSize); SmallVector<SDValue, 8> Ops; SDLoc dl(N); for (unsigned i = 0; i != NumElts; ++i) { ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); const APInt &CInt = C->getAPIntValue(); // Element types smaller than 32 bits are not legal, so use i32 elements. // The values are implicitly truncated so sext vs. zext doesn't matter. Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); } return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::getVectorVT(TruncVT, NumElts), Ops); } static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { unsigned Opcode = N->getOpcode(); if (Opcode == ISD::ADD || Opcode == ISD::SUB) { SDNode *N0 = N->getOperand(0).getNode(); SDNode *N1 = N->getOperand(1).getNode(); return N0->hasOneUse() && N1->hasOneUse() && isSignExtended(N0, DAG) && isSignExtended(N1, DAG); } return false; } static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { unsigned Opcode = N->getOpcode(); if (Opcode == ISD::ADD || Opcode == ISD::SUB) { SDNode *N0 = N->getOperand(0).getNode(); SDNode *N1 = N->getOperand(1).getNode(); return N0->hasOneUse() && N1->hasOneUse() && isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); } return false; } static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { // Multiplications are only custom-lowered for 128-bit vectors so that // VMULL can be detected. Otherwise v2i64 multiplications are not legal. EVT VT = Op.getValueType(); assert(VT.is128BitVector() && VT.isInteger() && "unexpected type for custom-lowering ISD::MUL"); SDNode *N0 = Op.getOperand(0).getNode(); SDNode *N1 = Op.getOperand(1).getNode(); unsigned NewOpc = 0; bool isMLA = false; bool isN0SExt = isSignExtended(N0, DAG); bool isN1SExt = isSignExtended(N1, DAG); if (isN0SExt && isN1SExt) NewOpc = ARMISD::VMULLs; else { bool isN0ZExt = isZeroExtended(N0, DAG); bool isN1ZExt = isZeroExtended(N1, DAG); if (isN0ZExt && isN1ZExt) NewOpc = ARMISD::VMULLu; else if (isN1SExt || isN1ZExt) { // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these // into (s/zext A * s/zext C) + (s/zext B * s/zext C) if (isN1SExt && isAddSubSExt(N0, DAG)) { NewOpc = ARMISD::VMULLs; isMLA = true; } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { NewOpc = ARMISD::VMULLu; isMLA = true; } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { std::swap(N0, N1); NewOpc = ARMISD::VMULLu; isMLA = true; } } if (!NewOpc) { if (VT == MVT::v2i64) // Fall through to expand this. It is not legal. return SDValue(); else // Other vector multiplications are legal. return Op; } } // Legalize to a VMULL instruction. SDLoc DL(Op); SDValue Op0; SDValue Op1 = SkipExtensionForVMULL(N1, DAG); if (!isMLA) { Op0 = SkipExtensionForVMULL(N0, DAG); assert(Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && "unexpected types for extended operands to VMULL"); return DAG.getNode(NewOpc, DL, VT, Op0, Op1); } // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during // isel lowering to take advantage of no-stall back to back vmul + vmla. // vmull q0, d4, d6 // vmlal q0, d5, d6 // is faster than // vaddl q0, d4, d5 // vmovl q1, d6 // vmul q0, q0, q1 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG); SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG); EVT Op1VT = Op1.getValueType(); return DAG.getNode(N0->getOpcode(), DL, VT, DAG.getNode(NewOpc, DL, VT, DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), DAG.getNode(NewOpc, DL, VT, DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); } static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) { // TODO: Should this propagate fast-math-flags? // Convert to float // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo)); // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo)); X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X); Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y); X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X); Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y); // Get reciprocal estimate. // float4 recip = vrecpeq_f32(yf); Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), Y); // Because char has a smaller range than uchar, we can actually get away // without any newton steps. This requires that we use a weird bias // of 0xb000, however (again, this has been exhaustively tested). // float4 result = as_float4(as_int4(xf*recip) + 0xb000); X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y); X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X); Y = DAG.getConstant(0xb000, dl, MVT::i32); Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y); X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y); X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X); // Convert back to short. X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X); X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X); return X; } static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) { // TODO: Should this propagate fast-math-flags? SDValue N2; // Convert to float. // float4 yf = vcvt_f32_s32(vmovl_s16(y)); // float4 xf = vcvt_f32_s32(vmovl_s16(x)); N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0); N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1); N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); // Use reciprocal estimate and one refinement step. // float4 recip = vrecpeq_f32(yf); // recip *= vrecpsq_f32(yf, recip); N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), N1); N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), N1, N2); N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); // Because short has a smaller range than ushort, we can actually get away // with only a single newton step. This requires that we use a weird bias // of 89, however (again, this has been exhaustively tested). // float4 result = as_float4(as_int4(xf*recip) + 0x89); N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); N1 = DAG.getConstant(0x89, dl, MVT::i32); N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); // Convert back to integer and return. // return vmovn_s32(vcvt_s32_f32(result)); N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); return N0; } static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); assert((VT == MVT::v4i16 || VT == MVT::v8i8) && "unexpected type for custom-lowering ISD::SDIV"); SDLoc dl(Op); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2, N3; if (VT == MVT::v8i8) { N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0); N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1); N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(4, dl)); N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(4, dl)); N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(0, dl)); N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(0, dl)); N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); N0 = LowerCONCAT_VECTORS(N0, DAG); N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0); return N0; } return LowerSDIV_v4i16(N0, N1, dl, DAG); } static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) { // TODO: Should this propagate fast-math-flags? EVT VT = Op.getValueType(); assert((VT == MVT::v4i16 || VT == MVT::v8i8) && "unexpected type for custom-lowering ISD::UDIV"); SDLoc dl(Op); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2, N3; if (VT == MVT::v8i8) { N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0); N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1); N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(4, dl)); N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(4, dl)); N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(0, dl)); N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(0, dl)); N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); N0 = LowerCONCAT_VECTORS(N0, DAG); N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8, DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl, MVT::i32), N0); return N0; } // v4i16 sdiv ... Convert to float. // float4 yf = vcvt_f32_s32(vmovl_u16(y)); // float4 xf = vcvt_f32_s32(vmovl_u16(x)); N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0); N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1); N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); // Use reciprocal estimate and two refinement steps. // float4 recip = vrecpeq_f32(yf); // recip *= vrecpsq_f32(yf, recip); // recip *= vrecpsq_f32(yf, recip); N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), BN1); N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), BN1, N2); N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), BN1, N2); N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); // Simply multiplying by the reciprocal estimate can leave us a few ulps // too low, so we add 2 ulps (exhaustive testing shows that this is enough, // and that it will never cause us to return an answer too large). // float4 result = as_float4(as_int4(xf*recip) + 2); N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); N1 = DAG.getConstant(2, dl, MVT::i32); N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); // Convert back to integer and return. // return vmovn_u32(vcvt_s32_f32(result)); N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); return N0; } static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getNode()->getValueType(0); SDVTList VTs = DAG.getVTList(VT, MVT::i32); unsigned Opc; bool ExtraOp = false; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid code"); case ISD::ADDC: Opc = ARMISD::ADDC; break; case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break; case ISD::SUBC: Opc = ARMISD::SUBC; break; case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break; } if (!ExtraOp) return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), Op.getOperand(2)); } SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetDarwin()); // For iOS, we want to call an alternative entry point: __sincos_stret, // return values are passed via sret. SDLoc dl(Op); SDValue Arg = Op.getOperand(0); EVT ArgVT = Arg.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); auto PtrVT = getPointerTy(DAG.getDataLayout()); MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // Pair of floats / doubles used to pass the result. Type *RetTy = StructType::get(ArgTy, ArgTy, nullptr); auto &DL = DAG.getDataLayout(); ArgListTy Args; bool ShouldUseSRet = Subtarget->isAPCS_ABI(); SDValue SRet; if (ShouldUseSRet) { // Create stack object for sret. const uint64_t ByteSize = DL.getTypeAllocSize(RetTy); const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy); int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false); SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL)); ArgListEntry Entry; Entry.Node = SRet; Entry.Ty = RetTy->getPointerTo(); Entry.isSExt = false; Entry.isZExt = false; Entry.isSRet = true; Args.push_back(Entry); RetTy = Type::getVoidTy(*DAG.getContext()); } ArgListEntry Entry; Entry.Node = Arg; Entry.Ty = ArgTy; Entry.isSExt = false; Entry.isZExt = false; Args.push_back(Entry); const char *LibcallName = (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret"; RTLIB::Libcall LC = (ArgVT == MVT::f64) ? RTLIB::SINCOS_F64 : RTLIB::SINCOS_F32; CallingConv::ID CC = getLibcallCallingConv(LC); SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL)); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(DAG.getEntryNode()) .setCallee(CC, RetTy, Callee, std::move(Args), 0) .setDiscardResult(ShouldUseSRet); std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); if (!ShouldUseSRet) return CallResult.first; SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo(), false, false, false, 0); // Address of cos field. SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet, DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl)); SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo(), false, false, false, 0); SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, LoadSin.getValue(0), LoadCos.getValue(0)); } SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG, bool Signed, SDValue &Chain) const { EVT VT = Op.getValueType(); assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected type for custom lowering DIV"); SDLoc dl(Op); const auto &DL = DAG.getDataLayout(); const auto &TLI = DAG.getTargetLoweringInfo(); const char *Name = nullptr; if (Signed) Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64"; else Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64"; SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL)); ARMTargetLowering::ArgListTy Args; for (auto AI : {1, 0}) { ArgListEntry Arg; Arg.Node = Op.getOperand(AI); Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext()); Args.push_back(Arg); } CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(Chain) .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()), ES, std::move(Args), 0); return LowerCallTo(CLI).first; } SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG, bool Signed) const { assert(Op.getValueType() == MVT::i32 && "unexpected type for custom lowering DIV"); SDLoc dl(Op); SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, DAG.getEntryNode(), Op.getOperand(1)); return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK); } void ARMTargetLowering::ExpandDIV_Windows( SDValue Op, SelectionDAG &DAG, bool Signed, SmallVectorImpl<SDValue> &Results) const { const auto &DL = DAG.getDataLayout(); const auto &TLI = DAG.getTargetLoweringInfo(); assert(Op.getValueType() == MVT::i64 && "unexpected type for custom lowering DIV"); SDLoc dl(Op); SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1), DAG.getConstant(1, dl, MVT::i32)); SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, Lo, Hi); SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, DAG.getEntryNode(), Or); SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK); SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result); SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result, DAG.getConstant(32, dl, TLI.getPointerTy(DL))); Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper); Results.push_back(Lower); Results.push_back(Upper); } static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) { // Monotonic load/store is legal for all targets if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic) return Op; // Acquire/Release load/store is not legal for targets without a // dmb or equivalent available. return SDValue(); } static void ReplaceREADCYCLECOUNTER(SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { SDLoc DL(N); // Under Power Management extensions, the cycle-count is: // mrc p15, #0, <Rt>, c9, c13, #0 SDValue Ops[] = { N->getOperand(0), // Chain DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32), DAG.getConstant(15, DL, MVT::i32), DAG.getConstant(0, DL, MVT::i32), DAG.getConstant(9, DL, MVT::i32), DAG.getConstant(13, DL, MVT::i32), DAG.getConstant(0, DL, MVT::i32) }; SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, DAG.getVTList(MVT::i32, MVT::Other), Ops); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32, DAG.getConstant(0, DL, MVT::i32))); Results.push_back(Cycles32.getValue(1)); } SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Don't know how to custom lower this!"); case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::GlobalAddress: switch (Subtarget->getTargetTriple().getObjectFormat()) { default: llvm_unreachable("unknown object format"); case Triple::COFF: return LowerGlobalAddressWindows(Op, DAG); case Triple::ELF: return LowerGlobalAddressELF(Op, DAG); case Triple::MachO: return LowerGlobalAddressDarwin(Op, DAG); } case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::BR_JT: return LowerBR_JT(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget); case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG); case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG); case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, Subtarget); case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG); case ISD::SHL: case ISD::SRL: case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); case ISD::SREM: return LowerREM(Op.getNode(), DAG); case ISD::UREM: return LowerREM(Op.getNode(), DAG); case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); case ISD::SRL_PARTS: case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget); case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget); case ISD::SETCC: return LowerVSETCC(Op, DAG); case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); case ISD::MUL: return LowerMUL(Op, DAG); case ISD::SDIV: return LowerSDIV(Op, DAG); case ISD::UDIV: return LowerUDIV(Op, DAG); case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); case ISD::SADDO: case ISD::UADDO: case ISD::SSUBO: case ISD::USUBO: return LowerXALUO(Op, DAG); case ISD::ATOMIC_LOAD: case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG); case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); case ISD::SDIVREM: case ISD::UDIVREM: return LowerDivRem(Op, DAG); case ISD::DYNAMIC_STACKALLOC: if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment()) return LowerDYNAMIC_STACKALLOC(Op, DAG); llvm_unreachable("Don't know how to custom lower this!"); case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); case ARMISD::WIN__DBZCHK: return SDValue(); } } /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. void ARMTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { SDValue Res; switch (N->getOpcode()) { default: llvm_unreachable("Don't know how to custom expand this!"); case ISD::READ_REGISTER: ExpandREAD_REGISTER(N, Results, DAG); break; case ISD::BITCAST: Res = ExpandBITCAST(N, DAG); break; case ISD::SRL: case ISD::SRA: Res = Expand64BitShift(N, DAG, Subtarget); break; case ISD::SREM: case ISD::UREM: Res = LowerREM(N, DAG); break; case ISD::READCYCLECOUNTER: ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget); return; case ISD::UDIV: case ISD::SDIV: assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows"); return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV, Results); } if (Res.getNode()) Results.push_back(Res); } //===----------------------------------------------------------------------===// // ARM Scheduler Hooks //===----------------------------------------------------------------------===// /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and /// registers the function context. void ARMTargetLowering:: SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *DispatchBB, int FI) const { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo *MRI = &MF->getRegInfo(); MachineConstantPool *MCP = MF->getConstantPool(); ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>(); const Function *F = MF->getFunction(); bool isThumb = Subtarget->isThumb(); bool isThumb2 = Subtarget->isThumb2(); unsigned PCLabelId = AFI->createPICLabelUId(); unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8; ARMConstantPoolValue *CPV = ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj); unsigned CPI = MCP->getConstantPoolIndex(CPV, 4); const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass; // Grab constant pool and fixed stack memory operands. MachineMemOperand *CPMMO = MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 4, 4); MachineMemOperand *FIMMOSt = MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, 4, 4); // Load the address of the dispatch MBB into the jump buffer. if (isThumb2) { // Incoming value: jbuf // ldr.n r5, LCPI1_1 // orr r5, r5, #1 // add r5, pc // str r5, [$jbuf, #+4] ; &jbuf[1] unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1) .addConstantPoolIndex(CPI) .addMemOperand(CPMMO)); // Set the low bit because of thumb mode. unsigned NewVReg2 = MRI->createVirtualRegister(TRC); AddDefaultCC( AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2) .addReg(NewVReg1, RegState::Kill) .addImm(0x01))); unsigned NewVReg3 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3) .addReg(NewVReg2, RegState::Kill) .addImm(PCLabelId); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12)) .addReg(NewVReg3, RegState::Kill) .addFrameIndex(FI) .addImm(36) // &jbuf[1] :: pc .addMemOperand(FIMMOSt)); } else if (isThumb) { // Incoming value: jbuf // ldr.n r1, LCPI1_4 // add r1, pc // mov r2, #1 // orrs r1, r2 // add r2, $jbuf, #+4 ; &jbuf[1] // str r1, [r2] unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1) .addConstantPoolIndex(CPI) .addMemOperand(CPMMO)); unsigned NewVReg2 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2) .addReg(NewVReg1, RegState::Kill) .addImm(PCLabelId); // Set the low bit because of thumb mode. unsigned NewVReg3 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3) .addReg(ARM::CPSR, RegState::Define) .addImm(1)); unsigned NewVReg4 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg2, RegState::Kill) .addReg(NewVReg3, RegState::Kill)); unsigned NewVReg5 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5) .addFrameIndex(FI) .addImm(36); // &jbuf[1] :: pc AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi)) .addReg(NewVReg4, RegState::Kill) .addReg(NewVReg5, RegState::Kill) .addImm(0) .addMemOperand(FIMMOSt)); } else { // Incoming value: jbuf // ldr r1, LCPI1_1 // add r1, pc, r1 // str r1, [$jbuf, #+4] ; &jbuf[1] unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1) .addConstantPoolIndex(CPI) .addImm(0) .addMemOperand(CPMMO)); unsigned NewVReg2 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2) .addReg(NewVReg1, RegState::Kill) .addImm(PCLabelId)); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12)) .addReg(NewVReg2, RegState::Kill) .addFrameIndex(FI) .addImm(36) // &jbuf[1] :: pc .addMemOperand(FIMMOSt)); } } void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo *MRI = &MF->getRegInfo(); MachineFrameInfo *MFI = MF->getFrameInfo(); int FI = MFI->getFunctionContextIndex(); const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass : &ARM::GPRnopcRegClass; // Get a mapping of the call site numbers to all of the landing pads they're // associated with. DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad; unsigned MaxCSNum = 0; MachineModuleInfo &MMI = MF->getMMI(); for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) { if (!BB->isEHPad()) continue; // FIXME: We should assert that the EH_LABEL is the first MI in the landing // pad. for (MachineBasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) { if (!II->isEHLabel()) continue; MCSymbol *Sym = II->getOperand(0).getMCSymbol(); if (!MMI.hasCallSiteLandingPad(Sym)) continue; SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym); for (SmallVectorImpl<unsigned>::iterator CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end(); CSI != CSE; ++CSI) { CallSiteNumToLPad[*CSI].push_back(&*BB); MaxCSNum = std::max(MaxCSNum, *CSI); } break; } } // Get an ordered list of the machine basic blocks for the jump table. std::vector<MachineBasicBlock*> LPadList; SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs; LPadList.reserve(CallSiteNumToLPad.size()); for (unsigned I = 1; I <= MaxCSNum; ++I) { SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I]; for (SmallVectorImpl<MachineBasicBlock*>::iterator II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) { LPadList.push_back(*II); InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end()); } } assert(!LPadList.empty() && "No landing pad destinations for the dispatch jump table!"); // Create the jump table and associated information. MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline); unsigned MJTI = JTI->createJumpTableIndex(LPadList); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); // Create the MBBs for the dispatch code. // Shove the dispatch's address into the return slot in the function context. MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); DispatchBB->setIsEHPad(); MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); unsigned trap_opcode; if (Subtarget->isThumb()) trap_opcode = ARM::tTRAP; else trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; BuildMI(TrapBB, dl, TII->get(trap_opcode)); DispatchBB->addSuccessor(TrapBB); MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); DispatchBB->addSuccessor(DispContBB); // Insert and MBBs. MF->insert(MF->end(), DispatchBB); MF->insert(MF->end(), DispContBB); MF->insert(MF->end(), TrapBB); // Insert code into the entry block that creates and registers the function // context. SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI); MachineMemOperand *FIMMOLd = MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4); MachineInstrBuilder MIB; MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup)); const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII); const ARMBaseRegisterInfo &RI = AII->getRegisterInfo(); // Add a register mask with no preserved registers. This results in all // registers being marked as clobbered. MIB.addRegMask(RI.getNoPreservedMask()); unsigned NumLPads = LPadList.size(); if (Subtarget->isThumb2()) { unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1) .addFrameIndex(FI) .addImm(4) .addMemOperand(FIMMOLd)); if (NumLPads < 256) { AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri)) .addReg(NewVReg1) .addImm(LPadList.size())); } else { unsigned VReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1) .addImm(NumLPads & 0xFFFF)); unsigned VReg2 = VReg1; if ((NumLPads & 0xFFFF0000) != 0) { VReg2 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2) .addReg(VReg1) .addImm(NumLPads >> 16)); } AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr)) .addReg(NewVReg1) .addReg(VReg2)); } BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc)) .addMBB(TrapBB) .addImm(ARMCC::HI) .addReg(ARM::CPSR); unsigned NewVReg3 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3) .addJumpTableIndex(MJTI)); unsigned NewVReg4 = MRI->createVirtualRegister(TRC); AddDefaultCC( AddDefaultPred( BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4) .addReg(NewVReg3, RegState::Kill) .addReg(NewVReg1) .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT)) .addReg(NewVReg4, RegState::Kill) .addReg(NewVReg1) .addJumpTableIndex(MJTI); } else if (Subtarget->isThumb()) { unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1) .addFrameIndex(FI) .addImm(1) .addMemOperand(FIMMOLd)); if (NumLPads < 256) { AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8)) .addReg(NewVReg1) .addImm(NumLPads)); } else { MachineConstantPool *ConstantPool = MF->getConstantPool(); Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); const Constant *C = ConstantInt::get(Int32Ty, NumLPads); // MachineConstantPool wants an explicit alignment. unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty); if (Align == 0) Align = MF->getDataLayout().getTypeAllocSize(C->getType()); unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); unsigned VReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci)) .addReg(VReg1, RegState::Define) .addConstantPoolIndex(Idx)); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr)) .addReg(NewVReg1) .addReg(VReg1)); } BuildMI(DispatchBB, dl, TII->get(ARM::tBcc)) .addMBB(TrapBB) .addImm(ARMCC::HI) .addReg(ARM::CPSR); unsigned NewVReg2 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg1) .addImm(2)); unsigned NewVReg3 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3) .addJumpTableIndex(MJTI)); unsigned NewVReg4 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg2, RegState::Kill) .addReg(NewVReg3)); MachineMemOperand *JTMMOLd = MF->getMachineMemOperand( MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4); unsigned NewVReg5 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5) .addReg(NewVReg4, RegState::Kill) .addImm(0) .addMemOperand(JTMMOLd)); unsigned NewVReg6 = NewVReg5; if (RelocM == Reloc::PIC_) { NewVReg6 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg5, RegState::Kill) .addReg(NewVReg3)); } BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr)) .addReg(NewVReg6, RegState::Kill) .addJumpTableIndex(MJTI); } else { unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1) .addFrameIndex(FI) .addImm(4) .addMemOperand(FIMMOLd)); if (NumLPads < 256) { AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri)) .addReg(NewVReg1) .addImm(NumLPads)); } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) { unsigned VReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1) .addImm(NumLPads & 0xFFFF)); unsigned VReg2 = VReg1; if ((NumLPads & 0xFFFF0000) != 0) { VReg2 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2) .addReg(VReg1) .addImm(NumLPads >> 16)); } AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) .addReg(NewVReg1) .addReg(VReg2)); } else { MachineConstantPool *ConstantPool = MF->getConstantPool(); Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); const Constant *C = ConstantInt::get(Int32Ty, NumLPads); // MachineConstantPool wants an explicit alignment. unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty); if (Align == 0) Align = MF->getDataLayout().getTypeAllocSize(C->getType()); unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); unsigned VReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp)) .addReg(VReg1, RegState::Define) .addConstantPoolIndex(Idx) .addImm(0)); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) .addReg(NewVReg1) .addReg(VReg1, RegState::Kill)); } BuildMI(DispatchBB, dl, TII->get(ARM::Bcc)) .addMBB(TrapBB) .addImm(ARMCC::HI) .addReg(ARM::CPSR); unsigned NewVReg3 = MRI->createVirtualRegister(TRC); AddDefaultCC( AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3) .addReg(NewVReg1) .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); unsigned NewVReg4 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4) .addJumpTableIndex(MJTI)); MachineMemOperand *JTMMOLd = MF->getMachineMemOperand( MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4); unsigned NewVReg5 = MRI->createVirtualRegister(TRC); AddDefaultPred( BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5) .addReg(NewVReg3, RegState::Kill) .addReg(NewVReg4) .addImm(0) .addMemOperand(JTMMOLd)); if (RelocM == Reloc::PIC_) { BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd)) .addReg(NewVReg5, RegState::Kill) .addReg(NewVReg4) .addJumpTableIndex(MJTI); } else { BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr)) .addReg(NewVReg5, RegState::Kill) .addJumpTableIndex(MJTI); } } // Add the jump table entries as successors to the MBB. SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs; for (std::vector<MachineBasicBlock*>::iterator I = LPadList.begin(), E = LPadList.end(); I != E; ++I) { MachineBasicBlock *CurMBB = *I; if (SeenMBBs.insert(CurMBB).second) DispContBB->addSuccessor(CurMBB); } // N.B. the order the invoke BBs are processed in doesn't matter here. const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF); SmallVector<MachineBasicBlock*, 64> MBBLPads; for (MachineBasicBlock *BB : InvokeBBs) { // Remove the landing pad successor from the invoke block and replace it // with the new dispatch block. SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(), BB->succ_end()); while (!Successors.empty()) { MachineBasicBlock *SMBB = Successors.pop_back_val(); if (SMBB->isEHPad()) { BB->removeSuccessor(SMBB); MBBLPads.push_back(SMBB); } } BB->addSuccessor(DispatchBB, BranchProbability::getZero()); BB->normalizeSuccProbs(); // Find the invoke call and mark all of the callee-saved registers as // 'implicit defined' so that they're spilled. This prevents code from // moving instructions to before the EH block, where they will never be // executed. for (MachineBasicBlock::reverse_iterator II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) { if (!II->isCall()) continue; DenseMap<unsigned, bool> DefRegs; for (MachineInstr::mop_iterator OI = II->operands_begin(), OE = II->operands_end(); OI != OE; ++OI) { if (!OI->isReg()) continue; DefRegs[OI->getReg()] = true; } MachineInstrBuilder MIB(*MF, &*II); for (unsigned i = 0; SavedRegs[i] != 0; ++i) { unsigned Reg = SavedRegs[i]; if (Subtarget->isThumb2() && !ARM::tGPRRegClass.contains(Reg) && !ARM::hGPRRegClass.contains(Reg)) continue; if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg)) continue; if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg)) continue; if (!DefRegs[Reg]) MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); } break; } } // Mark all former landing pads as non-landing pads. The dispatch is the only // landing pad now. for (SmallVectorImpl<MachineBasicBlock*>::iterator I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I) (*I)->setIsEHPad(false); // The instruction is gone now. MI->eraseFromParent(); } static MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) { for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) if (*I != Succ) return *I; llvm_unreachable("Expecting a BB with two successors!"); } /// Return the load opcode for a given load size. If load size >= 8, /// neon opcode will be returned. static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) { if (LdSize >= 8) return LdSize == 16 ? ARM::VLD1q32wb_fixed : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0; if (IsThumb1) return LdSize == 4 ? ARM::tLDRi : LdSize == 2 ? ARM::tLDRHi : LdSize == 1 ? ARM::tLDRBi : 0; if (IsThumb2) return LdSize == 4 ? ARM::t2LDR_POST : LdSize == 2 ? ARM::t2LDRH_POST : LdSize == 1 ? ARM::t2LDRB_POST : 0; return LdSize == 4 ? ARM::LDR_POST_IMM : LdSize == 2 ? ARM::LDRH_POST : LdSize == 1 ? ARM::LDRB_POST_IMM : 0; } /// Return the store opcode for a given store size. If store size >= 8, /// neon opcode will be returned. static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) { if (StSize >= 8) return StSize == 16 ? ARM::VST1q32wb_fixed : StSize == 8 ? ARM::VST1d32wb_fixed : 0; if (IsThumb1) return StSize == 4 ? ARM::tSTRi : StSize == 2 ? ARM::tSTRHi : StSize == 1 ? ARM::tSTRBi : 0; if (IsThumb2) return StSize == 4 ? ARM::t2STR_POST : StSize == 2 ? ARM::t2STRH_POST : StSize == 1 ? ARM::t2STRB_POST : 0; return StSize == 4 ? ARM::STR_POST_IMM : StSize == 2 ? ARM::STRH_POST : StSize == 1 ? ARM::STRB_POST_IMM : 0; } /// Emit a post-increment load operation with given size. The instructions /// will be added to BB at Pos. static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos, const TargetInstrInfo *TII, DebugLoc dl, unsigned LdSize, unsigned Data, unsigned AddrIn, unsigned AddrOut, bool IsThumb1, bool IsThumb2) { unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2); assert(LdOpc != 0 && "Should have a load opcode"); if (LdSize >= 8) { AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) .addReg(AddrOut, RegState::Define).addReg(AddrIn) .addImm(0)); } else if (IsThumb1) { // load + update AddrIn AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) .addReg(AddrIn).addImm(0)); MachineInstrBuilder MIB = BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut); MIB = AddDefaultT1CC(MIB); MIB.addReg(AddrIn).addImm(LdSize); AddDefaultPred(MIB); } else if (IsThumb2) { AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) .addReg(AddrOut, RegState::Define).addReg(AddrIn) .addImm(LdSize)); } else { // arm AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) .addReg(AddrOut, RegState::Define).addReg(AddrIn) .addReg(0).addImm(LdSize)); } } /// Emit a post-increment store operation with given size. The instructions /// will be added to BB at Pos. static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos, const TargetInstrInfo *TII, DebugLoc dl, unsigned StSize, unsigned Data, unsigned AddrIn, unsigned AddrOut, bool IsThumb1, bool IsThumb2) { unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2); assert(StOpc != 0 && "Should have a store opcode"); if (StSize >= 8) { AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) .addReg(AddrIn).addImm(0).addReg(Data)); } else if (IsThumb1) { // store + update AddrIn AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data) .addReg(AddrIn).addImm(0)); MachineInstrBuilder MIB = BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut); MIB = AddDefaultT1CC(MIB); MIB.addReg(AddrIn).addImm(StSize); AddDefaultPred(MIB); } else if (IsThumb2) { AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) .addReg(Data).addReg(AddrIn).addImm(StSize)); } else { // arm AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) .addReg(Data).addReg(AddrIn).addReg(0) .addImm(StSize)); } } MachineBasicBlock * ARMTargetLowering::EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const { // This pseudo instruction has 3 operands: dst, src, size // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold(). // Otherwise, we will generate unrolled scalar copies. const TargetInstrInfo *TII = Subtarget->getInstrInfo(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = ++BB->getIterator(); unsigned dest = MI->getOperand(0).getReg(); unsigned src = MI->getOperand(1).getReg(); unsigned SizeVal = MI->getOperand(2).getImm(); unsigned Align = MI->getOperand(3).getImm(); DebugLoc dl = MI->getDebugLoc(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned UnitSize = 0; const TargetRegisterClass *TRC = nullptr; const TargetRegisterClass *VecTRC = nullptr; bool IsThumb1 = Subtarget->isThumb1Only(); bool IsThumb2 = Subtarget->isThumb2(); if (Align & 1) { UnitSize = 1; } else if (Align & 2) { UnitSize = 2; } else { // Check whether we can use NEON instructions. if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) && Subtarget->hasNEON()) { if ((Align % 16 == 0) && SizeVal >= 16) UnitSize = 16; else if ((Align % 8 == 0) && SizeVal >= 8) UnitSize = 8; } // Can't use NEON instructions. if (UnitSize == 0) UnitSize = 4; } // Select the correct opcode and register class for unit size load/store bool IsNeon = UnitSize >= 8; TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass; if (IsNeon) VecTRC = UnitSize == 16 ? &ARM::DPairRegClass : UnitSize == 8 ? &ARM::DPRRegClass : nullptr; unsigned BytesLeft = SizeVal % UnitSize; unsigned LoopSize = SizeVal - BytesLeft; if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) { // Use LDR and STR to copy. // [scratch, srcOut] = LDR_POST(srcIn, UnitSize) // [destOut] = STR_POST(scratch, destIn, UnitSize) unsigned srcIn = src; unsigned destIn = dest; for (unsigned i = 0; i < LoopSize; i+=UnitSize) { unsigned srcOut = MRI.createVirtualRegister(TRC); unsigned destOut = MRI.createVirtualRegister(TRC); unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut, IsThumb1, IsThumb2); emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut, IsThumb1, IsThumb2); srcIn = srcOut; destIn = destOut; } // Handle the leftover bytes with LDRB and STRB. // [scratch, srcOut] = LDRB_POST(srcIn, 1) // [destOut] = STRB_POST(scratch, destIn, 1) for (unsigned i = 0; i < BytesLeft; i++) { unsigned srcOut = MRI.createVirtualRegister(TRC); unsigned destOut = MRI.createVirtualRegister(TRC); unsigned scratch = MRI.createVirtualRegister(TRC); emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut, IsThumb1, IsThumb2); emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut, IsThumb1, IsThumb2); srcIn = srcOut; destIn = destOut; } MI->eraseFromParent(); // The instruction is gone now. return BB; } // Expand the pseudo op to a loop. // thisMBB: // ... // movw varEnd, # --> with thumb2 // movt varEnd, # // ldrcp varEnd, idx --> without thumb2 // fallthrough --> loopMBB // loopMBB: // PHI varPhi, varEnd, varLoop // PHI srcPhi, src, srcLoop // PHI destPhi, dst, destLoop // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) // [destLoop] = STR_POST(scratch, destPhi, UnitSize) // subs varLoop, varPhi, #UnitSize // bne loopMBB // fallthrough --> exitMBB // exitMBB: // epilogue to handle left-over bytes // [scratch, srcOut] = LDRB_POST(srcLoop, 1) // [destOut] = STRB_POST(scratch, destLoop, 1) MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, loopMBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); // Load an immediate to varEnd. unsigned varEnd = MRI.createVirtualRegister(TRC); if (Subtarget->useMovt(*MF)) { unsigned Vtmp = varEnd; if ((LoopSize & 0xFFFF0000) != 0) Vtmp = MRI.createVirtualRegister(TRC); AddDefaultPred(BuildMI(BB, dl, TII->get(IsThumb2 ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp).addImm(LoopSize & 0xFFFF)); if ((LoopSize & 0xFFFF0000) != 0) AddDefaultPred(BuildMI(BB, dl, TII->get(IsThumb2 ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd) .addReg(Vtmp) .addImm(LoopSize >> 16)); } else { MachineConstantPool *ConstantPool = MF->getConstantPool(); Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); const Constant *C = ConstantInt::get(Int32Ty, LoopSize); // MachineConstantPool wants an explicit alignment. unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty); if (Align == 0) Align = MF->getDataLayout().getTypeAllocSize(C->getType()); unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); if (IsThumb1) AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg( varEnd, RegState::Define).addConstantPoolIndex(Idx)); else AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg( varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0)); } BB->addSuccessor(loopMBB); // Generate the loop body: // varPhi = PHI(varLoop, varEnd) // srcPhi = PHI(srcLoop, src) // destPhi = PHI(destLoop, dst) MachineBasicBlock *entryBB = BB; BB = loopMBB; unsigned varLoop = MRI.createVirtualRegister(TRC); unsigned varPhi = MRI.createVirtualRegister(TRC); unsigned srcLoop = MRI.createVirtualRegister(TRC); unsigned srcPhi = MRI.createVirtualRegister(TRC); unsigned destLoop = MRI.createVirtualRegister(TRC); unsigned destPhi = MRI.createVirtualRegister(TRC); BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi) .addReg(varLoop).addMBB(loopMBB) .addReg(varEnd).addMBB(entryBB); BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi) .addReg(srcLoop).addMBB(loopMBB) .addReg(src).addMBB(entryBB); BuildMI(BB, dl, TII->get(ARM::PHI), destPhi) .addReg(destLoop).addMBB(loopMBB) .addReg(dest).addMBB(entryBB); // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) // [destLoop] = STR_POST(scratch, destPhi, UnitSiz) unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop, IsThumb1, IsThumb2); emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop, IsThumb1, IsThumb2); // Decrement loop variable by UnitSize. if (IsThumb1) { MachineInstrBuilder MIB = BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop); MIB = AddDefaultT1CC(MIB); MIB.addReg(varPhi).addImm(UnitSize); AddDefaultPred(MIB); } else { MachineInstrBuilder MIB = BuildMI(*BB, BB->end(), dl, TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop); AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize))); MIB->getOperand(5).setReg(ARM::CPSR); MIB->getOperand(5).setIsDef(true); } BuildMI(*BB, BB->end(), dl, TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); // loopMBB can loop back to loopMBB or fall through to exitMBB. BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // Add epilogue to handle BytesLeft. BB = exitMBB; MachineInstr *StartOfExit = exitMBB->begin(); // [scratch, srcOut] = LDRB_POST(srcLoop, 1) // [destOut] = STRB_POST(scratch, destLoop, 1) unsigned srcIn = srcLoop; unsigned destIn = destLoop; for (unsigned i = 0; i < BytesLeft; i++) { unsigned srcOut = MRI.createVirtualRegister(TRC); unsigned destOut = MRI.createVirtualRegister(TRC); unsigned scratch = MRI.createVirtualRegister(TRC); emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut, IsThumb1, IsThumb2); emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut, IsThumb1, IsThumb2); srcIn = srcOut; destIn = destOut; } MI->eraseFromParent(); // The instruction is gone now. return BB; } MachineBasicBlock * ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI, MachineBasicBlock *MBB) const { const TargetMachine &TM = getTargetMachine(); const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); assert(Subtarget->isTargetWindows() && "__chkstk is only supported on Windows"); assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode"); // __chkstk takes the number of words to allocate on the stack in R4, and // returns the stack adjustment in number of bytes in R4. This will not // clober any other registers (other than the obvious lr). // // Although, technically, IP should be considered a register which may be // clobbered, the call itself will not touch it. Windows on ARM is a pure // thumb-2 environment, so there is no interworking required. As a result, we // do not expect a veneer to be emitted by the linker, clobbering IP. // // Each module receives its own copy of __chkstk, so no import thunk is // required, again, ensuring that IP is not clobbered. // // Finally, although some linkers may theoretically provide a trampoline for // out of range calls (which is quite common due to a 32M range limitation of // branches for Thumb), we can generate the long-call version via // -mcmodel=large, alleviating the need for the trampoline which may clobber // IP. switch (TM.getCodeModel()) { case CodeModel::Small: case CodeModel::Medium: case CodeModel::Default: case CodeModel::Kernel: BuildMI(*MBB, MI, DL, TII.get(ARM::tBL)) .addImm((unsigned)ARMCC::AL).addReg(0) .addExternalSymbol("__chkstk") .addReg(ARM::R4, RegState::Implicit | RegState::Kill) .addReg(ARM::R4, RegState::Implicit | RegState::Define) .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead); break; case CodeModel::Large: case CodeModel::JITDefault: { MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass); BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg) .addExternalSymbol("__chkstk"); BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr)) .addImm((unsigned)ARMCC::AL).addReg(0) .addReg(Reg, RegState::Kill) .addReg(ARM::R4, RegState::Implicit | RegState::Kill) .addReg(ARM::R4, RegState::Implicit | RegState::Define) .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead); break; } } AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP) .addReg(ARM::SP).addReg(ARM::R4))); MI->eraseFromParent(); return MBB; } MachineBasicBlock * ARMTargetLowering::EmitLowered__dbzchk(MachineInstr *MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI->getDebugLoc(); MachineFunction *MF = MBB->getParent(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock(); MF->push_back(ContBB); ContBB->splice(ContBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); MBB->addSuccessor(ContBB); MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); MF->push_back(TrapBB); BuildMI(TrapBB, DL, TII->get(ARM::t2UDF)).addImm(249); MBB->addSuccessor(TrapBB); BuildMI(*MBB, MI, DL, TII->get(ARM::tCBZ)) .addReg(MI->getOperand(0).getReg()) .addMBB(TrapBB); MI->eraseFromParent(); return ContBB; } MachineBasicBlock * ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); bool isThumb2 = Subtarget->isThumb2(); switch (MI->getOpcode()) { default: { MI->dump(); llvm_unreachable("Unexpected instr type to insert"); } // The Thumb2 pre-indexed stores have the same MI operands, they just // define them differently in the .td files from the isel patterns, so // they need pseudos. case ARM::t2STR_preidx: MI->setDesc(TII->get(ARM::t2STR_PRE)); return BB; case ARM::t2STRB_preidx: MI->setDesc(TII->get(ARM::t2STRB_PRE)); return BB; case ARM::t2STRH_preidx: MI->setDesc(TII->get(ARM::t2STRH_PRE)); return BB; case ARM::STRi_preidx: case ARM::STRBi_preidx: { unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM; // Decode the offset. unsigned Offset = MI->getOperand(4).getImm(); bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub; Offset = ARM_AM::getAM2Offset(Offset); if (isSub) Offset = -Offset; MachineMemOperand *MMO = *MI->memoperands_begin(); BuildMI(*BB, MI, dl, TII->get(NewOpc)) .addOperand(MI->getOperand(0)) // Rn_wb .addOperand(MI->getOperand(1)) // Rt .addOperand(MI->getOperand(2)) // Rn .addImm(Offset) // offset (skip GPR==zero_reg) .addOperand(MI->getOperand(5)) // pred .addOperand(MI->getOperand(6)) .addMemOperand(MMO); MI->eraseFromParent(); return BB; } case ARM::STRr_preidx: case ARM::STRBr_preidx: case ARM::STRH_preidx: { unsigned NewOpc; switch (MI->getOpcode()) { default: llvm_unreachable("unexpected opcode!"); case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break; case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break; case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break; } MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc)); for (unsigned i = 0; i < MI->getNumOperands(); ++i) MIB.addOperand(MI->getOperand(i)); MI->eraseFromParent(); return BB; } case ARM::tMOVCCr_pseudo: { // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = ++BB->getIterator(); // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB) .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } case ARM::BCCi64: case ARM::BCCZi64: { // If there is an unconditional branch to the other successor, remove it. BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end()); // Compare both parts that make up the double comparison separately for // equality. bool RHSisZero = MI->getOpcode() == ARM::BCCZi64; unsigned LHS1 = MI->getOperand(1).getReg(); unsigned LHS2 = MI->getOperand(2).getReg(); if (RHSisZero) { AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(LHS1).addImm(0)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(LHS2).addImm(0) .addImm(ARMCC::EQ).addReg(ARM::CPSR); } else { unsigned RHS1 = MI->getOperand(3).getReg(); unsigned RHS2 = MI->getOperand(4).getReg(); AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) .addReg(LHS1).addReg(RHS1)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) .addReg(LHS2).addReg(RHS2) .addImm(ARMCC::EQ).addReg(ARM::CPSR); } MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB(); MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB); if (MI->getOperand(0).getImm() == ARMCC::NE) std::swap(destMBB, exitMBB); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR); if (isThumb2) AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB)); else BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } case ARM::Int_eh_sjlj_setjmp: case ARM::Int_eh_sjlj_setjmp_nofp: case ARM::tInt_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp_nofp: return BB; case ARM::Int_eh_sjlj_setup_dispatch: EmitSjLjDispatchBlock(MI, BB); return BB; case ARM::ABS: case ARM::t2ABS: { // To insert an ABS instruction, we have to insert the // diamond control-flow pattern. The incoming instruction knows the // source vreg to test against 0, the destination vreg to set, // the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. // It transforms // V1 = ABS V0 // into // V2 = MOVS V0 // BCC (branch to SinkBB if V0 >= 0) // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0) // SinkBB: V1 = PHI(V2, V3) const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator BBI = ++BB->getIterator(); MachineFunction *Fn = BB->getParent(); MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB); Fn->insert(BBI, RSBBB); Fn->insert(BBI, SinkBB); unsigned int ABSSrcReg = MI->getOperand(1).getReg(); unsigned int ABSDstReg = MI->getOperand(0).getReg(); bool ABSSrcKIll = MI->getOperand(1).isKill(); bool isThumb2 = Subtarget->isThumb2(); MachineRegisterInfo &MRI = Fn->getRegInfo(); // In Thumb mode S must not be specified if source register is the SP or // PC and if destination register is the SP, so restrict register class unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass); // Transfer the remainder of BB and its successor edges to sinkMBB. SinkBB->splice(SinkBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); SinkBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(RSBBB); BB->addSuccessor(SinkBB); // fall through to SinkMBB RSBBB->addSuccessor(SinkBB); // insert a cmp at the end of BB AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(ABSSrcReg).addImm(0)); // insert a bcc with opposite CC to ARMCC::MI at the end of BB BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB) .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR); // insert rsbri in RSBBB // Note: BCC and rsbri will be converted into predicated rsbmi // by if-conversion pass BuildMI(*RSBBB, RSBBB->begin(), dl, TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg) .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0) .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0); // insert PHI in SinkBB, // reuse ABSDstReg to not change uses of ABS instruction BuildMI(*SinkBB, SinkBB->begin(), dl, TII->get(ARM::PHI), ABSDstReg) .addReg(NewRsbDstReg).addMBB(RSBBB) .addReg(ABSSrcReg).addMBB(BB); // remove ABS instruction MI->eraseFromParent(); // return last added BB return SinkBB; } case ARM::COPY_STRUCT_BYVAL_I32: ++NumLoopByVals; return EmitStructByval(MI, BB); case ARM::WIN__CHKSTK: return EmitLowered__chkstk(MI, BB); case ARM::WIN__DBZCHK: return EmitLowered__dbzchk(MI, BB); } } /// \brief Attaches vregs to MEMCPY that it will use as scratch registers /// when it is expanded into LDM/STM. This is done as a post-isel lowering /// instead of as a custom inserter because we need the use list from the SDNode. static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget, MachineInstr *MI, const SDNode *Node) { bool isThumb1 = Subtarget->isThumb1Only(); DebugLoc DL = MI->getDebugLoc(); MachineFunction *MF = MI->getParent()->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); MachineInstrBuilder MIB(*MF, MI); // If the new dst/src is unused mark it as dead. if (!Node->hasAnyUseOfValue(0)) { MI->getOperand(0).setIsDead(true); } if (!Node->hasAnyUseOfValue(1)) { MI->getOperand(1).setIsDead(true); } // The MEMCPY both defines and kills the scratch registers. for (unsigned I = 0; I != MI->getOperand(4).getImm(); ++I) { unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass : &ARM::GPRRegClass); MIB.addReg(TmpReg, RegState::Define|RegState::Dead); } } void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const { if (MI->getOpcode() == ARM::MEMCPY) { attachMEMCPYScratchRegs(Subtarget, MI, Node); return; } const MCInstrDesc *MCID = &MI->getDesc(); // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB, // RSC. Coming out of isel, they have an implicit CPSR def, but the optional // operand is still set to noreg. If needed, set the optional operand's // register to CPSR, and remove the redundant implicit def. // // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>). // Rename pseudo opcodes. unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode()); if (NewOpc) { const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo(); MCID = &TII->get(NewOpc); assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 && "converted opcode should be the same except for cc_out"); MI->setDesc(*MCID); // Add the optional cc_out operand MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true)); } unsigned ccOutIdx = MCID->getNumOperands() - 1; // Any ARM instruction that sets the 's' bit should specify an optional // "cc_out" operand in the last operand position. if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) { assert(!NewOpc && "Optional cc_out operand required"); return; } // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it // since we already have an optional CPSR def. bool definesCPSR = false; bool deadCPSR = false; for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) { definesCPSR = true; if (MO.isDead()) deadCPSR = true; MI->RemoveOperand(i); break; } } if (!definesCPSR) { assert(!NewOpc && "Optional cc_out operand required"); return; } assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag"); if (deadCPSR) { assert(!MI->getOperand(ccOutIdx).getReg() && "expect uninitialized optional cc_out operand"); return; } // If this instruction was defined with an optional CPSR def and its dag node // had a live implicit CPSR def, then activate the optional CPSR def. MachineOperand &MO = MI->getOperand(ccOutIdx); MO.setReg(ARM::CPSR); MO.setIsDef(true); } //===----------------------------------------------------------------------===// // ARM Optimization Hooks //===----------------------------------------------------------------------===// // Helper function that checks if N is a null or all ones constant. static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); } // Return true if N is conditionally 0 or all ones. // Detects these expressions where cc is an i1 value: // // (select cc 0, y) [AllOnes=0] // (select cc y, 0) [AllOnes=0] // (zext cc) [AllOnes=0] // (sext cc) [AllOnes=0/1] // (select cc -1, y) [AllOnes=1] // (select cc y, -1) [AllOnes=1] // // Invert is set when N is the null/all ones constant when CC is false. // OtherOp is set to the alternative value of N. static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, bool &Invert, SDValue &OtherOp, SelectionDAG &DAG) { switch (N->getOpcode()) { default: return false; case ISD::SELECT: { CC = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); if (isZeroOrAllOnes(N1, AllOnes)) { Invert = false; OtherOp = N2; return true; } if (isZeroOrAllOnes(N2, AllOnes)) { Invert = true; OtherOp = N1; return true; } return false; } case ISD::ZERO_EXTEND: // (zext cc) can never be the all ones value. if (AllOnes) return false; // Fall through. case ISD::SIGN_EXTEND: { SDLoc dl(N); EVT VT = N->getValueType(0); CC = N->getOperand(0); if (CC.getValueType() != MVT::i1) return false; Invert = !AllOnes; if (AllOnes) // When looking for an AllOnes constant, N is an sext, and the 'other' // value is 0. OtherOp = DAG.getConstant(0, dl, VT); else if (N->getOpcode() == ISD::ZERO_EXTEND) // When looking for a 0 constant, N can be zext or sext. OtherOp = DAG.getConstant(1, dl, VT); else OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT); return true; } } } // Combine a constant select operand into its use: // // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) // // The transform is rejected if the select doesn't have a constant operand that // is null, or all ones when AllOnes is set. // // Also recognize sext/zext from i1: // // (add (zext cc), x) -> (select cc (add x, 1), x) // (add (sext cc), x) -> (select cc (add x, -1), x) // // These transformations eventually create predicated instructions. // // @param N The node to transform. // @param Slct The N operand that is a select. // @param OtherOp The other N operand (x above). // @param DCI Context. // @param AllOnes Require the select constant to be all ones instead of null. // @returns The new node, or SDValue() on failure. static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, TargetLowering::DAGCombinerInfo &DCI, bool AllOnes = false) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDValue NonConstantVal; SDValue CCOp; bool SwapSelectOps; if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, NonConstantVal, DAG)) return SDValue(); // Slct is now know to be the desired identity constant when CC is true. SDValue TrueVal = OtherOp; SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); // Unless SwapSelectOps says CC should be false. if (SwapSelectOps) std::swap(TrueVal, FalseVal); return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal); } // Attempt combineSelectAndUse on each operand of a commutative operator N. static SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes, TargetLowering::DAGCombinerInfo &DCI) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (N0.getNode()->hasOneUse()) { SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes); if (Result.getNode()) return Result; } if (N1.getNode()->hasOneUse()) { SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes); if (Result.getNode()) return Result; } return SDValue(); } // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction // (only after legalization). static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Only perform optimization if after legalize, and if NEON is available. We // also expected both operands to be BUILD_VECTORs. if (DCI.isBeforeLegalize() || !Subtarget->hasNEON() || N0.getOpcode() != ISD::BUILD_VECTOR || N1.getOpcode() != ISD::BUILD_VECTOR) return SDValue(); // Check output type since VPADDL operand elements can only be 8, 16, or 32. EVT VT = N->getValueType(0); if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64) return SDValue(); // Check that the vector operands are of the right form. // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR // operands, where N is the size of the formed vector. // Each EXTRACT_VECTOR should have the same input vector and odd or even // index such that we have a pair wise add pattern. // Grab the vector that all EXTRACT_VECTOR nodes should be referencing. if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue Vec = N0->getOperand(0)->getOperand(0); SDNode *V = Vec.getNode(); unsigned nextIndex = 0; // For each operands to the ADD which are BUILD_VECTORs, // check to see if each of their operands are an EXTRACT_VECTOR with // the same vector and appropriate index. for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) { if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { SDValue ExtVec0 = N0->getOperand(i); SDValue ExtVec1 = N1->getOperand(i); // First operand is the vector, verify its the same. if (V != ExtVec0->getOperand(0).getNode() || V != ExtVec1->getOperand(0).getNode()) return SDValue(); // Second is the constant, verify its correct. ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1)); ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1)); // For the constant, we want to see all the even or all the odd. if (!C0 || !C1 || C0->getZExtValue() != nextIndex || C1->getZExtValue() != nextIndex+1) return SDValue(); // Increment index. nextIndex+=2; } else return SDValue(); } // Create VPADDL node. SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDLoc dl(N); // Build operand list. SmallVector<SDValue, 8> Ops; Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl, TLI.getPointerTy(DAG.getDataLayout()))); // Input is the vector. Ops.push_back(Vec); // Get widened type and narrowed type. MVT widenType; unsigned numElem = VT.getVectorNumElements(); EVT inputLaneType = Vec.getValueType().getVectorElementType(); switch (inputLaneType.getSimpleVT().SimpleTy) { case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break; case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break; case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break; default: llvm_unreachable("Invalid vector element type for padd optimization."); } SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops); unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE; return DAG.getNode(ExtOp, dl, VT, tmp); } static SDValue findMUL_LOHI(SDValue V) { if (V->getOpcode() == ISD::UMUL_LOHI || V->getOpcode() == ISD::SMUL_LOHI) return V; return SDValue(); } static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (Subtarget->isThumb1Only()) return SDValue(); // Only perform the checks after legalize when the pattern is available. if (DCI.isBeforeLegalize()) return SDValue(); // Look for multiply add opportunities. // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where // each add nodes consumes a value from ISD::UMUL_LOHI and there is // a glue link from the first add to the second add. // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by // a S/UMLAL instruction. // UMUL_LOHI // / :lo \ :hi // / \ [no multiline comment] // loAdd -> ADDE | // \ :glue / // \ / // ADDC <- hiAdd // assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC"); SDValue AddcOp0 = AddcNode->getOperand(0); SDValue AddcOp1 = AddcNode->getOperand(1); // Check if the two operands are from the same mul_lohi node. if (AddcOp0.getNode() == AddcOp1.getNode()) return SDValue(); assert(AddcNode->getNumValues() == 2 && AddcNode->getValueType(0) == MVT::i32 && "Expect ADDC with two result values. First: i32"); // Check that we have a glued ADDC node. if (AddcNode->getValueType(1) != MVT::Glue) return SDValue(); // Check that the ADDC adds the low result of the S/UMUL_LOHI. if (AddcOp0->getOpcode() != ISD::UMUL_LOHI && AddcOp0->getOpcode() != ISD::SMUL_LOHI && AddcOp1->getOpcode() != ISD::UMUL_LOHI && AddcOp1->getOpcode() != ISD::SMUL_LOHI) return SDValue(); // Look for the glued ADDE. SDNode* AddeNode = AddcNode->getGluedUser(); if (!AddeNode) return SDValue(); // Make sure it is really an ADDE. if (AddeNode->getOpcode() != ISD::ADDE) return SDValue(); assert(AddeNode->getNumOperands() == 3 && AddeNode->getOperand(2).getValueType() == MVT::Glue && "ADDE node has the wrong inputs"); // Check for the triangle shape. SDValue AddeOp0 = AddeNode->getOperand(0); SDValue AddeOp1 = AddeNode->getOperand(1); // Make sure that the ADDE operands are not coming from the same node. if (AddeOp0.getNode() == AddeOp1.getNode()) return SDValue(); // Find the MUL_LOHI node walking up ADDE's operands. bool IsLeftOperandMUL = false; SDValue MULOp = findMUL_LOHI(AddeOp0); if (MULOp == SDValue()) MULOp = findMUL_LOHI(AddeOp1); else IsLeftOperandMUL = true; if (MULOp == SDValue()) return SDValue(); // Figure out the right opcode. unsigned Opc = MULOp->getOpcode(); unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL; // Figure out the high and low input values to the MLAL node. SDValue* HiAdd = nullptr; SDValue* LoMul = nullptr; SDValue* LowAdd = nullptr; // Ensure that ADDE is from high result of ISD::SMUL_LOHI. if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1))) return SDValue(); if (IsLeftOperandMUL) HiAdd = &AddeOp1; else HiAdd = &AddeOp0; // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node // whose low result is fed to the ADDC we are checking. if (AddcOp0 == MULOp.getValue(0)) { LoMul = &AddcOp0; LowAdd = &AddcOp1; } if (AddcOp1 == MULOp.getValue(0)) { LoMul = &AddcOp1; LowAdd = &AddcOp0; } if (!LoMul) return SDValue(); // Create the merged node. SelectionDAG &DAG = DCI.DAG; // Build operand list. SmallVector<SDValue, 8> Ops; Ops.push_back(LoMul->getOperand(0)); Ops.push_back(LoMul->getOperand(1)); Ops.push_back(*LowAdd); Ops.push_back(*HiAdd); SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcNode), DAG.getVTList(MVT::i32, MVT::i32), Ops); // Replace the ADDs' nodes uses by the MLA node's values. SDValue HiMLALResult(MLALNode.getNode(), 1); DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult); SDValue LoMLALResult(MLALNode.getNode(), 0); DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult); // Return original node to notify the driver to stop replacing. SDValue resNode(AddcNode, 0); return resNode; } /// PerformADDCCombine - Target-specific dag combine transform from /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL. static SDValue PerformADDCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { return AddCombineTo64bitMLAL(N, DCI, Subtarget); } /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with /// operands N0 and N1. This is a helper for PerformADDCombine that is /// called with the default operands, and if that fails, with commuted /// operands. static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget){ // Attempt to create vpaddl for this add. SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget); if (Result.getNode()) return Result; // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) if (N0.getNode()->hasOneUse()) { SDValue Result = combineSelectAndUse(N, N0, N1, DCI); if (Result.getNode()) return Result; } return SDValue(); } /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. /// static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // First try with the default operand order. SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget); if (Result.getNode()) return Result; // If that didn't work, try again with the operands commuted. return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget); } /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. /// static SDValue PerformSUBCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) if (N1.getNode()->hasOneUse()) { SDValue Result = combineSelectAndUse(N, N1, N0, DCI); if (Result.getNode()) return Result; } return SDValue(); } /// PerformVMULCombine /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the /// special multiplier accumulator forwarding. /// vmul d3, d0, d2 /// vmla d3, d1, d2 /// is faster than /// vadd d3, d0, d1 /// vmul d3, d3, d2 // However, for (A + B) * (A + B), // vadd d2, d0, d1 // vmul d3, d0, d2 // vmla d3, d1, d2 // is slower than // vadd d2, d0, d1 // vmul d3, d2, d2 static SDValue PerformVMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (!Subtarget->hasVMLxForwarding()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); unsigned Opcode = N0.getOpcode(); if (Opcode != ISD::ADD && Opcode != ISD::SUB && Opcode != ISD::FADD && Opcode != ISD::FSUB) { Opcode = N1.getOpcode(); if (Opcode != ISD::ADD && Opcode != ISD::SUB && Opcode != ISD::FADD && Opcode != ISD::FSUB) return SDValue(); std::swap(N0, N1); } if (N0 == N1) return SDValue(); EVT VT = N->getValueType(0); SDLoc DL(N); SDValue N00 = N0->getOperand(0); SDValue N01 = N0->getOperand(1); return DAG.getNode(Opcode, DL, VT, DAG.getNode(ISD::MUL, DL, VT, N00, N1), DAG.getNode(ISD::MUL, DL, VT, N01, N1)); } static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; if (Subtarget->isThumb1Only()) return SDValue(); if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); EVT VT = N->getValueType(0); if (VT.is64BitVector() || VT.is128BitVector()) return PerformVMULCombine(N, DCI, Subtarget); if (VT != MVT::i32) return SDValue(); ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (!C) return SDValue(); int64_t MulAmt = C->getSExtValue(); unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt); ShiftAmt = ShiftAmt & (32 - 1); SDValue V = N->getOperand(0); SDLoc DL(N); SDValue Res; MulAmt >>= ShiftAmt; if (MulAmt >= 0) { if (isPowerOf2_32(MulAmt - 1)) { // (mul x, 2^N + 1) => (add (shl x, N), x) Res = DAG.getNode(ISD::ADD, DL, VT, V, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmt - 1), DL, MVT::i32))); } else if (isPowerOf2_32(MulAmt + 1)) { // (mul x, 2^N - 1) => (sub (shl x, N), x) Res = DAG.getNode(ISD::SUB, DL, VT, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmt + 1), DL, MVT::i32)), V); } else return SDValue(); } else { uint64_t MulAmtAbs = -MulAmt; if (isPowerOf2_32(MulAmtAbs + 1)) { // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) Res = DAG.getNode(ISD::SUB, DL, VT, V, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmtAbs + 1), DL, MVT::i32))); } else if (isPowerOf2_32(MulAmtAbs - 1)) { // (mul x, -(2^N + 1)) => - (add (shl x, N), x) Res = DAG.getNode(ISD::ADD, DL, VT, V, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmtAbs - 1), DL, MVT::i32))); Res = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i32), Res); } else return SDValue(); } if (ShiftAmt != 0) Res = DAG.getNode(ISD::SHL, DL, VT, Res, DAG.getConstant(ShiftAmt, DL, MVT::i32)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, Res, false); return SDValue(); } static SDValue PerformANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Attempt to use immediate-form VBIC BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); SDLoc dl(N); EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN && BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { if (SplatBitSize <= 64) { EVT VbicVT; SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VbicVT, VT.is128BitVector(), OtherModImm); if (Val.getNode()) { SDValue Input = DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0)); SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vbic); } } } if (!Subtarget->isThumb1Only()) { // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) SDValue Result = combineSelectAndUseCommutative(N, true, DCI); if (Result.getNode()) return Result; } return SDValue(); } /// PerformORCombine - Target-specific dag combine xforms for ISD::OR static SDValue PerformORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Attempt to use immediate-form VORR BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); SDLoc dl(N); EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN && Subtarget->hasNEON() && BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { if (SplatBitSize <= 64) { EVT VorrVT; SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VorrVT, VT.is128BitVector(), OtherModImm); if (Val.getNode()) { SDValue Input = DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0)); SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vorr); } } } if (!Subtarget->isThumb1Only()) { // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) SDValue Result = combineSelectAndUseCommutative(N, false, DCI); if (Result.getNode()) return Result; } // The code below optimizes (or (and X, Y), Z). // The AND operand needs to have a single user to make these optimizations // profitable. SDValue N0 = N->getOperand(0); if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) return SDValue(); SDValue N1 = N->getOperand(1); // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) { APInt SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; APInt SplatBits0, SplatBits1; BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1)); BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1)); // Ensure that the second operand of both ands are constants if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, HasAnyUndefs) && !HasAnyUndefs) { if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, HasAnyUndefs) && !HasAnyUndefs) { // Ensure that the bit width of the constants are the same and that // the splat arguments are logical inverses as per the pattern we // are trying to simplify. if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() && SplatBits0 == ~SplatBits1) { // Canonicalize the vector type to make instruction selection // simpler. EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT, N0->getOperand(1), N0->getOperand(0), N1->getOperand(0)); return DAG.getNode(ISD::BITCAST, dl, VT, Result); } } } } // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when // reasonable. // BFI is only available on V6T2+ if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops()) return SDValue(); SDLoc DL(N); // 1) or (and A, mask), val => ARMbfi A, val, mask // iff (val & mask) == val // // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2) // && mask == ~mask2 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2) // && ~mask == mask2 // (i.e., copy a bitfield value into another bitfield of the same width) if (VT != MVT::i32) return SDValue(); SDValue N00 = N0.getOperand(0); // The value and the mask need to be constants so we can verify this is // actually a bitfield set. If the mask is 0xffff, we can do better // via a movt instruction, so don't use BFI in that case. SDValue MaskOp = N0.getOperand(1); ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp); if (!MaskC) return SDValue(); unsigned Mask = MaskC->getZExtValue(); if (Mask == 0xffff) return SDValue(); SDValue Res; // Case (1): or (and A, mask), val => ARMbfi A, val, mask ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); if (N1C) { unsigned Val = N1C->getZExtValue(); if ((Val & ~Mask) != Val) return SDValue(); if (ARM::isBitFieldInvertedMask(Mask)) { Val >>= countTrailingZeros(~Mask); Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, DAG.getConstant(Val, DL, MVT::i32), DAG.getConstant(Mask, DL, MVT::i32)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, Res, false); return SDValue(); } } else if (N1.getOpcode() == ISD::AND) { // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); if (!N11C) return SDValue(); unsigned Mask2 = N11C->getZExtValue(); // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern // as is to match. if (ARM::isBitFieldInvertedMask(Mask) && (Mask == ~Mask2)) { // The pack halfword instruction works better for masks that fit it, // so use that when it's available. if (Subtarget->hasT2ExtractPack() && (Mask == 0xffff || Mask == 0xffff0000)) return SDValue(); // 2a unsigned amt = countTrailingZeros(Mask2); Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0), DAG.getConstant(amt, DL, MVT::i32)); Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res, DAG.getConstant(Mask, DL, MVT::i32)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, Res, false); return SDValue(); } else if (ARM::isBitFieldInvertedMask(~Mask) && (~Mask == Mask2)) { // The pack halfword instruction works better for masks that fit it, // so use that when it's available. if (Subtarget->hasT2ExtractPack() && (Mask2 == 0xffff || Mask2 == 0xffff0000)) return SDValue(); // 2b unsigned lsb = countTrailingZeros(Mask); Res = DAG.getNode(ISD::SRL, DL, VT, N00, DAG.getConstant(lsb, DL, MVT::i32)); Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res, DAG.getConstant(Mask2, DL, MVT::i32)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, Res, false); return SDValue(); } } if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) && N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) && ARM::isBitFieldInvertedMask(~Mask)) { // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask // where lsb(mask) == #shamt and masked bits of B are known zero. SDValue ShAmt = N00.getOperand(1); unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue(); unsigned LSB = countTrailingZeros(Mask); if (ShAmtC != LSB) return SDValue(); Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0), DAG.getConstant(~Mask, DL, MVT::i32)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, Res, false); } return SDValue(); } static SDValue PerformXORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); if (!Subtarget->isThumb1Only()) { // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) SDValue Result = combineSelectAndUseCommutative(N, false, DCI); if (Result.getNode()) return Result; } return SDValue(); } // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it, // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and // their position in "to" (Rd). static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) { assert(N->getOpcode() == ARMISD::BFI); SDValue From = N->getOperand(1); ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue(); FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation()); // If the Base came from a SHR #C, we can deduce that it is really testing bit // #C in the base of the SHR. if (From->getOpcode() == ISD::SRL && isa<ConstantSDNode>(From->getOperand(1))) { APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue(); assert(Shift.getLimitedValue() < 32 && "Shift too large!"); FromMask <<= Shift.getLimitedValue(31); From = From->getOperand(0); } return From; } // If A and B contain one contiguous set of bits, does A | B == A . B? // // Neither A nor B must be zero. static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) { unsigned LastActiveBitInA = A.countTrailingZeros(); unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1; return LastActiveBitInA - 1 == FirstActiveBitInB; } static SDValue FindBFIToCombineWith(SDNode *N) { // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with, // if one exists. APInt ToMask, FromMask; SDValue From = ParseBFI(N, ToMask, FromMask); SDValue To = N->getOperand(0); // Now check for a compatible BFI to merge with. We can pass through BFIs that // aren't compatible, but not if they set the same bit in their destination as // we do (or that of any BFI we're going to combine with). SDValue V = To; APInt CombinedToMask = ToMask; while (V.getOpcode() == ARMISD::BFI) { APInt NewToMask, NewFromMask; SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask); if (NewFrom != From) { // This BFI has a different base. Keep going. CombinedToMask |= NewToMask; V = V.getOperand(0); continue; } // Do the written bits conflict with any we've seen so far? if ((NewToMask & CombinedToMask).getBoolValue()) // Conflicting bits - bail out because going further is unsafe. return SDValue(); // Are the new bits contiguous when combined with the old bits? if (BitsProperlyConcatenate(ToMask, NewToMask) && BitsProperlyConcatenate(FromMask, NewFromMask)) return V; if (BitsProperlyConcatenate(NewToMask, ToMask) && BitsProperlyConcatenate(NewFromMask, FromMask)) return V; // We've seen a write to some bits, so track it. CombinedToMask |= NewToMask; // Keep going... V = V.getOperand(0); } return SDValue(); } static SDValue PerformBFICombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue N1 = N->getOperand(1); if (N1.getOpcode() == ISD::AND) { // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff // the bits being cleared by the AND are not demanded by the BFI. ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); if (!N11C) return SDValue(); unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); unsigned LSB = countTrailingZeros(~InvMask); unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB; assert(Width < static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && "undefined behavior"); unsigned Mask = (1u << Width) - 1; unsigned Mask2 = N11C->getZExtValue(); if ((Mask & (~Mask2)) == 0) return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0), N->getOperand(0), N1.getOperand(0), N->getOperand(2)); } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) { // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes. // Keep track of any consecutive bits set that all come from the same base // value. We can combine these together into a single BFI. SDValue CombineBFI = FindBFIToCombineWith(N); if (CombineBFI == SDValue()) return SDValue(); // We've found a BFI. APInt ToMask1, FromMask1; SDValue From1 = ParseBFI(N, ToMask1, FromMask1); APInt ToMask2, FromMask2; SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2); assert(From1 == From2); (void)From2; // First, unlink CombineBFI. DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0)); // Then create a new BFI, combining the two together. APInt NewFromMask = FromMask1 | FromMask2; APInt NewToMask = ToMask1 | ToMask2; EVT VT = N->getValueType(0); SDLoc dl(N); if (NewFromMask[0] == 0) From1 = DCI.DAG.getNode( ISD::SRL, dl, VT, From1, DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT)); return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1, DCI.DAG.getConstant(~NewToMask, dl, VT)); } return SDValue(); } /// PerformVMOVRRDCombine - Target-specific dag combine xforms for /// ARMISD::VMOVRRD. static SDValue PerformVMOVRRDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // vmovrrd(vmovdrr x, y) -> x,y SDValue InDouble = N->getOperand(0); if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP()) return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); // vmovrrd(load f64) -> (load i32), (load i32) SDNode *InNode = InDouble.getNode(); if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() && InNode->getValueType(0) == MVT::f64 && InNode->getOperand(1).getOpcode() == ISD::FrameIndex && !cast<LoadSDNode>(InNode)->isVolatile()) { // TODO: Should this be done for non-FrameIndex operands? LoadSDNode *LD = cast<LoadSDNode>(InNode); SelectionDAG &DAG = DCI.DAG; SDLoc DL(LD); SDValue BasePtr = LD->getBasePtr(); SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), LD->getAlignment()); SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, DAG.getConstant(4, DL, MVT::i32)); SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), std::min(4U, LD->getAlignment() / 2)); DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1)); if (DCI.DAG.getDataLayout().isBigEndian()) std::swap (NewLD1, NewLD2); SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2); return Result; } return SDValue(); } /// PerformVMOVDRRCombine - Target-specific dag combine xforms for /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands. static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) { // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X) SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); if (Op0.getOpcode() == ISD::BITCAST) Op0 = Op0.getOperand(0); if (Op1.getOpcode() == ISD::BITCAST) Op1 = Op1.getOperand(0); if (Op0.getOpcode() == ARMISD::VMOVRRD && Op0.getNode() == Op1.getNode() && Op0.getResNo() == 0 && Op1.getResNo() == 1) return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op0.getOperand(0)); return SDValue(); } /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node /// are normal, non-volatile loads. If so, it is profitable to bitcast an /// i64 vector to have f64 elements, since the value can then be loaded /// directly into a VFP register. static bool hasNormalLoadOperand(SDNode *N) { unsigned NumElts = N->getValueType(0).getVectorNumElements(); for (unsigned i = 0; i < NumElts; ++i) { SDNode *Elt = N->getOperand(i).getNode(); if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile()) return true; } return false; } /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for /// ISD::BUILD_VECTOR. static SDValue PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X): // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value // into a pair of GPRs, which is fine when the value is used as a scalar, // but if the i64 value is converted to a vector, we need to undo the VMOVRRD. SelectionDAG &DAG = DCI.DAG; if (N->getNumOperands() == 2) { SDValue RV = PerformVMOVDRRCombine(N, DAG); if (RV.getNode()) return RV; } // Load i64 elements as f64 values so that type legalization does not split // them up into i32 values. EVT VT = N->getValueType(0); if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N)) return SDValue(); SDLoc dl(N); SmallVector<SDValue, 8> Ops; unsigned NumElts = VT.getVectorNumElements(); for (unsigned i = 0; i < NumElts; ++i) { SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i)); Ops.push_back(V); // Make the DAGCombiner fold the bitcast. DCI.AddToWorklist(V.getNode()); } EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts); SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops); return DAG.getNode(ISD::BITCAST, dl, VT, BV); } /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR. static SDValue PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR. // At that time, we may have inserted bitcasts from integer to float. // If these bitcasts have survived DAGCombine, change the lowering of this // BUILD_VECTOR in something more vector friendly, i.e., that does not // force to use floating point types. // Make sure we can change the type of the vector. // This is possible iff: // 1. The vector is only used in a bitcast to a integer type. I.e., // 1.1. Vector is used only once. // 1.2. Use is a bit convert to an integer type. // 2. The size of its operands are 32-bits (64-bits are not legal). EVT VT = N->getValueType(0); EVT EltVT = VT.getVectorElementType(); // Check 1.1. and 2. if (EltVT.getSizeInBits() != 32 || !N->hasOneUse()) return SDValue(); // By construction, the input type must be float. assert(EltVT == MVT::f32 && "Unexpected type!"); // Check 1.2. SDNode *Use = *N->use_begin(); if (Use->getOpcode() != ISD::BITCAST || Use->getValueType(0).isFloatingPoint()) return SDValue(); // Check profitability. // Model is, if more than half of the relevant operands are bitcast from // i32, turn the build_vector into a sequence of insert_vector_elt. // Relevant operands are everything that is not statically // (i.e., at compile time) bitcasted. unsigned NumOfBitCastedElts = 0; unsigned NumElts = VT.getVectorNumElements(); unsigned NumOfRelevantElts = NumElts; for (unsigned Idx = 0; Idx < NumElts; ++Idx) { SDValue Elt = N->getOperand(Idx); if (Elt->getOpcode() == ISD::BITCAST) { // Assume only bit cast to i32 will go away. if (Elt->getOperand(0).getValueType() == MVT::i32) ++NumOfBitCastedElts; } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt)) // Constants are statically casted, thus do not count them as // relevant operands. --NumOfRelevantElts; } // Check if more than half of the elements require a non-free bitcast. if (NumOfBitCastedElts <= NumOfRelevantElts / 2) return SDValue(); SelectionDAG &DAG = DCI.DAG; // Create the new vector type. EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); // Check if the type is legal. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isTypeLegal(VecVT)) return SDValue(); // Combine: // ARMISD::BUILD_VECTOR E1, E2, ..., EN. // => BITCAST INSERT_VECTOR_ELT // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1), // (BITCAST EN), N. SDValue Vec = DAG.getUNDEF(VecVT); SDLoc dl(N); for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) { SDValue V = N->getOperand(Idx); if (V.getOpcode() == ISD::UNDEF) continue; if (V.getOpcode() == ISD::BITCAST && V->getOperand(0).getValueType() == MVT::i32) // Fold obvious case. V = V.getOperand(0); else { V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(V.getNode()); } SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx); } Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(Vec.getNode()); return Vec; } /// PerformInsertEltCombine - Target-specific dag combine xforms for /// ISD::INSERT_VECTOR_ELT. static SDValue PerformInsertEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // Bitcast an i64 load inserted into a vector to f64. // Otherwise, the i64 value will be legalized to a pair of i32 values. EVT VT = N->getValueType(0); SDNode *Elt = N->getOperand(1).getNode(); if (VT.getVectorElementType() != MVT::i64 || !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VT.getVectorNumElements()); SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0)); SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1)); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(Vec.getNode()); DCI.AddToWorklist(V.getNode()); SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT, Vec, V, N->getOperand(2)); return DAG.getNode(ISD::BITCAST, dl, VT, InsElt); } /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for /// ISD::VECTOR_SHUFFLE. static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) { // The LLVM shufflevector instruction does not require the shuffle mask // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the // operands do not match the mask length, they are extended by concatenating // them with undef vectors. That is probably the right thing for other // targets, but for NEON it is better to concatenate two double-register // size vector operands into a single quad-register size vector. Do that // transformation here: // shuffle(concat(v1, undef), concat(v2, undef)) -> // shuffle(concat(v1, v2), undef) SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); if (Op0.getOpcode() != ISD::CONCAT_VECTORS || Op1.getOpcode() != ISD::CONCAT_VECTORS || Op0.getNumOperands() != 2 || Op1.getNumOperands() != 2) return SDValue(); SDValue Concat0Op1 = Op0.getOperand(1); SDValue Concat1Op1 = Op1.getOperand(1); if (Concat0Op1.getOpcode() != ISD::UNDEF || Concat1Op1.getOpcode() != ISD::UNDEF) return SDValue(); // Skip the transformation if any of the types are illegal. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT VT = N->getValueType(0); if (!TLI.isTypeLegal(VT) || !TLI.isTypeLegal(Concat0Op1.getValueType()) || !TLI.isTypeLegal(Concat1Op1.getValueType())) return SDValue(); SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Op0.getOperand(0), Op1.getOperand(0)); // Translate the shuffle mask. SmallVector<int, 16> NewMask; unsigned NumElts = VT.getVectorNumElements(); unsigned HalfElts = NumElts/2; ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); for (unsigned n = 0; n < NumElts; ++n) { int MaskElt = SVN->getMaskElt(n); int NewElt = -1; if (MaskElt < (int)HalfElts) NewElt = MaskElt; else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts)) NewElt = HalfElts + MaskElt - NumElts; NewMask.push_back(NewElt); } return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat, DAG.getUNDEF(VT), NewMask.data()); } /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP, /// NEON load/store intrinsics, and generic vector load/stores, to merge /// base address updates. /// For generic load/stores, the memory type is assumed to be a vector. /// The caller is assumed to have checked legality. static SDValue CombineBaseUpdate(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || N->getOpcode() == ISD::INTRINSIC_W_CHAIN); const bool isStore = N->getOpcode() == ISD::STORE; const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1); SDValue Addr = N->getOperand(AddrOpIdx); MemSDNode *MemN = cast<MemSDNode>(N); SDLoc dl(N); // Search for a use of the address operand that is an increment. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User->getOpcode() != ISD::ADD || UI.getUse().getResNo() != Addr.getResNo()) continue; // Check that the add is independent of the load/store. Otherwise, folding // it would create a cycle. if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) continue; // Find the new opcode for the updating load/store. bool isLoadOp = true; bool isLaneOp = false; unsigned NewOpc = 0; unsigned NumVecs = 0; if (isIntrinsic) { unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); switch (IntNo) { default: llvm_unreachable("unexpected intrinsic for Neon base update"); case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD; NumVecs = 1; break; case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD; NumVecs = 2; break; case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD; NumVecs = 3; break; case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD; NumVecs = 4; break; case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD; NumVecs = 2; isLaneOp = true; break; case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD; NumVecs = 3; isLaneOp = true; break; case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD; NumVecs = 4; isLaneOp = true; break; case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD; NumVecs = 1; isLoadOp = false; break; case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD; NumVecs = 2; isLoadOp = false; break; case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD; NumVecs = 3; isLoadOp = false; break; case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD; NumVecs = 4; isLoadOp = false; break; case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD; NumVecs = 2; isLoadOp = false; isLaneOp = true; break; case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD; NumVecs = 3; isLoadOp = false; isLaneOp = true; break; case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD; NumVecs = 4; isLoadOp = false; isLaneOp = true; break; } } else { isLaneOp = true; switch (N->getOpcode()) { default: llvm_unreachable("unexpected opcode for Neon base update"); case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break; case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break; case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break; case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD; NumVecs = 1; isLaneOp = false; break; case ISD::STORE: NewOpc = ARMISD::VST1_UPD; NumVecs = 1; isLaneOp = false; isLoadOp = false; break; } } // Find the size of memory referenced by the load/store. EVT VecTy; if (isLoadOp) { VecTy = N->getValueType(0); } else if (isIntrinsic) { VecTy = N->getOperand(AddrOpIdx+1).getValueType(); } else { assert(isStore && "Node has to be a load, a store, or an intrinsic!"); VecTy = N->getOperand(1).getValueType(); } unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; if (isLaneOp) NumBytes /= VecTy.getVectorNumElements(); // If the increment is a constant, it must match the memory ref size. SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { uint64_t IncVal = CInc->getZExtValue(); if (IncVal != NumBytes) continue; } else if (NumBytes >= 3 * 16) { // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two // separate instructions that make it harder to use a non-constant update. continue; } // OK, we found an ADD we can fold into the base update. // Now, create a _UPD node, taking care of not breaking alignment. EVT AlignedVecTy = VecTy; unsigned Alignment = MemN->getAlignment(); // If this is a less-than-standard-aligned load/store, change the type to // match the standard alignment. // The alignment is overlooked when selecting _UPD variants; and it's // easier to introduce bitcasts here than fix that. // There are 3 ways to get to this base-update combine: // - intrinsics: they are assumed to be properly aligned (to the standard // alignment of the memory type), so we don't need to do anything. // - ARMISD::VLDx nodes: they are only generated from the aforementioned // intrinsics, so, likewise, there's nothing to do. // - generic load/store instructions: the alignment is specified as an // explicit operand, rather than implicitly as the standard alignment // of the memory type (like the intrisics). We need to change the // memory type to match the explicit alignment. That way, we don't // generate non-standard-aligned ARMISD::VLDx nodes. if (isa<LSBaseSDNode>(N)) { if (Alignment == 0) Alignment = 1; if (Alignment < VecTy.getScalarSizeInBits() / 8) { MVT EltTy = MVT::getIntegerVT(Alignment * 8); assert(NumVecs == 1 && "Unexpected multi-element generic load/store."); assert(!isLaneOp && "Unexpected generic load/store lane."); unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8); AlignedVecTy = MVT::getVectorVT(EltTy, NumElts); } // Don't set an explicit alignment on regular load/stores that we want // to transform to VLD/VST 1_UPD nodes. // This matches the behavior of regular load/stores, which only get an // explicit alignment if the MMO alignment is larger than the standard // alignment of the memory type. // Intrinsics, however, always get an explicit alignment, set to the // alignment of the MMO. Alignment = 1; } // Create the new updating load/store node. // First, create an SDVTList for the new updating node's results. EVT Tys[6]; unsigned NumResultVecs = (isLoadOp ? NumVecs : 0); unsigned n; for (n = 0; n < NumResultVecs; ++n) Tys[n] = AlignedVecTy; Tys[n++] = MVT::i32; Tys[n] = MVT::Other; SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2)); // Then, gather the new node's operands. SmallVector<SDValue, 8> Ops; Ops.push_back(N->getOperand(0)); // incoming chain Ops.push_back(N->getOperand(AddrOpIdx)); Ops.push_back(Inc); if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) { // Try to match the intrinsic's signature Ops.push_back(StN->getValue()); } else { // Loads (and of course intrinsics) match the intrinsics' signature, // so just add all but the alignment operand. for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i) Ops.push_back(N->getOperand(i)); } // For all node types, the alignment operand is always the last one. Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32)); // If this is a non-standard-aligned STORE, the penultimate operand is the // stored value. Bitcast it to the aligned type. if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) { SDValue &StVal = Ops[Ops.size()-2]; StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal); } SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, AlignedVecTy, MemN->getMemOperand()); // Update the uses. SmallVector<SDValue, 5> NewResults; for (unsigned i = 0; i < NumResultVecs; ++i) NewResults.push_back(SDValue(UpdN.getNode(), i)); // If this is an non-standard-aligned LOAD, the first result is the loaded // value. Bitcast it to the expected result type. if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) { SDValue &LdVal = NewResults[0]; LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal); } NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain DCI.CombineTo(N, NewResults); DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); break; } return SDValue(); } static SDValue PerformVLDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); return CombineBaseUpdate(N, DCI); } /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and /// return true. static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); // vldN-dup instructions only support 64-bit vectors for N > 1. if (!VT.is64BitVector()) return false; // Check if the VDUPLANE operand is a vldN-dup intrinsic. SDNode *VLD = N->getOperand(0).getNode(); if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) return false; unsigned NumVecs = 0; unsigned NewOpc = 0; unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue(); if (IntNo == Intrinsic::arm_neon_vld2lane) { NumVecs = 2; NewOpc = ARMISD::VLD2DUP; } else if (IntNo == Intrinsic::arm_neon_vld3lane) { NumVecs = 3; NewOpc = ARMISD::VLD3DUP; } else if (IntNo == Intrinsic::arm_neon_vld4lane) { NumVecs = 4; NewOpc = ARMISD::VLD4DUP; } else { return false; } // First check that all the vldN-lane uses are VDUPLANEs and that the lane // numbers match the load. unsigned VLDLaneNo = cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue(); for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); UI != UE; ++UI) { // Ignore uses of the chain result. if (UI.getUse().getResNo() == NumVecs) continue; SDNode *User = *UI; if (User->getOpcode() != ARMISD::VDUPLANE || VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue()) return false; } // Create the vldN-dup node. EVT Tys[5]; unsigned n; for (n = 0; n < NumVecs; ++n) Tys[n] = VT; Tys[n] = MVT::Other; SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1)); SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD); SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops, VLDMemInt->getMemoryVT(), VLDMemInt->getMemOperand()); // Update the uses. for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); UI != UE; ++UI) { unsigned ResNo = UI.getUse().getResNo(); // Ignore uses of the chain result. if (ResNo == NumVecs) continue; SDNode *User = *UI; DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); } // Now the vldN-lane intrinsic is dead except for its chain result. // Update uses of the chain. std::vector<SDValue> VLDDupResults; for (unsigned n = 0; n < NumVecs; ++n) VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); DCI.CombineTo(VLD, VLDDupResults); return true; } /// PerformVDUPLANECombine - Target-specific dag combine xforms for /// ARMISD::VDUPLANE. static SDValue PerformVDUPLANECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue Op = N->getOperand(0); // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation. if (CombineVLDDUP(N, DCI)) return SDValue(N, 0); // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is // redundant. Ignore bit_converts for now; element sizes are checked below. while (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM) return SDValue(); // Make sure the VMOV element size is not bigger than the VDUPLANE elements. unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits(); // The canonical VMOV for a zero vector uses a 32-bit element size. unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); unsigned EltBits; if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0) EltSize = 8; EVT VT = N->getValueType(0); if (EltSize > VT.getVectorElementType().getSizeInBits()) return SDValue(); return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); } static SDValue PerformLOADCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { EVT VT = N->getValueType(0); // If this is a legal vector load, try to combine it into a VLD1_UPD. if (ISD::isNormalLoad(N) && VT.isVector() && DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT)) return CombineBaseUpdate(N, DCI); return SDValue(); } /// PerformSTORECombine - Target-specific dag combine xforms for /// ISD::STORE. static SDValue PerformSTORECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { StoreSDNode *St = cast<StoreSDNode>(N); if (St->isVolatile()) return SDValue(); // Optimize trunc store (of multiple scalars) to shuffle and store. First, // pack all of the elements in one place. Next, store to memory in fewer // chunks. SDValue StVal = St->getValue(); EVT VT = StVal.getValueType(); if (St->isTruncatingStore() && VT.isVector()) { SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT StVT = St->getMemoryVT(); unsigned NumElems = VT.getVectorNumElements(); assert(StVT != VT && "Cannot truncate to the same type"); unsigned FromEltSz = VT.getVectorElementType().getSizeInBits(); unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits(); // From, To sizes and ElemCount must be pow of two if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue(); // We are going to use the original vector elt for storing. // Accumulated smaller vector elements must be a multiple of the store size. if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue(); unsigned SizeRatio = FromEltSz / ToEltSz; assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits()); // Create a type on which we perform the shuffle. EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), NumElems*SizeRatio); assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); SDLoc DL(St); SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal); SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1 : i * SizeRatio; // Can't shuffle using an illegal type. if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec.data()); // At this point all of the data is stored at the bottom of the // register. We now need to save it to mem. // Find the largest store unit MVT StoreType = MVT::i8; for (MVT Tp : MVT::integer_valuetypes()) { if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz) StoreType = Tp; } // Didn't find a legal store type. if (!TLI.isTypeLegal(StoreType)) return SDValue(); // Bitcast the original vector into a vector of store-size units EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits()); assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff); SmallVector<SDValue, 8> Chains; SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL, TLI.getPointerTy(DAG.getDataLayout())); SDValue BasePtr = St->getBasePtr(); // Perform one or more big stores into memory. unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits(); for (unsigned I = 0; I < E; I++) { SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType, ShuffWide, DAG.getIntPtrConstant(I, DL)); SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment); Chains.push_back(Ch); } return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); } if (!ISD::isNormalStore(St)) return SDValue(); // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and // ARM stores of arguments in the same cache line. if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR && StVal.getNode()->hasOneUse()) { SelectionDAG &DAG = DCI.DAG; bool isBigEndian = DAG.getDataLayout().isBigEndian(); SDLoc DL(St); SDValue BasePtr = St->getBasePtr(); SDValue NewST1 = DAG.getStore(St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ), BasePtr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, DAG.getConstant(4, DL, MVT::i32)); return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(isBigEndian ? 0 : 1), OffsetPtr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), std::min(4U, St->getAlignment() / 2)); } if (StVal.getValueType() == MVT::i64 && StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { // Bitcast an i64 store extracted from a vector to f64. // Otherwise, the i64 value will be legalized to a pair of i32 values. SelectionDAG &DAG = DCI.DAG; SDLoc dl(StVal); SDValue IntVec = StVal.getOperand(0); EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, IntVec.getValueType().getVectorNumElements()); SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec); SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Vec, StVal.getOperand(1)); dl = SDLoc(N); SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(Vec.getNode()); DCI.AddToWorklist(ExtElt.getNode()); DCI.AddToWorklist(V.getNode()); return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(), St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment(), St->getAAInfo()); } // If this is a legal vector store, try to combine it into a VST1_UPD. if (ISD::isNormalStore(N) && VT.isVector() && DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT)) return CombineBaseUpdate(N, DCI); return SDValue(); } /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD) /// can replace combinations of VMUL and VCVT (floating-point to integer) /// when the VMUL has a constant operand that is a power of 2. /// /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): /// vmul.f32 d16, d17, d16 /// vcvt.s32.f32 d16, d16 /// becomes: /// vcvt.s32.f32 d16, d16, #3 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { if (!Subtarget->hasNEON()) return SDValue(); SDValue Op = N->getOperand(0); if (!Op.getValueType().isVector() || Op.getOpcode() != ISD::FMUL) return SDValue(); SDValue ConstVec = Op->getOperand(1); if (!isa<BuildVectorSDNode>(ConstVec)) return SDValue(); MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); uint32_t FloatBits = FloatTy.getSizeInBits(); MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); uint32_t IntBits = IntTy.getSizeInBits(); unsigned NumLanes = Op.getValueType().getVectorNumElements(); if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) { // These instructions only exist converting from f32 to i32. We can handle // smaller integers by generating an extra truncate, but larger ones would // be lossy. We also can't handle more then 4 lanes, since these intructions // only support v2i32/v4i32 types. return SDValue(); } BitVector UndefElements; BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33); if (C == -1 || C == 0 || C > 32) return SDValue(); SDLoc dl(N); bool isSigned = N->getOpcode() == ISD::FP_TO_SINT; unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs : Intrinsic::arm_neon_vcvtfp2fxu; SDValue FixConv = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0), DAG.getConstant(C, dl, MVT::i32)); if (IntBits < FloatBits) FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv); return FixConv; } /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD) /// can replace combinations of VCVT (integer to floating-point) and VDIV /// when the VDIV has a constant operand that is a power of 2. /// /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): /// vcvt.f32.s32 d16, d16 /// vdiv.f32 d16, d17, d16 /// becomes: /// vcvt.f32.s32 d16, d16, #3 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { if (!Subtarget->hasNEON()) return SDValue(); SDValue Op = N->getOperand(0); unsigned OpOpcode = Op.getNode()->getOpcode(); if (!N->getValueType(0).isVector() || (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP)) return SDValue(); SDValue ConstVec = N->getOperand(1); if (!isa<BuildVectorSDNode>(ConstVec)) return SDValue(); MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); uint32_t FloatBits = FloatTy.getSizeInBits(); MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); uint32_t IntBits = IntTy.getSizeInBits(); unsigned NumLanes = Op.getValueType().getVectorNumElements(); if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) { // These instructions only exist converting from i32 to f32. We can handle // smaller integers by generating an extra extend, but larger ones would // be lossy. We also can't handle more then 4 lanes, since these intructions // only support v2i32/v4i32 types. return SDValue(); } BitVector UndefElements; BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33); if (C == -1 || C == 0 || C > 32) return SDValue(); SDLoc dl(N); bool isSigned = OpOpcode == ISD::SINT_TO_FP; SDValue ConvInput = Op.getOperand(0); if (IntBits < FloatBits) ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, ConvInput); unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp : Intrinsic::arm_neon_vcvtfxu2fp; return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), ConvInput, DAG.getConstant(C, dl, MVT::i32)); } /// Getvshiftimm - Check if this is a valid build_vector for the immediate /// operand of a vector shift operation, where all the elements of the /// build_vector must have the same constant integer value. static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { // Ignore bit_converts. while (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, ElementBits) || SplatBitSize > ElementBits) return false; Cnt = SplatBits.getSExtValue(); return true; } /// isVShiftLImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift left operation. That value must be in the range: /// 0 <= Value < ElementBits for a left shift; or /// 0 <= Value <= ElementBits for a long left shift. static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); int64_t ElementBits = VT.getVectorElementType().getSizeInBits(); if (! getVShiftImm(Op, ElementBits, Cnt)) return false; return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits); } /// isVShiftRImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift right operation. For a shift opcode, the value /// is positive, but for an intrinsic the value count must be negative. The /// absolute value must be in the range: /// 1 <= |Value| <= ElementBits for a right shift; or /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); int64_t ElementBits = VT.getVectorElementType().getSizeInBits(); if (! getVShiftImm(Op, ElementBits, Cnt)) return false; if (!isIntrinsic) return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits)); if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) { Cnt = -Cnt; return true; } return false; } /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); switch (IntNo) { default: // Don't do anything for most intrinsics. break; // Vector shifts: check for immediate versions and lower them. // Note: This is done during DAG combining instead of DAG legalizing because // the build_vectors for 64-bit vector element shift counts are generally // not legal, and it is hard to see their values after they get legalized to // loads from a constant pool. case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: case Intrinsic::arm_neon_vrshifts: case Intrinsic::arm_neon_vrshiftu: case Intrinsic::arm_neon_vrshiftn: case Intrinsic::arm_neon_vqshifts: case Intrinsic::arm_neon_vqshiftu: case Intrinsic::arm_neon_vqshiftsu: case Intrinsic::arm_neon_vqshiftns: case Intrinsic::arm_neon_vqshiftnu: case Intrinsic::arm_neon_vqshiftnsu: case Intrinsic::arm_neon_vqrshiftns: case Intrinsic::arm_neon_vqrshiftnu: case Intrinsic::arm_neon_vqrshiftnsu: { EVT VT = N->getOperand(1).getValueType(); int64_t Cnt; unsigned VShiftOpc = 0; switch (IntNo) { case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { VShiftOpc = ARMISD::VSHL; break; } if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRs : ARMISD::VSHRu); break; } return SDValue(); case Intrinsic::arm_neon_vrshifts: case Intrinsic::arm_neon_vrshiftu: if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) break; return SDValue(); case Intrinsic::arm_neon_vqshifts: case Intrinsic::arm_neon_vqshiftu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) break; return SDValue(); case Intrinsic::arm_neon_vqshiftsu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) break; llvm_unreachable("invalid shift count for vqshlu intrinsic"); case Intrinsic::arm_neon_vrshiftn: case Intrinsic::arm_neon_vqshiftns: case Intrinsic::arm_neon_vqshiftnu: case Intrinsic::arm_neon_vqshiftnsu: case Intrinsic::arm_neon_vqrshiftns: case Intrinsic::arm_neon_vqrshiftnu: case Intrinsic::arm_neon_vqrshiftnsu: // Narrowing shifts require an immediate right shift. if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) break; llvm_unreachable("invalid shift count for narrowing vector shift " "intrinsic"); default: llvm_unreachable("unhandled vector shift"); } switch (IntNo) { case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: // Opcode already set above. break; case Intrinsic::arm_neon_vrshifts: VShiftOpc = ARMISD::VRSHRs; break; case Intrinsic::arm_neon_vrshiftu: VShiftOpc = ARMISD::VRSHRu; break; case Intrinsic::arm_neon_vrshiftn: VShiftOpc = ARMISD::VRSHRN; break; case Intrinsic::arm_neon_vqshifts: VShiftOpc = ARMISD::VQSHLs; break; case Intrinsic::arm_neon_vqshiftu: VShiftOpc = ARMISD::VQSHLu; break; case Intrinsic::arm_neon_vqshiftsu: VShiftOpc = ARMISD::VQSHLsu; break; case Intrinsic::arm_neon_vqshiftns: VShiftOpc = ARMISD::VQSHRNs; break; case Intrinsic::arm_neon_vqshiftnu: VShiftOpc = ARMISD::VQSHRNu; break; case Intrinsic::arm_neon_vqshiftnsu: VShiftOpc = ARMISD::VQSHRNsu; break; case Intrinsic::arm_neon_vqrshiftns: VShiftOpc = ARMISD::VQRSHRNs; break; case Intrinsic::arm_neon_vqrshiftnu: VShiftOpc = ARMISD::VQRSHRNu; break; case Intrinsic::arm_neon_vqrshiftnsu: VShiftOpc = ARMISD::VQRSHRNsu; break; } SDLoc dl(N); return DAG.getNode(VShiftOpc, dl, N->getValueType(0), N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32)); } case Intrinsic::arm_neon_vshiftins: { EVT VT = N->getOperand(1).getValueType(); int64_t Cnt; unsigned VShiftOpc = 0; if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) VShiftOpc = ARMISD::VSLI; else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) VShiftOpc = ARMISD::VSRI; else { llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); } SDLoc dl(N); return DAG.getNode(VShiftOpc, dl, N->getValueType(0), N->getOperand(1), N->getOperand(2), DAG.getConstant(Cnt, dl, MVT::i32)); } case Intrinsic::arm_neon_vqrshifts: case Intrinsic::arm_neon_vqrshiftu: // No immediate versions of these to check for. break; } return SDValue(); } /// PerformShiftCombine - Checks for immediate versions of vector shifts and /// lowers them. As with the vector shift intrinsics, this is done during DAG /// combining instead of DAG legalizing because the build_vectors for 64-bit /// vector element shift counts are generally not legal, and it is hard to see /// their values after they get legalized to loads from a constant pool. static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) { // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16. SDValue N1 = N->getOperand(1); if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { SDValue N0 = N->getOperand(0); if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP && DAG.MaskedValueIsZero(N0.getOperand(0), APInt::getHighBitsSet(32, 16))) return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1); } } // Nothing to be done for scalar shifts. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!VT.isVector() || !TLI.isTypeLegal(VT)) return SDValue(); assert(ST->hasNEON() && "unexpected vector shift"); int64_t Cnt; switch (N->getOpcode()) { default: llvm_unreachable("unexpected shift opcode"); case ISD::SHL: if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) { SDLoc dl(N); return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0), DAG.getConstant(Cnt, dl, MVT::i32)); } break; case ISD::SRA: case ISD::SRL: if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? ARMISD::VSHRs : ARMISD::VSHRu); SDLoc dl(N); return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), DAG.getConstant(Cnt, dl, MVT::i32)); } } return SDValue(); } /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { SDValue N0 = N->getOperand(0); // Check for sign- and zero-extensions of vector extract operations of 8- // and 16-bit vector elements. NEON supports these directly. They are // handled during DAG combining because type legalization will promote them // to 32-bit types and it is messy to recognize the operations after that. if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { SDValue Vec = N0.getOperand(0); SDValue Lane = N0.getOperand(1); EVT VT = N->getValueType(0); EVT EltVT = N0.getValueType(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (VT == MVT::i32 && (EltVT == MVT::i8 || EltVT == MVT::i16) && TLI.isTypeLegal(Vec.getValueType()) && isa<ConstantSDNode>(Lane)) { unsigned Opc = 0; switch (N->getOpcode()) { default: llvm_unreachable("unexpected opcode"); case ISD::SIGN_EXTEND: Opc = ARMISD::VGETLANEs; break; case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: Opc = ARMISD::VGETLANEu; break; } return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane); } } return SDValue(); } static void computeKnownBits(SelectionDAG &DAG, SDValue Op, APInt &KnownZero, APInt &KnownOne) { if (Op.getOpcode() == ARMISD::BFI) { // Conservatively, we can recurse down the first operand // and just mask out all affected bits. computeKnownBits(DAG, Op.getOperand(0), KnownZero, KnownOne); // The operand to BFI is already a mask suitable for removing the bits it // sets. ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2)); APInt Mask = CI->getAPIntValue(); KnownZero &= Mask; KnownOne &= Mask; return; } if (Op.getOpcode() == ARMISD::CMOV) { APInt KZ2(KnownZero.getBitWidth(), 0); APInt KO2(KnownOne.getBitWidth(), 0); computeKnownBits(DAG, Op.getOperand(1), KnownZero, KnownOne); computeKnownBits(DAG, Op.getOperand(2), KZ2, KO2); KnownZero &= KZ2; KnownOne &= KO2; return; } return DAG.computeKnownBits(Op, KnownZero, KnownOne); } SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const { // If we have a CMOV, OR and AND combination such as: // if (x & CN) // y |= CM; // // And: // * CN is a single bit; // * All bits covered by CM are known zero in y // // Then we can convert this into a sequence of BFI instructions. This will // always be a win if CM is a single bit, will always be no worse than the // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is // three bits (due to the extra IT instruction). SDValue Op0 = CMOV->getOperand(0); SDValue Op1 = CMOV->getOperand(1); auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2)); auto CC = CCNode->getAPIntValue().getLimitedValue(); SDValue CmpZ = CMOV->getOperand(4); // The compare must be against zero. if (!isNullConstant(CmpZ->getOperand(1))) return SDValue(); assert(CmpZ->getOpcode() == ARMISD::CMPZ); SDValue And = CmpZ->getOperand(0); if (And->getOpcode() != ISD::AND) return SDValue(); ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(And->getOperand(1)); if (!AndC || !AndC->getAPIntValue().isPowerOf2()) return SDValue(); SDValue X = And->getOperand(0); if (CC == ARMCC::EQ) { // We're performing an "equal to zero" compare. Swap the operands so we // canonicalize on a "not equal to zero" compare. std::swap(Op0, Op1); } else { assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?"); } if (Op1->getOpcode() != ISD::OR) return SDValue(); ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1)); if (!OrC) return SDValue(); SDValue Y = Op1->getOperand(0); if (Op0 != Y) return SDValue(); // Now, is it profitable to continue? APInt OrCI = OrC->getAPIntValue(); unsigned Heuristic = Subtarget->isThumb() ? 3 : 2; if (OrCI.countPopulation() > Heuristic) return SDValue(); // Lastly, can we determine that the bits defined by OrCI // are zero in Y? APInt KnownZero, KnownOne; computeKnownBits(DAG, Y, KnownZero, KnownOne); if ((OrCI & KnownZero) != OrCI) return SDValue(); // OK, we can do the combine. SDValue V = Y; SDLoc dl(X); EVT VT = X.getValueType(); unsigned BitInX = AndC->getAPIntValue().logBase2(); if (BitInX != 0) { // We must shift X first. X = DAG.getNode(ISD::SRL, dl, VT, X, DAG.getConstant(BitInX, dl, VT)); } for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits(); BitInY < NumActiveBits; ++BitInY) { if (OrCI[BitInY] == 0) continue; APInt Mask(VT.getSizeInBits(), 0); Mask.setBit(BitInY); V = DAG.getNode(ARMISD::BFI, dl, VT, V, X, // Confusingly, the operand is an *inverted* mask. DAG.getConstant(~Mask, dl, VT)); } return V; } /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV. SDValue ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const { SDValue Cmp = N->getOperand(4); if (Cmp.getOpcode() != ARMISD::CMPZ) // Only looking at EQ and NE cases. return SDValue(); EVT VT = N->getValueType(0); SDLoc dl(N); SDValue LHS = Cmp.getOperand(0); SDValue RHS = Cmp.getOperand(1); SDValue FalseVal = N->getOperand(0); SDValue TrueVal = N->getOperand(1); SDValue ARMcc = N->getOperand(2); ARMCC::CondCodes CC = (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue(); // BFI is only available on V6T2+. if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) { SDValue R = PerformCMOVToBFICombine(N, DAG); if (R) return R; } // Simplify // mov r1, r0 // cmp r1, x // mov r0, y // moveq r0, x // to // cmp r0, x // movne r0, y // // mov r1, r0 // cmp r1, x // mov r0, x // movne r0, y // to // cmp r0, x // movne r0, y /// FIXME: Turn this into a target neutral optimization? SDValue Res; if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) { Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc, N->getOperand(3), Cmp); } else if (CC == ARMCC::EQ && TrueVal == RHS) { SDValue ARMcc; SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl); Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc, N->getOperand(3), NewCmp); } if (Res.getNode()) { APInt KnownZero, KnownOne; DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne); // Capture demanded bits information that would be otherwise lost. if (KnownZero == 0xfffffffe) Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, DAG.getValueType(MVT::i1)); else if (KnownZero == 0xffffff00) Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, DAG.getValueType(MVT::i8)); else if (KnownZero == 0xffff0000) Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, DAG.getValueType(MVT::i16)); } return Res; } SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { switch (N->getOpcode()) { default: break; case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget); case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget); case ISD::SUB: return PerformSUBCombine(N, DCI); case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget); case ISD::OR: return PerformORCombine(N, DCI, Subtarget); case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget); case ISD::AND: return PerformANDCombine(N, DCI, Subtarget); case ARMISD::BFI: return PerformBFICombine(N, DCI); case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget); case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG); case ISD::STORE: return PerformSTORECombine(N, DCI); case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget); case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI); case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG); case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI.DAG, Subtarget); case ISD::FDIV: return PerformVDIVCombine(N, DCI.DAG, Subtarget); case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); case ISD::SHL: case ISD::SRA: case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget); case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG); case ISD::LOAD: return PerformLOADCombine(N, DCI); case ARMISD::VLD2DUP: case ARMISD::VLD3DUP: case ARMISD::VLD4DUP: return PerformVLDCombine(N, DCI); case ARMISD::BUILD_VECTOR: return PerformARMBUILD_VECTORCombine(N, DCI); case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: return PerformVLDCombine(N, DCI); default: break; } break; } return SDValue(); } bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const { return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE); } bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, unsigned, bool *Fast) const { // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus bool AllowsUnaligned = Subtarget->allowsUnalignedMem(); switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i8: case MVT::i16: case MVT::i32: { // Unaligned access can use (for example) LRDB, LRDH, LDR if (AllowsUnaligned) { if (Fast) *Fast = Subtarget->hasV7Ops(); return true; } return false; } case MVT::f64: case MVT::v2f64: { // For any little-endian targets with neon, we can support unaligned ld/st // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8. // A big-endian target may also explicitly support unaligned accesses if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) { if (Fast) *Fast = true; return true; } return false; } } } static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, unsigned AlignCheck) { return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && (DstAlign == 0 || DstAlign % AlignCheck == 0)); } EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { const Function *F = MF.getFunction(); // See if we can use NEON instructions for this... if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() && !F->hasFnAttribute(Attribute::NoImplicitFloat)) { bool Fast; if (Size >= 16 && (memOpAlign(SrcAlign, DstAlign, 16) || (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) { return MVT::v2f64; } else if (Size >= 8 && (memOpAlign(SrcAlign, DstAlign, 8) || (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) && Fast))) { return MVT::f64; } } // Lowering to i32/i16 if the size permits. if (Size >= 4) return MVT::i32; else if (Size >= 2) return MVT::i16; // Let the target-independent logic figure it out. return MVT::Other; } bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { if (Val.getOpcode() != ISD::LOAD) return false; EVT VT1 = Val.getValueType(); if (!VT1.isSimple() || !VT1.isInteger() || !VT2.isSimple() || !VT2.isInteger()) return false; switch (VT1.getSimpleVT().SimpleTy) { default: break; case MVT::i1: case MVT::i8: case MVT::i16: // 8-bit and 16-bit loads implicitly zero-extend to 32-bits. return true; } return false; } bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { EVT VT = ExtVal.getValueType(); if (!isTypeLegal(VT)) return false; // Don't create a loadext if we can fold the extension into a wide/long // instruction. // If there's more than one user instruction, the loadext is desirable no // matter what. There can be two uses by the same instruction. if (ExtVal->use_empty() || !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode())) return true; SDNode *U = *ExtVal->use_begin(); if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB || U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL)) return false; return true; } bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; if (!isTypeLegal(EVT::getEVT(Ty1))) return false; assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); // Assuming the caller doesn't have a zeroext or signext return parameter, // truncation all the way down to i1 is valid. return true; } static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { if (V < 0) return false; unsigned Scale = 1; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: // Scale == 1; break; case MVT::i16: // Scale == 2; Scale = 2; break; case MVT::i32: // Scale == 4; Scale = 4; break; } if ((V & (Scale - 1)) != 0) return false; V /= Scale; return V == (V & ((1LL << 5) - 1)); } static bool isLegalT2AddressImmediate(int64_t V, EVT VT, const ARMSubtarget *Subtarget) { bool isNeg = false; if (V < 0) { isNeg = true; V = - V; } switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: // + imm12 or - imm8 if (isNeg) return V == (V & ((1LL << 8) - 1)); return V == (V & ((1LL << 12) - 1)); case MVT::f32: case MVT::f64: // Same as ARM mode. FIXME: NEON? if (!Subtarget->hasVFP2()) return false; if ((V & 3) != 0) return false; V >>= 2; return V == (V & ((1LL << 8) - 1)); } } /// isLegalAddressImmediate - Return true if the integer value can be used /// as the offset of the target addressing mode for load / store of the /// given type. static bool isLegalAddressImmediate(int64_t V, EVT VT, const ARMSubtarget *Subtarget) { if (V == 0) return true; if (!VT.isSimple()) return false; if (Subtarget->isThumb1Only()) return isLegalT1AddressImmediate(V, VT); else if (Subtarget->isThumb2()) return isLegalT2AddressImmediate(V, VT, Subtarget); // ARM mode. if (V < 0) V = - V; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i32: // +- imm12 return V == (V & ((1LL << 12) - 1)); case MVT::i16: // +- imm8 return V == (V & ((1LL << 8) - 1)); case MVT::f32: case MVT::f64: if (!Subtarget->hasVFP2()) // FIXME: NEON? return false; if ((V & 3) != 0) return false; V >>= 2; return V == (V & ((1LL << 8) - 1)); } } bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const { int Scale = AM.Scale; if (Scale < 0) return false; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (Scale == 1) return true; // r + r << imm Scale = Scale & ~1; return Scale == 2 || Scale == 4 || Scale == 8; case MVT::i64: // r + r if (((unsigned)AM.HasBaseReg + Scale) <= 2) return true; return false; case MVT::isVoid: // Note, we allow "void" uses (basically, uses that aren't loads or // stores), because arm allows folding a scale into many arithmetic // operations. This should be made more precise and revisited later. // Allow r << imm, but the imm has to be a multiple of two. if (Scale & 1) return false; return isPowerOf2_32(Scale); } } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const { EVT VT = getValueType(DL, Ty, true); if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) return false; // Can never fold addr of global into load/store. if (AM.BaseGV) return false; switch (AM.Scale) { case 0: // no scale reg, must be "r+i" or "r", or "i". break; case 1: if (Subtarget->isThumb1Only()) return false; // FALL THROUGH. default: // ARM doesn't support any R+R*scale+imm addr modes. if (AM.BaseOffs) return false; if (!VT.isSimple()) return false; if (Subtarget->isThumb2()) return isLegalT2ScaledAddressingMode(AM, VT); int Scale = AM.Scale; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i32: if (Scale < 0) Scale = -Scale; if (Scale == 1) return true; // r + r << imm return isPowerOf2_32(Scale & ~1); case MVT::i16: case MVT::i64: // r + r if (((unsigned)AM.HasBaseReg + Scale) <= 2) return true; return false; case MVT::isVoid: // Note, we allow "void" uses (basically, uses that aren't loads or // stores), because arm allows folding a scale into many arithmetic // operations. This should be made more precise and revisited later. // Allow r << imm, but the imm has to be a multiple of two. if (Scale & 1) return false; return isPowerOf2_32(Scale); } } return true; } /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can compare /// a register against the immediate without having to materialize the /// immediate into a register. bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { // Thumb2 and ARM modes can use cmn for negative immediates. if (!Subtarget->isThumb()) return ARM_AM::getSOImmVal(std::abs(Imm)) != -1; if (Subtarget->isThumb2()) return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1; // Thumb1 doesn't have cmn, and only 8-bit immediates. return Imm >= 0 && Imm <= 255; } /// isLegalAddImmediate - Return true if the specified immediate is a legal add /// *or sub* immediate, that is the target has add or sub instructions which can /// add a register with the immediate without having to materialize the /// immediate into a register. bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const { // Same encoding for add/sub, just flip the sign. int64_t AbsImm = std::abs(Imm); if (!Subtarget->isThumb()) return ARM_AM::getSOImmVal(AbsImm) != -1; if (Subtarget->isThumb2()) return ARM_AM::getT2SOImmVal(AbsImm) != -1; // Thumb1 only has 8-bit unsigned immediate. return AbsImm >= 0 && AbsImm <= 255; } static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) return false; if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { // AddressingMode 3 Base = Ptr->getOperand(0); if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -256) { assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); return true; } } isInc = (Ptr->getOpcode() == ISD::ADD); Offset = Ptr->getOperand(1); return true; } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { // AddressingMode 2 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -0x1000) { assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); Base = Ptr->getOperand(0); return true; } } if (Ptr->getOpcode() == ISD::ADD) { isInc = true; ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode()); if (ShOpcVal != ARM_AM::no_shift) { Base = Ptr->getOperand(1); Offset = Ptr->getOperand(0); } else { Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); } return true; } isInc = (Ptr->getOpcode() == ISD::ADD); Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); return true; } // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. return false; } static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) return false; Base = Ptr->getOperand(0); if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -0x100) { // 8 bits. assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); return true; } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. isInc = Ptr->getOpcode() == ISD::ADD; Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0)); return true; } } return false; } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { if (Subtarget->isThumb1Only()) return false; EVT VT; SDValue Ptr; bool isSEXTLoad = false; if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { Ptr = LD->getBasePtr(); VT = LD->getMemoryVT(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { Ptr = ST->getBasePtr(); VT = ST->getMemoryVT(); } else return false; bool isInc; bool isLegal = false; if (Subtarget->isThumb2()) isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset, isInc, DAG); else isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset, isInc, DAG); if (!isLegal) return false; AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; return true; } /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { if (Subtarget->isThumb1Only()) return false; EVT VT; SDValue Ptr; bool isSEXTLoad = false; if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); } else return false; bool isInc; bool isLegal = false; if (Subtarget->isThumb2()) isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, isInc, DAG); else isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, isInc, DAG); if (!isLegal) return false; if (Ptr != Base) { // Swap base ptr and offset to catch more post-index load / store when // it's legal. In Thumb2 mode, offset must be an immediate. if (Ptr == Offset && Op->getOpcode() == ISD::ADD && !Subtarget->isThumb2()) std::swap(Base, Offset); // Post-indexed load / store update the base pointer. if (Ptr != Base) return false; } AM = isInc ? ISD::POST_INC : ISD::POST_DEC; return true; } void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { unsigned BitWidth = KnownOne.getBitWidth(); KnownZero = KnownOne = APInt(BitWidth, 0); switch (Op.getOpcode()) { default: break; case ARMISD::ADDC: case ARMISD::ADDE: case ARMISD::SUBC: case ARMISD::SUBE: // These nodes' second result is a boolean if (Op.getResNo() == 0) break; KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); break; case ARMISD::CMOV: { // Bits are known zero/one if known on the LHS and RHS. DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); if (KnownZero == 0 && KnownOne == 0) return; APInt KnownZeroRHS, KnownOneRHS; DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1); KnownZero &= KnownZeroRHS; KnownOne &= KnownOneRHS; return; } case ISD::INTRINSIC_W_CHAIN: { ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); switch (IntID) { default: return; case Intrinsic::arm_ldaex: case Intrinsic::arm_ldrex: { EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); unsigned MemBits = VT.getScalarType().getSizeInBits(); KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); return; } } } } } //===----------------------------------------------------------------------===// // ARM Inline Assembly Support //===----------------------------------------------------------------------===// bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const { // Looking for "rev" which is V6+. if (!Subtarget->hasV6Ops()) return false; InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); std::string AsmStr = IA->getAsmString(); SmallVector<StringRef, 4> AsmPieces; SplitString(AsmStr, AsmPieces, ";\n"); switch (AsmPieces.size()) { default: return false; case 1: AsmStr = AsmPieces[0]; AsmPieces.clear(); SplitString(AsmStr, AsmPieces, " \t,"); // rev $0, $1 if (AsmPieces.size() == 3 && AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" && IA->getConstraintString().compare(0, 4, "=l,l") == 0) { IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); if (Ty && Ty->getBitWidth() == 32) return IntrinsicLowering::LowerToByteSwap(CI); } break; } return false; } /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. ARMTargetLowering::ConstraintType ARMTargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'l': return C_RegisterClass; case 'w': return C_RegisterClass; case 'h': return C_RegisterClass; case 'x': return C_RegisterClass; case 't': return C_RegisterClass; case 'j': return C_Other; // Constant for movw. // An address with a single base register. Due to the way we // currently handle addresses it is the same as an 'r' memory constraint. case 'Q': return C_Memory; } } else if (Constraint.size() == 2) { switch (Constraint[0]) { default: break; // All 'U+' constraints are addresses. case 'U': return C_Memory; } } return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight ARMTargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'l': if (type->isIntegerTy()) { if (Subtarget->isThumb()) weight = CW_SpecificReg; else weight = CW_Register; } break; case 'w': if (type->isFloatingPointTy()) weight = CW_Register; break; } return weight; } typedef std::pair<unsigned, const TargetRegisterClass*> RCPair; RCPair ARMTargetLowering::getRegForInlineAsmConstraint( const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.size() == 1) { // GCC ARM Constraint Letters switch (Constraint[0]) { case 'l': // Low regs or general regs. if (Subtarget->isThumb()) return RCPair(0U, &ARM::tGPRRegClass); return RCPair(0U, &ARM::GPRRegClass); case 'h': // High regs or no regs. if (Subtarget->isThumb()) return RCPair(0U, &ARM::hGPRRegClass); break; case 'r': if (Subtarget->isThumb1Only()) return RCPair(0U, &ARM::tGPRRegClass); return RCPair(0U, &ARM::GPRRegClass); case 'w': if (VT == MVT::Other) break; if (VT == MVT::f32) return RCPair(0U, &ARM::SPRRegClass); if (VT.getSizeInBits() == 64) return RCPair(0U, &ARM::DPRRegClass); if (VT.getSizeInBits() == 128) return RCPair(0U, &ARM::QPRRegClass); break; case 'x': if (VT == MVT::Other) break; if (VT == MVT::f32) return RCPair(0U, &ARM::SPR_8RegClass); if (VT.getSizeInBits() == 64) return RCPair(0U, &ARM::DPR_8RegClass); if (VT.getSizeInBits() == 128) return RCPair(0U, &ARM::QPR_8RegClass); break; case 't': if (VT == MVT::f32) return RCPair(0U, &ARM::SPRRegClass); break; } } if (StringRef("{cc}").equals_lower(Constraint)) return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass); return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector<SDValue>&Ops, SelectionDAG &DAG) const { SDValue Result; // Currently only support length 1 constraints. if (Constraint.length() != 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; case 'j': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); if (!C) return; int64_t CVal64 = C->getSExtValue(); int CVal = (int) CVal64; // None of these constraints allow values larger than 32 bits. Check // that the value fits in an int. if (CVal != CVal64) return; switch (ConstraintLetter) { case 'j': // Constant suitable for movw, must be between 0 and // 65535. if (Subtarget->hasV6T2Ops()) if (CVal >= 0 && CVal <= 65535) break; return; case 'I': if (Subtarget->isThumb1Only()) { // This must be a constant between 0 and 255, for ADD // immediates. if (CVal >= 0 && CVal <= 255) break; } else if (Subtarget->isThumb2()) { // A constant that can be used as an immediate value in a // data-processing instruction. if (ARM_AM::getT2SOImmVal(CVal) != -1) break; } else { // A constant that can be used as an immediate value in a // data-processing instruction. if (ARM_AM::getSOImmVal(CVal) != -1) break; } return; case 'J': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a constant between -255 and -1, for negated ADD // immediates. This can be used in GCC with an "n" modifier that // prints the negated value, for use with SUB instructions. It is // not useful otherwise but is implemented for compatibility. if (CVal >= -255 && CVal <= -1) break; } else { // This must be a constant between -4095 and 4095. It is not clear // what this constraint is intended for. Implemented for // compatibility with GCC. if (CVal >= -4095 && CVal <= 4095) break; } return; case 'K': if (Subtarget->isThumb1Only()) { // A 32-bit value where only one byte has a nonzero value. Exclude // zero to match GCC. This constraint is used by GCC internally for // constants that can be loaded with a move/shift combination. // It is not useful otherwise but is implemented for compatibility. if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) break; } else if (Subtarget->isThumb2()) { // A constant whose bitwise inverse can be used as an immediate // value in a data-processing instruction. This can be used in GCC // with a "B" modifier that prints the inverted value, for use with // BIC and MVN instructions. It is not useful otherwise but is // implemented for compatibility. if (ARM_AM::getT2SOImmVal(~CVal) != -1) break; } else { // A constant whose bitwise inverse can be used as an immediate // value in a data-processing instruction. This can be used in GCC // with a "B" modifier that prints the inverted value, for use with // BIC and MVN instructions. It is not useful otherwise but is // implemented for compatibility. if (ARM_AM::getSOImmVal(~CVal) != -1) break; } return; case 'L': if (Subtarget->isThumb1Only()) { // This must be a constant between -7 and 7, // for 3-operand ADD/SUB immediate instructions. if (CVal >= -7 && CVal < 7) break; } else if (Subtarget->isThumb2()) { // A constant whose negation can be used as an immediate value in a // data-processing instruction. This can be used in GCC with an "n" // modifier that prints the negated value, for use with SUB // instructions. It is not useful otherwise but is implemented for // compatibility. if (ARM_AM::getT2SOImmVal(-CVal) != -1) break; } else { // A constant whose negation can be used as an immediate value in a // data-processing instruction. This can be used in GCC with an "n" // modifier that prints the negated value, for use with SUB // instructions. It is not useful otherwise but is implemented for // compatibility. if (ARM_AM::getSOImmVal(-CVal) != -1) break; } return; case 'M': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a multiple of 4 between 0 and 1020, for // ADD sp + immediate. if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) break; } else { // A power of two or a constant between 0 and 32. This is used in // GCC for the shift amount on shifted register operands, but it is // useful in general for any shift amounts. if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) break; } return; case 'N': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a constant between 0 and 31, for shift amounts. if (CVal >= 0 && CVal <= 31) break; } return; case 'O': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a multiple of 4 between -508 and 508, for // ADD/SUB sp = sp + immediate. if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) break; } return; } Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType()); break; } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } static RTLIB::Libcall getDivRemLibcall( const SDNode *N, MVT::SimpleValueType SVT) { assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM || N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) && "Unhandled Opcode in getDivRemLibcall"); bool isSigned = N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::SREM; RTLIB::Libcall LC; switch (SVT) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; } return LC; } static TargetLowering::ArgListTy getDivRemArgList( const SDNode *N, LLVMContext *Context) { assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM || N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) && "Unhandled Opcode in getDivRemArgList"); bool isSigned = N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::SREM; TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { EVT ArgVT = N->getOperand(i).getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*Context); Entry.Node = N->getOperand(i); Entry.Ty = ArgTy; Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); } return Args; } SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid()) && "Register-based DivRem lowering only"); unsigned Opcode = Op->getOpcode(); assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && "Invalid opcode for Div/Rem lowering"); bool isSigned = (Opcode == ISD::SDIVREM); EVT VT = Op->getValueType(0); Type *Ty = VT.getTypeForEVT(*DAG.getContext()); RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(), VT.getSimpleVT().SimpleTy); SDValue InChain = DAG.getEntryNode(); TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(), DAG.getContext()); SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy(DAG.getDataLayout())); Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr); SDLoc dl(Op); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(InChain) .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned); std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); return CallInfo.first; } // Lowers REM using divmod helpers // see RTABI section 4.2/4.3 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const { // Build return types (div and rem) std::vector<Type*> RetTyParams; Type *RetTyElement; switch (N->getValueType(0).getSimpleVT().SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break; case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break; case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break; case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break; } RetTyParams.push_back(RetTyElement); RetTyParams.push_back(RetTyElement); ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams); Type *RetTy = StructType::get(*DAG.getContext(), ret); RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT(). SimpleTy); SDValue InChain = DAG.getEntryNode(); TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext()); bool isSigned = N->getOpcode() == ISD::SREM; SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy(DAG.getDataLayout())); // Lower call CallLoweringInfo CLI(DAG); CLI.setChain(InChain) .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args), 0) .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N)); std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); // Return second (rem) result operand (first contains div) SDNode *ResNode = CallResult.first.getNode(); assert(ResNode->getNumOperands() == 2 && "divmod should return two operands"); return ResNode->getOperand(1); } SDValue ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetWindows() && "unsupported target platform"); SDLoc DL(Op); // Get the inputs. SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size, DAG.getConstant(2, DL, MVT::i32)); SDValue Flag; Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag); Flag = Chain.getValue(1); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag); SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32); Chain = NewSP.getValue(1); SDValue Ops[2] = { NewSP, Chain }; return DAG.getMergeValues(Ops, DL); } SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() && "Unexpected type for custom-lowering FP_EXTEND"); RTLIB::Libcall LC; LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); SDValue SrcVal = Op.getOperand(0); return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false, SDLoc(Op)).first; } SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOperand(0).getValueType() == MVT::f64 && Subtarget->isFPOnlySP() && "Unexpected type for custom-lowering FP_ROUND"); RTLIB::Libcall LC; LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); SDValue SrcVal = Op.getOperand(0); return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false, SDLoc(Op)).first; } bool ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // The ARM target isn't yet aware of offsets. return false; } bool ARM::isBitFieldInvertedMask(unsigned v) { if (v == 0xffffffff) return false; // there can be 1's on either or both "outsides", all the "inside" // bits must be 0's return isShiftedMask_32(~v); } /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { if (!Subtarget->hasVFP3()) return false; if (VT == MVT::f32) return ARM_AM::getFP32Imm(Imm) != -1; if (VT == MVT::f64 && !Subtarget->isFPOnlySP()) return ARM_AM::getFP64Imm(Imm) != -1; return false; } /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment /// specified in the intrinsic calls. bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const { switch (Intrinsic) { case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: { Info.opc = ISD::INTRINSIC_W_CHAIN; // Conservatively set memVT to the entire set of vectors loaded. auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); Info.vol = false; // volatile loads with NEON intrinsics not supported Info.readMem = true; Info.writeMem = false; return true; } case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: { Info.opc = ISD::INTRINSIC_VOID; // Conservatively set memVT to the entire set of vectors stored. auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); unsigned NumElts = 0; for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { Type *ArgTy = I.getArgOperand(ArgI)->getType(); if (!ArgTy->isVectorTy()) break; NumElts += DL.getTypeSizeInBits(ArgTy) / 64; } Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); Info.vol = false; // volatile stores with NEON intrinsics not supported Info.readMem = false; Info.writeMem = true; return true; } case Intrinsic::arm_ldaex: case Intrinsic::arm_ldrex: { auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(PtrTy->getElementType()); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); Info.vol = true; Info.readMem = true; Info.writeMem = false; return true; } case Intrinsic::arm_stlex: case Intrinsic::arm_strex: { auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(PtrTy->getElementType()); Info.ptrVal = I.getArgOperand(1); Info.offset = 0; Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); Info.vol = true; Info.readMem = false; Info.writeMem = true; return true; } case Intrinsic::arm_stlexd: case Intrinsic::arm_strexd: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i64; Info.ptrVal = I.getArgOperand(2); Info.offset = 0; Info.align = 8; Info.vol = true; Info.readMem = false; Info.writeMem = true; return true; } case Intrinsic::arm_ldaexd: case Intrinsic::arm_ldrexd: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i64; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = 8; Info.vol = true; Info.readMem = true; Info.writeMem = false; return true; } default: break; } return false; } /// \brief Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned Bits = Ty->getPrimitiveSizeInBits(); if (Bits == 0 || Bits > 32) return false; return true; } Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder, ARM_MB::MemBOpt Domain) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); // First, if the target has no DMB, see what fallback we can use. if (!Subtarget->hasDataBarrier()) { // Some ARMv6 cpus can support data barriers with an mcr instruction. // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get // here. if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) { Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr); Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0), Builder.getInt32(0), Builder.getInt32(7), Builder.getInt32(10), Builder.getInt32(5)}; return Builder.CreateCall(MCR, args); } else { // Instead of using barriers, atomic accesses on these subtargets use // libcalls. llvm_unreachable("makeDMB on a target so old that it has no barriers"); } } else { Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb); // Only a full system barrier exists in the M-class architectures. Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain; Constant *CDomain = Builder.getInt32(Domain); return Builder.CreateCall(DMB, CDomain); } } // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord, bool IsStore, bool IsLoad) const { if (!getInsertFencesForAtomic()) return nullptr; switch (Ord) { case NotAtomic: case Unordered: llvm_unreachable("Invalid fence: unordered/non-atomic"); case Monotonic: case Acquire: return nullptr; // Nothing to do case SequentiallyConsistent: if (!IsStore) return nullptr; // Nothing to do /*FALLTHROUGH*/ case Release: case AcquireRelease: if (Subtarget->isSwift()) return makeDMB(Builder, ARM_MB::ISHST); // FIXME: add a comment with a link to documentation justifying this. else return makeDMB(Builder, ARM_MB::ISH); } llvm_unreachable("Unknown fence ordering in emitLeadingFence"); } Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord, bool IsStore, bool IsLoad) const { if (!getInsertFencesForAtomic()) return nullptr; switch (Ord) { case NotAtomic: case Unordered: llvm_unreachable("Invalid fence: unordered/not-atomic"); case Monotonic: case Release: return nullptr; // Nothing to do case Acquire: case AcquireRelease: case SequentiallyConsistent: return makeDMB(Builder, ARM_MB::ISH); } llvm_unreachable("Unknown fence ordering in emitTrailingFence"); } // Loads and stores less than 64-bits are already atomic; ones above that // are doomed anyway, so defer to the default libcall and blame the OS when // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit // anything for those. bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); return (Size == 64) && !Subtarget->isMClass(); } // Loads and stores less than 64-bits are already atomic; ones above that // are doomed anyway, so defer to the default libcall and blame the OS when // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit // anything for those. // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that // guarantee, see DDI0406C ARM architecture reference manual, // sections A8.8.72-74 LDRD) TargetLowering::AtomicExpansionKind ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { unsigned Size = LI->getType()->getPrimitiveSizeInBits(); return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly : AtomicExpansionKind::None; } // For the real atomic operations, we have ldrex/strex up to 32 bits, // and up to 64 bits on the non-M profiles TargetLowering::AtomicExpansionKind ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { unsigned Size = AI->getType()->getPrimitiveSizeInBits(); return (Size <= (Subtarget->isMClass() ? 32U : 64U)) ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None; } bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR( AtomicCmpXchgInst *AI) const { return true; } // This has so far only been implemented for MachO. bool ARMTargetLowering::useLoadStackGuardNode() const { return Subtarget->isTargetMachO(); } bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx, unsigned &Cost) const { // If we do not have NEON, vector types are not natively supported. if (!Subtarget->hasNEON()) return false; // Floating point values and vector values map to the same register file. // Therefore, although we could do a store extract of a vector type, this is // better to leave at float as we have more freedom in the addressing mode for // those. if (VectorTy->isFPOrFPVectorTy()) return false; // If the index is unknown at compile time, this is very expensive to lower // and it is not possible to combine the store with the extract. if (!isa<ConstantInt>(Idx)) return false; assert(VectorTy->isVectorTy() && "VectorTy is not a vector type"); unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth(); // We can do a store + vector extract on any vector that fits perfectly in a D // or Q register. if (BitWidth == 64 || BitWidth == 128) { Cost = 0; return true; } return false; } bool ARMTargetLowering::isCheapToSpeculateCttz() const { return Subtarget->hasV6T2Ops(); } bool ARMTargetLowering::isCheapToSpeculateCtlz() const { return Subtarget->hasV6T2Ops(); } Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, AtomicOrdering Ord) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); bool IsAcquire = isAtLeastAcquire(Ord); // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd // intrinsic must return {i32, i32} and we have to recombine them into a // single i64 here. if (ValTy->getPrimitiveSizeInBits() == 64) { Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd; Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int); Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi"); Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); if (!Subtarget->isLittle()) std::swap (Lo, Hi); Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); return Builder.CreateOr( Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64"); } Type *Tys[] = { Addr->getType() }; Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex; Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys); return Builder.CreateTruncOrBitCast( Builder.CreateCall(Ldrex, Addr), cast<PointerType>(Addr->getType())->getElementType()); } void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance( IRBuilder<> &Builder) const { if (!Subtarget->hasV7Ops()) return; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Builder.CreateCall(llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_clrex)); } Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); bool IsRelease = isAtLeastRelease(Ord); // Since the intrinsics must have legal type, the i64 intrinsics take two // parameters: "i32, i32". We must marshal Val into the appropriate form // before the call. if (Val->getType()->getPrimitiveSizeInBits() == 64) { Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd; Function *Strex = Intrinsic::getDeclaration(M, Int); Type *Int32Ty = Type::getInt32Ty(M->getContext()); Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo"); Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi"); if (!Subtarget->isLittle()) std::swap (Lo, Hi); Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); return Builder.CreateCall(Strex, {Lo, Hi, Addr}); } Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex; Type *Tys[] = { Addr->getType() }; Function *Strex = Intrinsic::getDeclaration(M, Int, Tys); return Builder.CreateCall( Strex, {Builder.CreateZExtOrBitCast( Val, Strex->getFunctionType()->getParamType(0)), Addr}); } /// \brief Lower an interleaved load into a vldN intrinsic. /// /// E.g. Lower an interleaved load (Factor = 2): /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements /// /// Into: /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4) /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1 bool ARMTargetLowering::lowerInterleavedLoad( LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, ArrayRef<unsigned> Indices, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(!Shuffles.empty() && "Empty shufflevector input"); assert(Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices"); VectorType *VecTy = Shuffles[0]->getType(); Type *EltTy = VecTy->getVectorElementType(); const DataLayout &DL = LI->getModule()->getDataLayout(); unsigned VecSize = DL.getTypeSizeInBits(VecTy); bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64; // Skip if we do not have NEON and skip illegal vector types and vector types // with i64/f64 elements (vldN doesn't support i64/f64 elements). if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128) || EltIs64Bits) return false; // A pointer vector can not be the return type of the ldN intrinsics. Need to // load integer vectors first and then convert to pointer vectors. if (EltTy->isPointerTy()) VecTy = VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements()); static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2, Intrinsic::arm_neon_vld3, Intrinsic::arm_neon_vld4}; IRBuilder<> Builder(LI); SmallVector<Value *, 2> Ops; Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace()); Ops.push_back(Builder.CreateBitCast(LI->getPointerOperand(), Int8Ptr)); Ops.push_back(Builder.getInt32(LI->getAlignment())); Type *Tys[] = { VecTy, Int8Ptr }; Function *VldnFunc = Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN"); // Replace uses of each shufflevector with the corresponding vector loaded // by ldN. for (unsigned i = 0; i < Shuffles.size(); i++) { ShuffleVectorInst *SV = Shuffles[i]; unsigned Index = Indices[i]; Value *SubVec = Builder.CreateExtractValue(VldN, Index); // Convert the integer vector to pointer vector if the element is pointer. if (EltTy->isPointerTy()) SubVec = Builder.CreateIntToPtr(SubVec, SV->getType()); SV->replaceAllUsesWith(SubVec); } return true; } /// \brief Get a mask consisting of sequential integers starting from \p Start. /// /// I.e. <Start, Start + 1, ..., Start + NumElts - 1> static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start, unsigned NumElts) { SmallVector<Constant *, 16> Mask; for (unsigned i = 0; i < NumElts; i++) Mask.push_back(Builder.getInt32(Start + i)); return ConstantVector::get(Mask); } /// \brief Lower an interleaved store into a vstN intrinsic. /// /// E.g. Lower an interleaved store (Factor = 3): /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4 /// /// Into: /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4) /// /// Note that the new shufflevectors will be removed and we'll only generate one /// vst3 instruction in CodeGen. bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); VectorType *VecTy = SVI->getType(); assert(VecTy->getVectorNumElements() % Factor == 0 && "Invalid interleaved store"); unsigned NumSubElts = VecTy->getVectorNumElements() / Factor; Type *EltTy = VecTy->getVectorElementType(); VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts); const DataLayout &DL = SI->getModule()->getDataLayout(); unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy); bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64; // Skip if we do not have NEON and skip illegal vector types and vector types // with i64/f64 elements (vstN doesn't support i64/f64 elements). if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128) || EltIs64Bits) return false; Value *Op0 = SVI->getOperand(0); Value *Op1 = SVI->getOperand(1); IRBuilder<> Builder(SI); // StN intrinsics don't support pointer vectors as arguments. Convert pointer // vectors to integer vectors. if (EltTy->isPointerTy()) { Type *IntTy = DL.getIntPtrType(EltTy); // Convert to the corresponding integer vector. Type *IntVecTy = VectorType::get(IntTy, Op0->getType()->getVectorNumElements()); Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); SubVecTy = VectorType::get(IntTy, NumSubElts); } static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2, Intrinsic::arm_neon_vst3, Intrinsic::arm_neon_vst4}; SmallVector<Value *, 6> Ops; Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace()); Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), Int8Ptr)); Type *Tys[] = { Int8Ptr, SubVecTy }; Function *VstNFunc = Intrinsic::getDeclaration( SI->getModule(), StoreInts[Factor - 2], Tys); // Split the shufflevector operands into sub vectors for the new vstN call. for (unsigned i = 0; i < Factor; i++) Ops.push_back(Builder.CreateShuffleVector( Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts))); Ops.push_back(Builder.getInt32(SI->getAlignment())); Builder.CreateCall(VstNFunc, Ops); return true; } enum HABaseType { HA_UNKNOWN = 0, HA_FLOAT, HA_DOUBLE, HA_VECT64, HA_VECT128 }; static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base, uint64_t &Members) { if (auto *ST = dyn_cast<StructType>(Ty)) { for (unsigned i = 0; i < ST->getNumElements(); ++i) { uint64_t SubMembers = 0; if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers)) return false; Members += SubMembers; } } else if (auto *AT = dyn_cast<ArrayType>(Ty)) { uint64_t SubMembers = 0; if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers)) return false; Members += SubMembers * AT->getNumElements(); } else if (Ty->isFloatTy()) { if (Base != HA_UNKNOWN && Base != HA_FLOAT) return false; Members = 1; Base = HA_FLOAT; } else if (Ty->isDoubleTy()) { if (Base != HA_UNKNOWN && Base != HA_DOUBLE) return false; Members = 1; Base = HA_DOUBLE; } else if (auto *VT = dyn_cast<VectorType>(Ty)) { Members = 1; switch (Base) { case HA_FLOAT: case HA_DOUBLE: return false; case HA_VECT64: return VT->getBitWidth() == 64; case HA_VECT128: return VT->getBitWidth() == 128; case HA_UNKNOWN: switch (VT->getBitWidth()) { case 64: Base = HA_VECT64; return true; case 128: Base = HA_VECT128; return true; default: return false; } } } return (Members > 0 && Members <= 4); } /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when /// passing according to AAPCS rules. bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters( Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { if (getEffectiveCallingConv(CallConv, isVarArg) != CallingConv::ARM_AAPCS_VFP) return false; HABaseType Base = HA_UNKNOWN; uint64_t Members = 0; bool IsHA = isHomogeneousAggregate(Ty, Base, Members); DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump()); bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy(); return IsHA || IsIntArray; } unsigned ARMTargetLowering::getExceptionPointerRegister( const Constant *PersonalityFn) const { // Platforms which do not use SjLj EH may return values in these registers // via the personality function. return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0; } unsigned ARMTargetLowering::getExceptionSelectorRegister( const Constant *PersonalityFn) const { // Platforms which do not use SjLj EH may return values in these registers // via the personality function. return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1; }