//===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Perform peephole optimizations on the machine code: // // - Optimize Extensions // // Optimization of sign / zero extension instructions. It may be extended to // handle other instructions with similar properties. // // On some targets, some instructions, e.g. X86 sign / zero extension, may // leave the source value in the lower part of the result. This optimization // will replace some uses of the pre-extension value with uses of the // sub-register of the results. // // - Optimize Comparisons // // Optimization of comparison instructions. For instance, in this code: // // sub r1, 1 // cmp r1, 0 // bz L1 // // If the "sub" instruction all ready sets (or could be modified to set) the // same flag that the "cmp" instruction sets and that "bz" uses, then we can // eliminate the "cmp" instruction. // // Another instance, in this code: // // sub r1, r3 | sub r1, imm // cmp r3, r1 or cmp r1, r3 | cmp r1, imm // bge L1 // // If the branch instruction can use flag from "sub", then we can replace // "sub" with "subs" and eliminate the "cmp" instruction. // // - Optimize Loads: // // Loads that can be folded into a later instruction. A load is foldable // if it loads to virtual registers and the virtual register defined has // a single use. // // - Optimize Copies and Bitcast (more generally, target specific copies): // // Rewrite copies and bitcasts to avoid cross register bank copies // when possible. // E.g., Consider the following example, where capital and lower // letters denote different register file: // b = copy A <-- cross-bank copy // C = copy b <-- cross-bank copy // => // b = copy A <-- cross-bank copy // C = copy A <-- same-bank copy // // E.g., for bitcast: // b = bitcast A <-- cross-bank copy // C = bitcast b <-- cross-bank copy // => // b = bitcast A <-- cross-bank copy // C = copy A <-- same-bank copy //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <utility> using namespace llvm; #define DEBUG_TYPE "peephole-opt" // Optimize Extensions static cl::opt<bool> Aggressive("aggressive-ext-opt", cl::Hidden, cl::desc("Aggressive extension optimization")); static cl::opt<bool> DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), cl::desc("Disable the peephole optimizer")); static cl::opt<bool> DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), cl::desc("Disable advanced copy optimization")); static cl::opt<bool> DisableNAPhysCopyOpt( "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), cl::desc("Disable non-allocatable physical register copy optimization")); // Limit the number of PHI instructions to process // in PeepholeOptimizer::getNextSource. static cl::opt<unsigned> RewritePHILimit( "rewrite-phi-limit", cl::Hidden, cl::init(10), cl::desc("Limit the length of PHI chains to lookup")); STATISTIC(NumReuse, "Number of extension results reused"); STATISTIC(NumCmps, "Number of compares eliminated"); STATISTIC(NumImmFold, "Number of move immediate folded"); STATISTIC(NumLoadFold, "Number of loads folded"); STATISTIC(NumSelects, "Number of selects optimized"); STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); namespace { class ValueTrackerResult; class PeepholeOptimizer : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MachineRegisterInfo *MRI; MachineDominatorTree *DT; // Machine dominator tree public: static char ID; // Pass identification PeepholeOptimizer() : MachineFunctionPass(ID) { initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); if (Aggressive) { AU.addRequired<MachineDominatorTree>(); AU.addPreserved<MachineDominatorTree>(); } } /// \brief Track Def -> Use info used for rewriting copies. typedef SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult> RewriteMapTy; private: bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB); bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, SmallPtrSetImpl<MachineInstr*> &LocalMIs); bool optimizeSelect(MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs); bool optimizeCondBranch(MachineInstr *MI); bool optimizeCoalescableCopy(MachineInstr *MI); bool optimizeUncoalescableCopy(MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs); bool findNextSource(unsigned Reg, unsigned SubReg, RewriteMapTy &RewriteMap); bool isMoveImmediate(MachineInstr *MI, SmallSet<unsigned, 4> &ImmDefRegs, DenseMap<unsigned, MachineInstr*> &ImmDefMIs); bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, SmallSet<unsigned, 4> &ImmDefRegs, DenseMap<unsigned, MachineInstr*> &ImmDefMIs); /// \brief If copy instruction \p MI is a virtual register copy, track it in /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was /// previously seen as a copy, replace the uses of this copy with the /// previously seen copy's destination register. bool foldRedundantCopy(MachineInstr *MI, SmallSet<unsigned, 4> &CopySrcRegs, DenseMap<unsigned, MachineInstr *> &CopyMIs); /// \brief Is the register \p Reg a non-allocatable physical register? bool isNAPhysCopy(unsigned Reg); /// \brief If copy instruction \p MI is a non-allocatable virtual<->physical /// register copy, track it in the \p NAPhysToVirtMIs map. If this /// non-allocatable physical register was previously copied to a virtual /// registered and hasn't been clobbered, the virt->phys copy can be /// deleted. bool foldRedundantNAPhysCopy( MachineInstr *MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs); bool isLoadFoldable(MachineInstr *MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); /// \brief Check whether \p MI is understood by the register coalescer /// but may require some rewriting. bool isCoalescableCopy(const MachineInstr &MI) { // SubregToRegs are not interesting, because they are already register // coalescer friendly. return MI.isCopy() || (!DisableAdvCopyOpt && (MI.isRegSequence() || MI.isInsertSubreg() || MI.isExtractSubreg())); } /// \brief Check whether \p MI is a copy like instruction that is /// not recognized by the register coalescer. bool isUncoalescableCopy(const MachineInstr &MI) { return MI.isBitcast() || (!DisableAdvCopyOpt && (MI.isRegSequenceLike() || MI.isInsertSubregLike() || MI.isExtractSubregLike())); } }; /// \brief Helper class to hold a reply for ValueTracker queries. Contains the /// returned sources for a given search and the instructions where the sources /// were tracked from. class ValueTrackerResult { private: /// Track all sources found by one ValueTracker query. SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs; /// Instruction using the sources in 'RegSrcs'. const MachineInstr *Inst; public: ValueTrackerResult() : Inst(nullptr) {} ValueTrackerResult(unsigned Reg, unsigned SubReg) : Inst(nullptr) { addSource(Reg, SubReg); } bool isValid() const { return getNumSources() > 0; } void setInst(const MachineInstr *I) { Inst = I; } const MachineInstr *getInst() const { return Inst; } void clear() { RegSrcs.clear(); Inst = nullptr; } void addSource(unsigned SrcReg, unsigned SrcSubReg) { RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg)); } void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { assert(Idx < getNumSources() && "Reg pair source out of index"); RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg); } int getNumSources() const { return RegSrcs.size(); } unsigned getSrcReg(int Idx) const { assert(Idx < getNumSources() && "Reg source out of index"); return RegSrcs[Idx].Reg; } unsigned getSrcSubReg(int Idx) const { assert(Idx < getNumSources() && "SubReg source out of index"); return RegSrcs[Idx].SubReg; } bool operator==(const ValueTrackerResult &Other) { if (Other.getInst() != getInst()) return false; if (Other.getNumSources() != getNumSources()) return false; for (int i = 0, e = Other.getNumSources(); i != e; ++i) if (Other.getSrcReg(i) != getSrcReg(i) || Other.getSrcSubReg(i) != getSrcSubReg(i)) return false; return true; } }; /// \brief Helper class to track the possible sources of a value defined by /// a (chain of) copy related instructions. /// Given a definition (instruction and definition index), this class /// follows the use-def chain to find successive suitable sources. /// The given source can be used to rewrite the definition into /// def = COPY src. /// /// For instance, let us consider the following snippet: /// v0 = /// v2 = INSERT_SUBREG v1, v0, sub0 /// def = COPY v2.sub0 /// /// Using a ValueTracker for def = COPY v2.sub0 will give the following /// suitable sources: /// v2.sub0 and v0. /// Then, def can be rewritten into def = COPY v0. class ValueTracker { private: /// The current point into the use-def chain. const MachineInstr *Def; /// The index of the definition in Def. unsigned DefIdx; /// The sub register index of the definition. unsigned DefSubReg; /// The register where the value can be found. unsigned Reg; /// Specifiy whether or not the value tracking looks through /// complex instructions. When this is false, the value tracker /// bails on everything that is not a copy or a bitcast. /// /// Note: This could have been implemented as a specialized version of /// the ValueTracker class but that would have complicated the code of /// the users of this class. bool UseAdvancedTracking; /// MachineRegisterInfo used to perform tracking. const MachineRegisterInfo &MRI; /// Optional TargetInstrInfo used to perform some complex /// tracking. const TargetInstrInfo *TII; /// \brief Dispatcher to the right underlying implementation of /// getNextSource. ValueTrackerResult getNextSourceImpl(); /// \brief Specialized version of getNextSource for Copy instructions. ValueTrackerResult getNextSourceFromCopy(); /// \brief Specialized version of getNextSource for Bitcast instructions. ValueTrackerResult getNextSourceFromBitcast(); /// \brief Specialized version of getNextSource for RegSequence /// instructions. ValueTrackerResult getNextSourceFromRegSequence(); /// \brief Specialized version of getNextSource for InsertSubreg /// instructions. ValueTrackerResult getNextSourceFromInsertSubreg(); /// \brief Specialized version of getNextSource for ExtractSubreg /// instructions. ValueTrackerResult getNextSourceFromExtractSubreg(); /// \brief Specialized version of getNextSource for SubregToReg /// instructions. ValueTrackerResult getNextSourceFromSubregToReg(); /// \brief Specialized version of getNextSource for PHI instructions. ValueTrackerResult getNextSourceFromPHI(); public: /// \brief Create a ValueTracker instance for the value defined by \p Reg. /// \p DefSubReg represents the sub register index the value tracker will /// track. It does not need to match the sub register index used in the /// definition of \p Reg. /// \p UseAdvancedTracking specifies whether or not the value tracker looks /// through complex instructions. By default (false), it handles only copy /// and bitcast instructions. /// If \p Reg is a physical register, a value tracker constructed with /// this constructor will not find any alternative source. /// Indeed, when \p Reg is a physical register that constructor does not /// know which definition of \p Reg it should track. /// Use the next constructor to track a physical register. ValueTracker(unsigned Reg, unsigned DefSubReg, const MachineRegisterInfo &MRI, bool UseAdvancedTracking = false, const TargetInstrInfo *TII = nullptr) : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg), UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { if (!TargetRegisterInfo::isPhysicalRegister(Reg)) { Def = MRI.getVRegDef(Reg); DefIdx = MRI.def_begin(Reg).getOperandNo(); } } /// \brief Create a ValueTracker instance for the value defined by /// the pair \p MI, \p DefIdx. /// Unlike the other constructor, the value tracker produced by this one /// may be able to find a new source when the definition is a physical /// register. /// This could be useful to rewrite target specific instructions into /// generic copy instructions. ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg, const MachineRegisterInfo &MRI, bool UseAdvancedTracking = false, const TargetInstrInfo *TII = nullptr) : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg), UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { assert(DefIdx < Def->getDesc().getNumDefs() && Def->getOperand(DefIdx).isReg() && "Invalid definition"); Reg = Def->getOperand(DefIdx).getReg(); } /// \brief Following the use-def chain, get the next available source /// for the tracked value. /// \return A ValueTrackerResult containing a set of registers /// and sub registers with tracked values. A ValueTrackerResult with /// an empty set of registers means no source was found. ValueTrackerResult getNextSource(); /// \brief Get the last register where the initial value can be found. /// Initially this is the register of the definition. /// Then, after each successful call to getNextSource, this is the /// register of the last source. unsigned getReg() const { return Reg; } }; } char PeepholeOptimizer::ID = 0; char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts", "Peephole Optimizations", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts", "Peephole Optimizations", false, false) /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads /// a single register and writes a single register and it does not modify the /// source, and if the source value is preserved as a sub-register of the /// result, then replace all reachable uses of the source with the subreg of the /// result. /// /// Do not generate an EXTRACT that is used only in a debug use, as this changes /// the code. Since this code does not currently share EXTRACTs, just ignore all /// debug uses. bool PeepholeOptimizer:: optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, SmallPtrSetImpl<MachineInstr*> &LocalMIs) { unsigned SrcReg, DstReg, SubIdx; if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx)) return false; if (TargetRegisterInfo::isPhysicalRegister(DstReg) || TargetRegisterInfo::isPhysicalRegister(SrcReg)) return false; if (MRI->hasOneNonDBGUse(SrcReg)) // No other uses. return false; // Ensure DstReg can get a register class that actually supports // sub-registers. Don't change the class until we commit. const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); if (!DstRC) return false; // The ext instr may be operating on a sub-register of SrcReg as well. // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit // register. // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of // SrcReg:SubIdx should be replaced. bool UseSrcSubIdx = TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; // The source has other uses. See if we can replace the other uses with use of // the result of the extension. SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) ReachedBBs.insert(UI.getParent()); // Uses that are in the same BB of uses of the result of the instruction. SmallVector<MachineOperand*, 8> Uses; // Uses that the result of the instruction can reach. SmallVector<MachineOperand*, 8> ExtendedUses; bool ExtendLife = true; for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { MachineInstr *UseMI = UseMO.getParent(); if (UseMI == MI) continue; if (UseMI->isPHI()) { ExtendLife = false; continue; } // Only accept uses of SrcReg:SubIdx. if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) continue; // It's an error to translate this: // // %reg1025 = <sext> %reg1024 // ... // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 // // into this: // // %reg1025 = <sext> %reg1024 // ... // %reg1027 = COPY %reg1025:4 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 // // The problem here is that SUBREG_TO_REG is there to assert that an // implicit zext occurs. It doesn't insert a zext instruction. If we allow // the COPY here, it will give us the value after the <sext>, not the // original value of %reg1024 before <sext>. if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) continue; MachineBasicBlock *UseMBB = UseMI->getParent(); if (UseMBB == MBB) { // Local uses that come after the extension. if (!LocalMIs.count(UseMI)) Uses.push_back(&UseMO); } else if (ReachedBBs.count(UseMBB)) { // Non-local uses where the result of the extension is used. Always // replace these unless it's a PHI. Uses.push_back(&UseMO); } else if (Aggressive && DT->dominates(MBB, UseMBB)) { // We may want to extend the live range of the extension result in order // to replace these uses. ExtendedUses.push_back(&UseMO); } else { // Both will be live out of the def MBB anyway. Don't extend live range of // the extension result. ExtendLife = false; break; } } if (ExtendLife && !ExtendedUses.empty()) // Extend the liveness of the extension result. Uses.append(ExtendedUses.begin(), ExtendedUses.end()); // Now replace all uses. bool Changed = false; if (!Uses.empty()) { SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; // Look for PHI uses of the extended result, we don't want to extend the // liveness of a PHI input. It breaks all kinds of assumptions down // stream. A PHI use is expected to be the kill of its source values. for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) if (UI.isPHI()) PHIBBs.insert(UI.getParent()); const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); for (unsigned i = 0, e = Uses.size(); i != e; ++i) { MachineOperand *UseMO = Uses[i]; MachineInstr *UseMI = UseMO->getParent(); MachineBasicBlock *UseMBB = UseMI->getParent(); if (PHIBBs.count(UseMBB)) continue; // About to add uses of DstReg, clear DstReg's kill flags. if (!Changed) { MRI->clearKillFlags(DstReg); MRI->constrainRegClass(DstReg, DstRC); } unsigned NewVR = MRI->createVirtualRegister(RC); MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY), NewVR) .addReg(DstReg, 0, SubIdx); // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. if (UseSrcSubIdx) { Copy->getOperand(0).setSubReg(SubIdx); Copy->getOperand(0).setIsUndef(); } UseMO->setReg(NewVR); ++NumReuse; Changed = true; } } return Changed; } /// optimizeCmpInstr - If the instruction is a compare and the previous /// instruction it's comparing against all ready sets (or could be modified to /// set) the same flag as the compare, then we can remove the comparison and use /// the flag from the previous instruction. bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB) { // If this instruction is a comparison against zero and isn't comparing a // physical register, we can try to optimize it. unsigned SrcReg, SrcReg2; int CmpMask, CmpValue; if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || TargetRegisterInfo::isPhysicalRegister(SrcReg) || (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2))) return false; // Attempt to optimize the comparison instruction. if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { ++NumCmps; return true; } return false; } /// Optimize a select instruction. bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { unsigned TrueOp = 0; unsigned FalseOp = 0; bool Optimizable = false; SmallVector<MachineOperand, 4> Cond; if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) return false; if (!Optimizable) return false; if (!TII->optimizeSelect(MI, LocalMIs)) return false; MI->eraseFromParent(); ++NumSelects; return true; } /// \brief Check if a simpler conditional branch can be // generated bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) { return TII->optimizeCondBranch(MI); } /// \brief Try to find the next source that share the same register file /// for the value defined by \p Reg and \p SubReg. /// When true is returned, the \p RewriteMap can be used by the client to /// retrieve all Def -> Use along the way up to the next source. Any found /// Use that is not itself a key for another entry, is the next source to /// use. During the search for the next source, multiple sources can be found /// given multiple incoming sources of a PHI instruction. In this case, we /// look in each PHI source for the next source; all found next sources must /// share the same register file as \p Reg and \p SubReg. The client should /// then be capable to rewrite all intermediate PHIs to get the next source. /// \return False if no alternative sources are available. True otherwise. bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg, RewriteMapTy &RewriteMap) { // Do not try to find a new source for a physical register. // So far we do not have any motivating example for doing that. // Thus, instead of maintaining untested code, we will revisit that if // that changes at some point. if (TargetRegisterInfo::isPhysicalRegister(Reg)) return false; const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook; TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg); SrcToLook.push_back(CurSrcPair); unsigned PHICount = 0; while (!SrcToLook.empty() && PHICount < RewritePHILimit) { TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val(); // As explained above, do not handle physical registers if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg)) return false; CurSrcPair = Pair; ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, !DisableAdvCopyOpt, TII); ValueTrackerResult Res; bool ShouldRewrite = false; do { // Follow the chain of copies until we reach the top of the use-def chain // or find a more suitable source. Res = ValTracker.getNextSource(); if (!Res.isValid()) break; // Insert the Def -> Use entry for the recently found source. ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); if (CurSrcRes.isValid()) { assert(CurSrcRes == Res && "ValueTrackerResult found must match"); // An existent entry with multiple sources is a PHI cycle we must avoid. // Otherwise it's an entry with a valid next source we already found. if (CurSrcRes.getNumSources() > 1) { DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n"); return false; } break; } RewriteMap.insert(std::make_pair(CurSrcPair, Res)); // ValueTrackerResult usually have one source unless it's the result from // a PHI instruction. Add the found PHI edges to be looked up further. unsigned NumSrcs = Res.getNumSources(); if (NumSrcs > 1) { PHICount++; for (unsigned i = 0; i < NumSrcs; ++i) SrcToLook.push_back(TargetInstrInfo::RegSubRegPair( Res.getSrcReg(i), Res.getSrcSubReg(i))); break; } CurSrcPair.Reg = Res.getSrcReg(0); CurSrcPair.SubReg = Res.getSrcSubReg(0); // Do not extend the live-ranges of physical registers as they add // constraints to the register allocator. Moreover, if we want to extend // the live-range of a physical register, unlike SSA virtual register, // we will have to check that they aren't redefine before the related use. if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg)) return false; const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); ShouldRewrite = TRI->shouldRewriteCopySrc(DefRC, SubReg, SrcRC, CurSrcPair.SubReg); } while (!ShouldRewrite); // Continue looking for new sources... if (Res.isValid()) continue; // Do not continue searching for a new source if the there's at least // one use-def which cannot be rewritten. if (!ShouldRewrite) return false; } if (PHICount >= RewritePHILimit) { DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); return false; } // If we did not find a more suitable source, there is nothing to optimize. return CurSrcPair.Reg != Reg; } /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are /// guaranteed to have the same register class. This is necessary whenever we /// successfully traverse a PHI instruction and find suitable sources coming /// from its edges. By inserting a new PHI, we provide a rewritten PHI def /// suitable to be used in a new COPY instruction. static MachineInstr * insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs, MachineInstr *OrigPHI) { assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg); unsigned NewVR = MRI->createVirtualRegister(NewRC); MachineBasicBlock *MBB = OrigPHI->getParent(); MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(), TII->get(TargetOpcode::PHI), NewVR); unsigned MBBOpIdx = 2; for (auto RegPair : SrcRegs) { MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB()); // Since we're extended the lifetime of RegPair.Reg, clear the // kill flags to account for that and make RegPair.Reg reaches // the new PHI. MRI->clearKillFlags(RegPair.Reg); MBBOpIdx += 2; } return MIB; } namespace { /// \brief Helper class to rewrite the arguments of a copy-like instruction. class CopyRewriter { protected: /// The copy-like instruction. MachineInstr &CopyLike; /// The index of the source being rewritten. unsigned CurrentSrcIdx; public: CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {} virtual ~CopyRewriter() {} /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and /// the related value that it affects (TrackReg, TrackSubReg). /// A source is considered rewritable if its register class and the /// register class of the related TrackReg may not be register /// coalescer friendly. In other words, given a copy-like instruction /// not all the arguments may be returned at rewritable source, since /// some arguments are none to be register coalescer friendly. /// /// Each call of this method moves the current source to the next /// rewritable source. /// For instance, let CopyLike be the instruction to rewrite. /// CopyLike has one definition and one source: /// dst.dstSubIdx = CopyLike src.srcSubIdx. /// /// The first call will give the first rewritable source, i.e., /// the only source this instruction has: /// (SrcReg, SrcSubReg) = (src, srcSubIdx). /// This source defines the whole definition, i.e., /// (TrackReg, TrackSubReg) = (dst, dstSubIdx). /// /// The second and subsequent calls will return false, as there is only one /// rewritable source. /// /// \return True if a rewritable source has been found, false otherwise. /// The output arguments are valid if and only if true is returned. virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, unsigned &TrackReg, unsigned &TrackSubReg) { // If CurrentSrcIdx == 1, this means this function has already been called // once. CopyLike has one definition and one argument, thus, there is // nothing else to rewrite. if (!CopyLike.isCopy() || CurrentSrcIdx == 1) return false; // This is the first call to getNextRewritableSource. // Move the CurrentSrcIdx to remember that we made that call. CurrentSrcIdx = 1; // The rewritable source is the argument. const MachineOperand &MOSrc = CopyLike.getOperand(1); SrcReg = MOSrc.getReg(); SrcSubReg = MOSrc.getSubReg(); // What we track are the alternative sources of the definition. const MachineOperand &MODef = CopyLike.getOperand(0); TrackReg = MODef.getReg(); TrackSubReg = MODef.getSubReg(); return true; } /// \brief Rewrite the current source with \p NewReg and \p NewSubReg /// if possible. /// \return True if the rewriting was possible, false otherwise. virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) { if (!CopyLike.isCopy() || CurrentSrcIdx != 1) return false; MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); MOSrc.setReg(NewReg); MOSrc.setSubReg(NewSubReg); return true; } /// \brief Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find /// the new source to use for rewrite. If \p HandleMultipleSources is true and /// multiple sources for a given \p Def are found along the way, we found a /// PHI instructions that needs to be rewritten. /// TODO: HandleMultipleSources should be removed once we test PHI handling /// with coalescable copies. TargetInstrInfo::RegSubRegPair getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, TargetInstrInfo::RegSubRegPair Def, PeepholeOptimizer::RewriteMapTy &RewriteMap, bool HandleMultipleSources = true) { TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); do { ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); // If there are no entries on the map, LookupSrc is the new source. if (!Res.isValid()) return LookupSrc; // There's only one source for this definition, keep searching... unsigned NumSrcs = Res.getNumSources(); if (NumSrcs == 1) { LookupSrc.Reg = Res.getSrcReg(0); LookupSrc.SubReg = Res.getSrcSubReg(0); continue; } // TODO: Remove once multiple srcs w/ coalescable copies are supported. if (!HandleMultipleSources) break; // Multiple sources, recurse into each source to find a new source // for it. Then, rewrite the PHI accordingly to its new edges. SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs; for (unsigned i = 0; i < NumSrcs; ++i) { TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i)); NewPHISrcs.push_back( getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); } // Build the new PHI node and return its def register as the new source. MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst()); MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI); DEBUG(dbgs() << "-- getNewSource\n"); DEBUG(dbgs() << " Replacing: " << *OrigPHI); DEBUG(dbgs() << " With: " << *NewPHI); const MachineOperand &MODef = NewPHI->getOperand(0); return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg()); } while (1); return TargetInstrInfo::RegSubRegPair(0, 0); } /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap /// and create a new COPY instruction. More info about RewriteMap in /// PeepholeOptimizer::findNextSource. Right now this is only used to handle /// Uncoalescable copies, since they are copy like instructions that aren't /// recognized by the register allocator. virtual MachineInstr * RewriteSource(TargetInstrInfo::RegSubRegPair Def, PeepholeOptimizer::RewriteMapTy &RewriteMap) { return nullptr; } }; /// \brief Helper class to rewrite uncoalescable copy like instructions /// into new COPY (coalescable friendly) instructions. class UncoalescableRewriter : public CopyRewriter { protected: const TargetInstrInfo &TII; MachineRegisterInfo &MRI; /// The number of defs in the bitcast unsigned NumDefs; public: UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII, MachineRegisterInfo &MRI) : CopyRewriter(MI), TII(TII), MRI(MRI) { NumDefs = MI.getDesc().getNumDefs(); } /// \brief Get the next rewritable def source (TrackReg, TrackSubReg) /// All such sources need to be considered rewritable in order to /// rewrite a uncoalescable copy-like instruction. This method return /// each definition that must be checked if rewritable. /// bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, unsigned &TrackReg, unsigned &TrackSubReg) override { // Find the next non-dead definition and continue from there. if (CurrentSrcIdx == NumDefs) return false; while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { ++CurrentSrcIdx; if (CurrentSrcIdx == NumDefs) return false; } // What we track are the alternative sources of the definition. const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); TrackReg = MODef.getReg(); TrackSubReg = MODef.getSubReg(); CurrentSrcIdx++; return true; } /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap /// and create a new COPY instruction. More info about RewriteMap in /// PeepholeOptimizer::findNextSource. Right now this is only used to handle /// Uncoalescable copies, since they are copy like instructions that aren't /// recognized by the register allocator. MachineInstr * RewriteSource(TargetInstrInfo::RegSubRegPair Def, PeepholeOptimizer::RewriteMapTy &RewriteMap) override { assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) && "We do not rewrite physical registers"); // Find the new source to use in the COPY rewrite. TargetInstrInfo::RegSubRegPair NewSrc = getNewSource(&MRI, &TII, Def, RewriteMap); // Insert the COPY. const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg); unsigned NewVR = MRI.createVirtualRegister(DefRC); MachineInstr *NewCopy = BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), TII.get(TargetOpcode::COPY), NewVR) .addReg(NewSrc.Reg, 0, NewSrc.SubReg); NewCopy->getOperand(0).setSubReg(Def.SubReg); if (Def.SubReg) NewCopy->getOperand(0).setIsUndef(); DEBUG(dbgs() << "-- RewriteSource\n"); DEBUG(dbgs() << " Replacing: " << CopyLike); DEBUG(dbgs() << " With: " << *NewCopy); MRI.replaceRegWith(Def.Reg, NewVR); MRI.clearKillFlags(NewVR); // We extended the lifetime of NewSrc.Reg, clear the kill flags to // account for that. MRI.clearKillFlags(NewSrc.Reg); return NewCopy; } }; /// \brief Specialized rewriter for INSERT_SUBREG instruction. class InsertSubregRewriter : public CopyRewriter { public: InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) { assert(MI.isInsertSubreg() && "Invalid instruction"); } /// \brief See CopyRewriter::getNextRewritableSource. /// Here CopyLike has the following form: /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. /// Src1 has the same register class has dst, hence, there is /// nothing to rewrite. /// Src2.src2SubIdx, may not be register coalescer friendly. /// Therefore, the first call to this method returns: /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). /// (TrackReg, TrackSubReg) = (dst, subIdx). /// /// Subsequence calls will return false. bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, unsigned &TrackReg, unsigned &TrackSubReg) override { // If we already get the only source we can rewrite, return false. if (CurrentSrcIdx == 2) return false; // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. CurrentSrcIdx = 2; const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); SrcReg = MOInsertedReg.getReg(); SrcSubReg = MOInsertedReg.getSubReg(); const MachineOperand &MODef = CopyLike.getOperand(0); // We want to track something that is compatible with the // partial definition. TrackReg = MODef.getReg(); if (MODef.getSubReg()) // Bail if we have to compose sub-register indices. return false; TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm(); return true; } bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { if (CurrentSrcIdx != 2) return false; // We are rewriting the inserted reg. MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); MO.setReg(NewReg); MO.setSubReg(NewSubReg); return true; } }; /// \brief Specialized rewriter for EXTRACT_SUBREG instruction. class ExtractSubregRewriter : public CopyRewriter { const TargetInstrInfo &TII; public: ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) : CopyRewriter(MI), TII(TII) { assert(MI.isExtractSubreg() && "Invalid instruction"); } /// \brief See CopyRewriter::getNextRewritableSource. /// Here CopyLike has the following form: /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. /// There is only one rewritable source: Src.subIdx, /// which defines dst.dstSubIdx. bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, unsigned &TrackReg, unsigned &TrackSubReg) override { // If we already get the only source we can rewrite, return false. if (CurrentSrcIdx == 1) return false; // We are looking at v1 = EXTRACT_SUBREG v0, sub0. CurrentSrcIdx = 1; const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); SrcReg = MOExtractedReg.getReg(); // If we have to compose sub-register indices, bail out. if (MOExtractedReg.getSubReg()) return false; SrcSubReg = CopyLike.getOperand(2).getImm(); // We want to track something that is compatible with the definition. const MachineOperand &MODef = CopyLike.getOperand(0); TrackReg = MODef.getReg(); TrackSubReg = MODef.getSubReg(); return true; } bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { // The only source we can rewrite is the input register. if (CurrentSrcIdx != 1) return false; CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); // If we find a source that does not require to extract something, // rewrite the operation with a copy. if (!NewSubReg) { // Move the current index to an invalid position. // We do not want another call to this method to be able // to do any change. CurrentSrcIdx = -1; // Rewrite the operation as a COPY. // Get rid of the sub-register index. CopyLike.RemoveOperand(2); // Morph the operation into a COPY. CopyLike.setDesc(TII.get(TargetOpcode::COPY)); return true; } CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); return true; } }; /// \brief Specialized rewriter for REG_SEQUENCE instruction. class RegSequenceRewriter : public CopyRewriter { public: RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) { assert(MI.isRegSequence() && "Invalid instruction"); } /// \brief See CopyRewriter::getNextRewritableSource. /// Here CopyLike has the following form: /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. /// Each call will return a different source, walking all the available /// source. /// /// The first call returns: /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). /// (TrackReg, TrackSubReg) = (dst, subIdx1). /// /// The second call returns: /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). /// (TrackReg, TrackSubReg) = (dst, subIdx2). /// /// And so on, until all the sources have been traversed, then /// it returns false. bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, unsigned &TrackReg, unsigned &TrackSubReg) override { // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. // If this is the first call, move to the first argument. if (CurrentSrcIdx == 0) { CurrentSrcIdx = 1; } else { // Otherwise, move to the next argument and check that it is valid. CurrentSrcIdx += 2; if (CurrentSrcIdx >= CopyLike.getNumOperands()) return false; } const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); SrcReg = MOInsertedReg.getReg(); // If we have to compose sub-register indices, bail out. if ((SrcSubReg = MOInsertedReg.getSubReg())) return false; // We want to track something that is compatible with the related // partial definition. TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); const MachineOperand &MODef = CopyLike.getOperand(0); TrackReg = MODef.getReg(); // If we have to compose sub-registers, bail. return MODef.getSubReg() == 0; } bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { // We cannot rewrite out of bound operands. // Moreover, rewritable sources are at odd positions. if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) return false; MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); MO.setReg(NewReg); MO.setSubReg(NewSubReg); return true; } }; } // End namespace. /// \brief Get the appropriated CopyRewriter for \p MI. /// \return A pointer to a dynamically allocated CopyRewriter or nullptr /// if no rewriter works for \p MI. static CopyRewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII, MachineRegisterInfo &MRI) { // Handle uncoalescable copy-like instructions. if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() || MI.isExtractSubregLike())) return new UncoalescableRewriter(MI, TII, MRI); switch (MI.getOpcode()) { default: return nullptr; case TargetOpcode::COPY: return new CopyRewriter(MI); case TargetOpcode::INSERT_SUBREG: return new InsertSubregRewriter(MI); case TargetOpcode::EXTRACT_SUBREG: return new ExtractSubregRewriter(MI, TII); case TargetOpcode::REG_SEQUENCE: return new RegSequenceRewriter(MI); } llvm_unreachable(nullptr); } /// \brief Optimize generic copy instructions to avoid cross /// register bank copy. The optimization looks through a chain of /// copies and tries to find a source that has a compatible register /// class. /// Two register classes are considered to be compatible if they share /// the same register bank. /// New copies issued by this optimization are register allocator /// friendly. This optimization does not remove any copy as it may /// overconstrain the register allocator, but replaces some operands /// when possible. /// \pre isCoalescableCopy(*MI) is true. /// \return True, when \p MI has been rewritten. False otherwise. bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) { assert(MI && isCoalescableCopy(*MI) && "Invalid argument"); assert(MI->getDesc().getNumDefs() == 1 && "Coalescer can understand multiple defs?!"); const MachineOperand &MODef = MI->getOperand(0); // Do not rewrite physical definitions. if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg())) return false; bool Changed = false; // Get the right rewriter for the current copy. std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); // If none exists, bail out. if (!CpyRewriter) return false; // Rewrite each rewritable source. unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg; while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg, TrackSubReg)) { // Keep track of PHI nodes and its incoming edges when looking for sources. RewriteMapTy RewriteMap; // Try to find a more suitable source. If we failed to do so, or get the // actual source, move to the next source. if (!findNextSource(TrackReg, TrackSubReg, RewriteMap)) continue; // Get the new source to rewrite. TODO: Only enable handling of multiple // sources (PHIs) once we have a motivating example and testcases for it. TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg); TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource( MRI, TII, TrackPair, RewriteMap, false /* multiple sources */); if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0) continue; // Rewrite source. if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { // We may have extended the live-range of NewSrc, account for that. MRI->clearKillFlags(NewSrc.Reg); Changed = true; } } // TODO: We could have a clean-up method to tidy the instruction. // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 // => v0 = COPY v1 // Currently we haven't seen motivating example for that and we // want to avoid untested code. NumRewrittenCopies += Changed; return Changed; } /// \brief Optimize copy-like instructions to create /// register coalescer friendly instruction. /// The optimization tries to kill-off the \p MI by looking /// through a chain of copies to find a source that has a compatible /// register class. /// If such a source is found, it replace \p MI by a generic COPY /// operation. /// \pre isUncoalescableCopy(*MI) is true. /// \return True, when \p MI has been optimized. In that case, \p MI has /// been removed from its parent. /// All COPY instructions created, are inserted in \p LocalMIs. bool PeepholeOptimizer::optimizeUncoalescableCopy( MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { assert(MI && isUncoalescableCopy(*MI) && "Invalid argument"); // Check if we can rewrite all the values defined by this instruction. SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs; // Get the right rewriter for the current copy. std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); // If none exists, bail out. if (!CpyRewriter) return false; // Rewrite each rewritable source by generating new COPYs. This works // differently from optimizeCoalescableCopy since it first makes sure that all // definitions can be rewritten. RewriteMapTy RewriteMap; unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg; while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg, CopyDefSubReg)) { // If a physical register is here, this is probably for a good reason. // Do not rewrite that. if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg)) return false; // If we do not know how to rewrite this definition, there is no point // in trying to kill this instruction. TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg); if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap)) return false; RewritePairs.push_back(Def); } // The change is possible for all defs, do it. for (const auto &Def : RewritePairs) { // Rewrite the "copy" in a way the register coalescer understands. MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap); assert(NewCopy && "Should be able to always generate a new copy"); LocalMIs.insert(NewCopy); } // MI is now dead. MI->eraseFromParent(); ++NumUncoalescableCopies; return true; } /// isLoadFoldable - Check whether MI is a candidate for folding into a later /// instruction. We only fold loads to virtual registers and the virtual /// register defined has a single use. bool PeepholeOptimizer::isLoadFoldable( MachineInstr *MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { if (!MI->canFoldAsLoad() || !MI->mayLoad()) return false; const MCInstrDesc &MCID = MI->getDesc(); if (MCID.getNumDefs() != 1) return false; unsigned Reg = MI->getOperand(0).getReg(); // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting // loads. It should be checked when processing uses of the load, since // uses can be removed during peephole. if (!MI->getOperand(0).getSubReg() && TargetRegisterInfo::isVirtualRegister(Reg) && MRI->hasOneNonDBGUse(Reg)) { FoldAsLoadDefCandidates.insert(Reg); return true; } return false; } bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI, SmallSet<unsigned, 4> &ImmDefRegs, DenseMap<unsigned, MachineInstr*> &ImmDefMIs) { const MCInstrDesc &MCID = MI->getDesc(); if (!MI->isMoveImmediate()) return false; if (MCID.getNumDefs() != 1) return false; unsigned Reg = MI->getOperand(0).getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { ImmDefMIs.insert(std::make_pair(Reg, MI)); ImmDefRegs.insert(Reg); return true; } return false; } /// foldImmediate - Try folding register operands that are defined by move /// immediate instructions, i.e. a trivial constant folding optimization, if /// and only if the def and use are in the same BB. bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, SmallSet<unsigned, 4> &ImmDefRegs, DenseMap<unsigned, MachineInstr*> &ImmDefMIs) { for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || MO.isDef()) continue; // Ignore dead implicit defs. if (MO.isImplicit() && MO.isDead()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (ImmDefRegs.count(Reg) == 0) continue; DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); if (TII->FoldImmediate(MI, II->second, Reg, MRI)) { ++NumImmFold; return true; } } return false; } // FIXME: This is very simple and misses some cases which should be handled when // motivating examples are found. // // The copy rewriting logic should look at uses as well as defs and be able to // eliminate copies across blocks. // // Later copies that are subregister extracts will also not be eliminated since // only the first copy is considered. // // e.g. // %vreg1 = COPY %vreg0 // %vreg2 = COPY %vreg0:sub1 // // Should replace %vreg2 uses with %vreg1:sub1 bool PeepholeOptimizer::foldRedundantCopy( MachineInstr *MI, SmallSet<unsigned, 4> &CopySrcRegs, DenseMap<unsigned, MachineInstr *> &CopyMIs) { assert(MI->isCopy() && "expected a COPY machine instruction"); unsigned SrcReg = MI->getOperand(1).getReg(); if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) return false; unsigned DstReg = MI->getOperand(0).getReg(); if (!TargetRegisterInfo::isVirtualRegister(DstReg)) return false; if (CopySrcRegs.insert(SrcReg).second) { // First copy of this reg seen. CopyMIs.insert(std::make_pair(SrcReg, MI)); return false; } MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; unsigned SrcSubReg = MI->getOperand(1).getSubReg(); unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); // Can't replace different subregister extracts. if (SrcSubReg != PrevSrcSubReg) return false; unsigned PrevDstReg = PrevCopy->getOperand(0).getReg(); // Only replace if the copy register class is the same. // // TODO: If we have multiple copies to different register classes, we may want // to track multiple copies of the same source register. if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) return false; MRI->replaceRegWith(DstReg, PrevDstReg); // Lifetime of the previous copy has been extended. MRI->clearKillFlags(PrevDstReg); return true; } bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) { return TargetRegisterInfo::isPhysicalRegister(Reg) && !MRI->isAllocatable(Reg); } bool PeepholeOptimizer::foldRedundantNAPhysCopy( MachineInstr *MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) { assert(MI->isCopy() && "expected a COPY machine instruction"); if (DisableNAPhysCopyOpt) return false; unsigned DstReg = MI->getOperand(0).getReg(); unsigned SrcReg = MI->getOperand(1).getReg(); if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) { // %vreg = COPY %PHYSREG // Avoid using a datastructure which can track multiple live non-allocatable // phys->virt copies since LLVM doesn't seem to do this. NAPhysToVirtMIs.insert({SrcReg, MI}); return false; } if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg))) return false; // %PHYSREG = COPY %vreg auto PrevCopy = NAPhysToVirtMIs.find(DstReg); if (PrevCopy == NAPhysToVirtMIs.end()) { // We can't remove the copy: there was an intervening clobber of the // non-allocatable physical register after the copy to virtual. DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " << *MI << '\n'); return false; } unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg(); if (PrevDstReg == SrcReg) { // Remove the virt->phys copy: we saw the virtual register definition, and // the non-allocatable physical register's state hasn't changed since then. DEBUG(dbgs() << "NAPhysCopy: erasing " << *MI << '\n'); ++NumNAPhysCopies; return true; } // Potential missed optimization opportunity: we saw a different virtual // register get a copy of the non-allocatable physical register, and we only // track one such copy. Avoid getting confused by this new non-allocatable // physical register definition, and remove it from the tracked copies. DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << *MI << '\n'); NAPhysToVirtMIs.erase(PrevCopy); return false; } bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { if (skipOptnoneFunction(*MF.getFunction())) return false; DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); if (DisablePeephole) return false; TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getSubtarget().getRegisterInfo(); MRI = &MF.getRegInfo(); DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; bool Changed = false; for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { MachineBasicBlock *MBB = &*I; bool SeenMoveImm = false; // During this forward scan, at some point it needs to answer the question // "given a pointer to an MI in the current BB, is it located before or // after the current instruction". // To perform this, the following set keeps track of the MIs already seen // during the scan, if a MI is not in the set, it is assumed to be located // after. Newly created MIs have to be inserted in the set as well. SmallPtrSet<MachineInstr*, 16> LocalMIs; SmallSet<unsigned, 4> ImmDefRegs; DenseMap<unsigned, MachineInstr*> ImmDefMIs; SmallSet<unsigned, 16> FoldAsLoadDefCandidates; // Track when a non-allocatable physical register is copied to a virtual // register so that useless moves can be removed. // // %PHYSREG is the map index; MI is the last valid `%vreg = COPY %PHYSREG` // without any intervening re-definition of %PHYSREG. DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs; // Set of virtual registers that are copied from. SmallSet<unsigned, 4> CopySrcRegs; DenseMap<unsigned, MachineInstr *> CopySrcMIs; for (MachineBasicBlock::iterator MII = I->begin(), MIE = I->end(); MII != MIE; ) { MachineInstr *MI = &*MII; // We may be erasing MI below, increment MII now. ++MII; LocalMIs.insert(MI); // Skip debug values. They should not affect this peephole optimization. if (MI->isDebugValue()) continue; // If we run into an instruction we can't fold across, discard // the load candidates. if (MI->isLoadFoldBarrier()) FoldAsLoadDefCandidates.clear(); if (MI->isPosition() || MI->isPHI()) continue; if (!MI->isCopy()) { for (const auto &Op : MI->operands()) { // Visit all operands: definitions can be implicit or explicit. if (Op.isReg()) { unsigned Reg = Op.getReg(); if (Op.isDef() && isNAPhysCopy(Reg)) { const auto &Def = NAPhysToVirtMIs.find(Reg); if (Def != NAPhysToVirtMIs.end()) { // A new definition of the non-allocatable physical register // invalidates previous copies. DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI << '\n'); NAPhysToVirtMIs.erase(Def); } } } else if (Op.isRegMask()) { const uint32_t *RegMask = Op.getRegMask(); for (auto &RegMI : NAPhysToVirtMIs) { unsigned Def = RegMI.first; if (MachineOperand::clobbersPhysReg(RegMask, Def)) { DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI << '\n'); NAPhysToVirtMIs.erase(Def); } } } } } if (MI->isImplicitDef() || MI->isKill()) continue; if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { // Blow away all non-allocatable physical registers knowledge since we // don't know what's correct anymore. // // FIXME: handle explicit asm clobbers. DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " << *MI << '\n'); NAPhysToVirtMIs.clear(); continue; } if ((isUncoalescableCopy(*MI) && optimizeUncoalescableCopy(MI, LocalMIs)) || (MI->isCompare() && optimizeCmpInstr(MI, MBB)) || (MI->isSelect() && optimizeSelect(MI, LocalMIs))) { // MI is deleted. LocalMIs.erase(MI); Changed = true; continue; } if (MI->isConditionalBranch() && optimizeCondBranch(MI)) { Changed = true; continue; } if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) { // MI is just rewritten. Changed = true; continue; } if (MI->isCopy() && (foldRedundantCopy(MI, CopySrcRegs, CopySrcMIs) || foldRedundantNAPhysCopy(MI, NAPhysToVirtMIs))) { LocalMIs.erase(MI); MI->eraseFromParent(); Changed = true; continue; } if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) { SeenMoveImm = true; } else { Changed |= optimizeExtInstr(MI, MBB, LocalMIs); // optimizeExtInstr might have created new instructions after MI // and before the already incremented MII. Adjust MII so that the // next iteration sees the new instructions. MII = MI; ++MII; if (SeenMoveImm) Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs); } // Check whether MI is a load candidate for folding into a later // instruction. If MI is not a candidate, check whether we can fold an // earlier load into MI. if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) && !FoldAsLoadDefCandidates.empty()) { const MCInstrDesc &MIDesc = MI->getDesc(); for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands(); ++i) { const MachineOperand &MOp = MI->getOperand(i); if (!MOp.isReg()) continue; unsigned FoldAsLoadDefReg = MOp.getReg(); if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { // We need to fold load after optimizeCmpInstr, since // optimizeCmpInstr can enable folding by converting SUB to CMP. // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and // we need it for markUsesInDebugValueAsUndef(). unsigned FoldedReg = FoldAsLoadDefReg; MachineInstr *DefMI = nullptr; MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI, FoldAsLoadDefReg, DefMI); if (FoldMI) { // Update LocalMIs since we replaced MI with FoldMI and deleted // DefMI. DEBUG(dbgs() << "Replacing: " << *MI); DEBUG(dbgs() << " With: " << *FoldMI); LocalMIs.erase(MI); LocalMIs.erase(DefMI); LocalMIs.insert(FoldMI); MI->eraseFromParent(); DefMI->eraseFromParent(); MRI->markUsesInDebugValueAsUndef(FoldedReg); FoldAsLoadDefCandidates.erase(FoldedReg); ++NumLoadFold; // MI is replaced with FoldMI. Changed = true; break; } } } } } } return Changed; } ValueTrackerResult ValueTracker::getNextSourceFromCopy() { assert(Def->isCopy() && "Invalid definition"); // Copy instruction are supposed to be: Def = Src. // If someone breaks this assumption, bad things will happen everywhere. assert(Def->getNumOperands() == 2 && "Invalid number of operands"); if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) // If we look for a different subreg, it means we want a subreg of src. // Bails as we do not support composing subregs yet. return ValueTrackerResult(); // Otherwise, we want the whole source. const MachineOperand &Src = Def->getOperand(1); return ValueTrackerResult(Src.getReg(), Src.getSubReg()); } ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { assert(Def->isBitcast() && "Invalid definition"); // Bail if there are effects that a plain copy will not expose. if (Def->hasUnmodeledSideEffects()) return ValueTrackerResult(); // Bitcasts with more than one def are not supported. if (Def->getDesc().getNumDefs() != 1) return ValueTrackerResult(); if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) // If we look for a different subreg, it means we want a subreg of the src. // Bails as we do not support composing subregs yet. return ValueTrackerResult(); unsigned SrcIdx = Def->getNumOperands(); for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; ++OpIdx) { const MachineOperand &MO = Def->getOperand(OpIdx); if (!MO.isReg() || !MO.getReg()) continue; // Ignore dead implicit defs. if (MO.isImplicit() && MO.isDead()) continue; assert(!MO.isDef() && "We should have skipped all the definitions by now"); if (SrcIdx != EndOpIdx) // Multiple sources? return ValueTrackerResult(); SrcIdx = OpIdx; } const MachineOperand &Src = Def->getOperand(SrcIdx); return ValueTrackerResult(Src.getReg(), Src.getSubReg()); } ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { assert((Def->isRegSequence() || Def->isRegSequenceLike()) && "Invalid definition"); if (Def->getOperand(DefIdx).getSubReg()) // If we are composing subregs, bail out. // The case we are checking is Def.<subreg> = REG_SEQUENCE. // This should almost never happen as the SSA property is tracked at // the register level (as opposed to the subreg level). // I.e., // Def.sub0 = // Def.sub1 = // is a valid SSA representation for Def.sub0 and Def.sub1, but not for // Def. Thus, it must not be generated. // However, some code could theoretically generates a single // Def.sub0 (i.e, not defining the other subregs) and we would // have this case. // If we can ascertain (or force) that this never happens, we could // turn that into an assertion. return ValueTrackerResult(); if (!TII) // We could handle the REG_SEQUENCE here, but we do not want to // duplicate the code from the generic TII. return ValueTrackerResult(); SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs; if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) return ValueTrackerResult(); // We are looking at: // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... // Check if one of the operand defines the subreg we are interested in. for (auto &RegSeqInput : RegSeqInputRegs) { if (RegSeqInput.SubIdx == DefSubReg) { if (RegSeqInput.SubReg) // Bail if we have to compose sub registers. return ValueTrackerResult(); return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); } } // If the subreg we are tracking is super-defined by another subreg, // we could follow this value. However, this would require to compose // the subreg and we do not do that for now. return ValueTrackerResult(); } ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && "Invalid definition"); if (Def->getOperand(DefIdx).getSubReg()) // If we are composing subreg, bail out. // Same remark as getNextSourceFromRegSequence. // I.e., this may be turned into an assert. return ValueTrackerResult(); if (!TII) // We could handle the REG_SEQUENCE here, but we do not want to // duplicate the code from the generic TII. return ValueTrackerResult(); TargetInstrInfo::RegSubRegPair BaseReg; TargetInstrInfo::RegSubRegPairAndIdx InsertedReg; if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) return ValueTrackerResult(); // We are looking at: // Def = INSERT_SUBREG v0, v1, sub1 // There are two cases: // 1. DefSubReg == sub1, get v1. // 2. DefSubReg != sub1, the value may be available through v0. // #1 Check if the inserted register matches the required sub index. if (InsertedReg.SubIdx == DefSubReg) { return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); } // #2 Otherwise, if the sub register we are looking for is not partial // defined by the inserted element, we can look through the main // register (v0). const MachineOperand &MODef = Def->getOperand(DefIdx); // If the result register (Def) and the base register (v0) do not // have the same register class or if we have to compose // subregisters, bail out. if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || BaseReg.SubReg) return ValueTrackerResult(); // Get the TRI and check if the inserted sub-register overlaps with the // sub-register we are tracking. const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); if (!TRI || (TRI->getSubRegIndexLaneMask(DefSubReg) & TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0) return ValueTrackerResult(); // At this point, the value is available in v0 via the same subreg // we used for Def. return ValueTrackerResult(BaseReg.Reg, DefSubReg); } ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { assert((Def->isExtractSubreg() || Def->isExtractSubregLike()) && "Invalid definition"); // We are looking at: // Def = EXTRACT_SUBREG v0, sub0 // Bail if we have to compose sub registers. // Indeed, if DefSubReg != 0, we would have to compose it with sub0. if (DefSubReg) return ValueTrackerResult(); if (!TII) // We could handle the EXTRACT_SUBREG here, but we do not want to // duplicate the code from the generic TII. return ValueTrackerResult(); TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg; if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) return ValueTrackerResult(); // Bail if we have to compose sub registers. // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. if (ExtractSubregInputReg.SubReg) return ValueTrackerResult(); // Otherwise, the value is available in the v0.sub0. return ValueTrackerResult(ExtractSubregInputReg.Reg, ExtractSubregInputReg.SubIdx); } ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { assert(Def->isSubregToReg() && "Invalid definition"); // We are looking at: // Def = SUBREG_TO_REG Imm, v0, sub0 // Bail if we have to compose sub registers. // If DefSubReg != sub0, we would have to check that all the bits // we track are included in sub0 and if yes, we would have to // determine the right subreg in v0. if (DefSubReg != Def->getOperand(3).getImm()) return ValueTrackerResult(); // Bail if we have to compose sub registers. // Likewise, if v0.subreg != 0, we would have to compose it with sub0. if (Def->getOperand(2).getSubReg()) return ValueTrackerResult(); return ValueTrackerResult(Def->getOperand(2).getReg(), Def->getOperand(3).getImm()); } /// \brief Explore each PHI incoming operand and return its sources ValueTrackerResult ValueTracker::getNextSourceFromPHI() { assert(Def->isPHI() && "Invalid definition"); ValueTrackerResult Res; // If we look for a different subreg, bail as we do not support composing // subregs yet. if (Def->getOperand(0).getSubReg() != DefSubReg) return ValueTrackerResult(); // Return all register sources for PHI instructions. for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { auto &MO = Def->getOperand(i); assert(MO.isReg() && "Invalid PHI instruction"); Res.addSource(MO.getReg(), MO.getSubReg()); } return Res; } ValueTrackerResult ValueTracker::getNextSourceImpl() { assert(Def && "This method needs a valid definition"); assert( (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) && Def->getOperand(DefIdx).isDef() && "Invalid DefIdx"); if (Def->isCopy()) return getNextSourceFromCopy(); if (Def->isBitcast()) return getNextSourceFromBitcast(); // All the remaining cases involve "complex" instructions. // Bail if we did not ask for the advanced tracking. if (!UseAdvancedTracking) return ValueTrackerResult(); if (Def->isRegSequence() || Def->isRegSequenceLike()) return getNextSourceFromRegSequence(); if (Def->isInsertSubreg() || Def->isInsertSubregLike()) return getNextSourceFromInsertSubreg(); if (Def->isExtractSubreg() || Def->isExtractSubregLike()) return getNextSourceFromExtractSubreg(); if (Def->isSubregToReg()) return getNextSourceFromSubregToReg(); if (Def->isPHI()) return getNextSourceFromPHI(); return ValueTrackerResult(); } ValueTrackerResult ValueTracker::getNextSource() { // If we reach a point where we cannot move up in the use-def chain, // there is nothing we can get. if (!Def) return ValueTrackerResult(); ValueTrackerResult Res = getNextSourceImpl(); if (Res.isValid()) { // Update definition, definition index, and subregister for the // next call of getNextSource. // Update the current register. bool OneRegSrc = Res.getNumSources() == 1; if (OneRegSrc) Reg = Res.getSrcReg(0); // Update the result before moving up in the use-def chain // with the instruction containing the last found sources. Res.setInst(Def); // If we can still move up in the use-def chain, move to the next // definition. if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) { Def = MRI.getVRegDef(Reg); DefIdx = MRI.def_begin(Reg).getOperandNo(); DefSubReg = Res.getSrcSubReg(0); return Res; } } // If we end up here, this means we will not be able to find another source // for the next iteration. Make sure any new call to getNextSource bails out // early by cutting the use-def chain. Def = nullptr; return Res; }