//===-- CodeGen/AsmPrinter/WinException.cpp - Dwarf Exception Impl ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing Win64 exception info into asm files. // //===----------------------------------------------------------------------===// #include "WinException.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCWin64EH.h" #include "llvm/Support/COFF.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; WinException::WinException(AsmPrinter *A) : EHStreamer(A) { // MSVC's EH tables are always composed of 32-bit words. All known 64-bit // platforms use an imagerel32 relocation to refer to symbols. useImageRel32 = (A->getDataLayout().getPointerSizeInBits() == 64); } WinException::~WinException() {} /// endModule - Emit all exception information that should come after the /// content. void WinException::endModule() { auto &OS = *Asm->OutStreamer; const Module *M = MMI->getModule(); for (const Function &F : *M) if (F.hasFnAttribute("safeseh")) OS.EmitCOFFSafeSEH(Asm->getSymbol(&F)); } void WinException::beginFunction(const MachineFunction *MF) { shouldEmitMoves = shouldEmitPersonality = shouldEmitLSDA = false; // If any landing pads survive, we need an EH table. bool hasLandingPads = !MMI->getLandingPads().empty(); bool hasEHFunclets = MMI->hasEHFunclets(); const Function *F = MF->getFunction(); shouldEmitMoves = Asm->needsSEHMoves(); const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); unsigned PerEncoding = TLOF.getPersonalityEncoding(); const Function *Per = nullptr; if (F->hasPersonalityFn()) Per = dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts()); bool forceEmitPersonality = F->hasPersonalityFn() && !isNoOpWithoutInvoke(classifyEHPersonality(Per)) && F->needsUnwindTableEntry(); shouldEmitPersonality = forceEmitPersonality || ((hasLandingPads || hasEHFunclets) && PerEncoding != dwarf::DW_EH_PE_omit && Per); unsigned LSDAEncoding = TLOF.getLSDAEncoding(); shouldEmitLSDA = shouldEmitPersonality && LSDAEncoding != dwarf::DW_EH_PE_omit; // If we're not using CFI, we don't want the CFI or the personality, but we // might want EH tables if we had EH pads. if (!Asm->MAI->usesWindowsCFI()) { shouldEmitLSDA = hasEHFunclets; shouldEmitPersonality = false; return; } beginFunclet(MF->front(), Asm->CurrentFnSym); } /// endFunction - Gather and emit post-function exception information. /// void WinException::endFunction(const MachineFunction *MF) { if (!shouldEmitPersonality && !shouldEmitMoves && !shouldEmitLSDA) return; const Function *F = MF->getFunction(); EHPersonality Per = EHPersonality::Unknown; if (F->hasPersonalityFn()) Per = classifyEHPersonality(F->getPersonalityFn()); // Get rid of any dead landing pads if we're not using funclets. In funclet // schemes, the landing pad is not actually reachable. It only exists so // that we can emit the right table data. if (!isFuncletEHPersonality(Per)) MMI->TidyLandingPads(); endFunclet(); // endFunclet will emit the necessary .xdata tables for x64 SEH. if (Per == EHPersonality::MSVC_Win64SEH && MMI->hasEHFunclets()) return; if (shouldEmitPersonality || shouldEmitLSDA) { Asm->OutStreamer->PushSection(); // Just switch sections to the right xdata section. This use of CurrentFnSym // assumes that we only emit the LSDA when ending the parent function. MCSection *XData = WinEH::UnwindEmitter::getXDataSection(Asm->CurrentFnSym, Asm->OutContext); Asm->OutStreamer->SwitchSection(XData); // Emit the tables appropriate to the personality function in use. If we // don't recognize the personality, assume it uses an Itanium-style LSDA. if (Per == EHPersonality::MSVC_Win64SEH) emitCSpecificHandlerTable(MF); else if (Per == EHPersonality::MSVC_X86SEH) emitExceptHandlerTable(MF); else if (Per == EHPersonality::MSVC_CXX) emitCXXFrameHandler3Table(MF); else if (Per == EHPersonality::CoreCLR) emitCLRExceptionTable(MF); else emitExceptionTable(); Asm->OutStreamer->PopSection(); } } /// Retreive the MCSymbol for a GlobalValue or MachineBasicBlock. static MCSymbol *getMCSymbolForMBB(AsmPrinter *Asm, const MachineBasicBlock *MBB) { if (!MBB) return nullptr; assert(MBB->isEHFuncletEntry()); // Give catches and cleanups a name based off of their parent function and // their funclet entry block's number. const MachineFunction *MF = MBB->getParent(); const Function *F = MF->getFunction(); StringRef FuncLinkageName = GlobalValue::getRealLinkageName(F->getName()); MCContext &Ctx = MF->getContext(); StringRef HandlerPrefix = MBB->isCleanupFuncletEntry() ? "dtor" : "catch"; return Ctx.getOrCreateSymbol("?" + HandlerPrefix + "$" + Twine(MBB->getNumber()) + "@?0?" + FuncLinkageName + "@4HA"); } void WinException::beginFunclet(const MachineBasicBlock &MBB, MCSymbol *Sym) { CurrentFuncletEntry = &MBB; const Function *F = Asm->MF->getFunction(); // If a symbol was not provided for the funclet, invent one. if (!Sym) { Sym = getMCSymbolForMBB(Asm, &MBB); // Describe our funclet symbol as a function with internal linkage. Asm->OutStreamer->BeginCOFFSymbolDef(Sym); Asm->OutStreamer->EmitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC); Asm->OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT); Asm->OutStreamer->EndCOFFSymbolDef(); // We want our funclet's entry point to be aligned such that no nops will be // present after the label. Asm->EmitAlignment(std::max(Asm->MF->getAlignment(), MBB.getAlignment()), F); // Now that we've emitted the alignment directive, point at our funclet. Asm->OutStreamer->EmitLabel(Sym); } // Mark 'Sym' as starting our funclet. if (shouldEmitMoves || shouldEmitPersonality) Asm->OutStreamer->EmitWinCFIStartProc(Sym); if (shouldEmitPersonality) { const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); const Function *PerFn = nullptr; // Determine which personality routine we are using for this funclet. if (F->hasPersonalityFn()) PerFn = dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts()); const MCSymbol *PersHandlerSym = TLOF.getCFIPersonalitySymbol(PerFn, *Asm->Mang, Asm->TM, MMI); // Classify the personality routine so that we may reason about it. EHPersonality Per = EHPersonality::Unknown; if (F->hasPersonalityFn()) Per = classifyEHPersonality(F->getPersonalityFn()); // Do not emit a .seh_handler directive if it is a C++ cleanup funclet. if (Per != EHPersonality::MSVC_CXX || !CurrentFuncletEntry->isCleanupFuncletEntry()) Asm->OutStreamer->EmitWinEHHandler(PersHandlerSym, true, true); } } void WinException::endFunclet() { // No funclet to process? Great, we have nothing to do. if (!CurrentFuncletEntry) return; if (shouldEmitMoves || shouldEmitPersonality) { const Function *F = Asm->MF->getFunction(); EHPersonality Per = EHPersonality::Unknown; if (F->hasPersonalityFn()) Per = classifyEHPersonality(F->getPersonalityFn()); // The .seh_handlerdata directive implicitly switches section, push the // current section so that we may return to it. Asm->OutStreamer->PushSection(); // Emit an UNWIND_INFO struct describing the prologue. Asm->OutStreamer->EmitWinEHHandlerData(); if (Per == EHPersonality::MSVC_CXX && shouldEmitPersonality && !CurrentFuncletEntry->isCleanupFuncletEntry()) { // If this is a C++ catch funclet (or the parent function), // emit a reference to the LSDA for the parent function. StringRef FuncLinkageName = GlobalValue::getRealLinkageName(F->getName()); MCSymbol *FuncInfoXData = Asm->OutContext.getOrCreateSymbol( Twine("$cppxdata$", FuncLinkageName)); Asm->OutStreamer->EmitValue(create32bitRef(FuncInfoXData), 4); } else if (Per == EHPersonality::MSVC_Win64SEH && MMI->hasEHFunclets() && !CurrentFuncletEntry->isEHFuncletEntry()) { // If this is the parent function in Win64 SEH, emit the LSDA immediately // following .seh_handlerdata. emitCSpecificHandlerTable(Asm->MF); } // Switch back to the previous section now that we are done writing to // .xdata. Asm->OutStreamer->PopSection(); // Emit a .seh_endproc directive to mark the end of the function. Asm->OutStreamer->EmitWinCFIEndProc(); } // Let's make sure we don't try to end the same funclet twice. CurrentFuncletEntry = nullptr; } const MCExpr *WinException::create32bitRef(const MCSymbol *Value) { if (!Value) return MCConstantExpr::create(0, Asm->OutContext); return MCSymbolRefExpr::create(Value, useImageRel32 ? MCSymbolRefExpr::VK_COFF_IMGREL32 : MCSymbolRefExpr::VK_None, Asm->OutContext); } const MCExpr *WinException::create32bitRef(const GlobalValue *GV) { if (!GV) return MCConstantExpr::create(0, Asm->OutContext); return create32bitRef(Asm->getSymbol(GV)); } const MCExpr *WinException::getLabelPlusOne(const MCSymbol *Label) { return MCBinaryExpr::createAdd(create32bitRef(Label), MCConstantExpr::create(1, Asm->OutContext), Asm->OutContext); } const MCExpr *WinException::getOffset(const MCSymbol *OffsetOf, const MCSymbol *OffsetFrom) { return MCBinaryExpr::createSub( MCSymbolRefExpr::create(OffsetOf, Asm->OutContext), MCSymbolRefExpr::create(OffsetFrom, Asm->OutContext), Asm->OutContext); } const MCExpr *WinException::getOffsetPlusOne(const MCSymbol *OffsetOf, const MCSymbol *OffsetFrom) { return MCBinaryExpr::createAdd(getOffset(OffsetOf, OffsetFrom), MCConstantExpr::create(1, Asm->OutContext), Asm->OutContext); } int WinException::getFrameIndexOffset(int FrameIndex, const WinEHFuncInfo &FuncInfo) { const TargetFrameLowering &TFI = *Asm->MF->getSubtarget().getFrameLowering(); unsigned UnusedReg; if (Asm->MAI->usesWindowsCFI()) return TFI.getFrameIndexReferenceFromSP(*Asm->MF, FrameIndex, UnusedReg); // For 32-bit, offsets should be relative to the end of the EH registration // node. For 64-bit, it's relative to SP at the end of the prologue. assert(FuncInfo.EHRegNodeEndOffset != INT_MAX); int Offset = TFI.getFrameIndexReference(*Asm->MF, FrameIndex, UnusedReg); Offset += FuncInfo.EHRegNodeEndOffset; return Offset; } namespace { /// Top-level state used to represent unwind to caller const int NullState = -1; struct InvokeStateChange { /// EH Label immediately after the last invoke in the previous state, or /// nullptr if the previous state was the null state. const MCSymbol *PreviousEndLabel; /// EH label immediately before the first invoke in the new state, or nullptr /// if the new state is the null state. const MCSymbol *NewStartLabel; /// State of the invoke following NewStartLabel, or NullState to indicate /// the presence of calls which may unwind to caller. int NewState; }; /// Iterator that reports all the invoke state changes in a range of machine /// basic blocks. Changes to the null state are reported whenever a call that /// may unwind to caller is encountered. The MBB range is expected to be an /// entire function or funclet, and the start and end of the range are treated /// as being in the NullState even if there's not an unwind-to-caller call /// before the first invoke or after the last one (i.e., the first state change /// reported is the first change to something other than NullState, and a /// change back to NullState is always reported at the end of iteration). class InvokeStateChangeIterator { InvokeStateChangeIterator(const WinEHFuncInfo &EHInfo, MachineFunction::const_iterator MFI, MachineFunction::const_iterator MFE, MachineBasicBlock::const_iterator MBBI, int BaseState) : EHInfo(EHInfo), MFI(MFI), MFE(MFE), MBBI(MBBI), BaseState(BaseState) { LastStateChange.PreviousEndLabel = nullptr; LastStateChange.NewStartLabel = nullptr; LastStateChange.NewState = BaseState; scan(); } public: static iterator_range<InvokeStateChangeIterator> range(const WinEHFuncInfo &EHInfo, MachineFunction::const_iterator Begin, MachineFunction::const_iterator End, int BaseState = NullState) { // Reject empty ranges to simplify bookkeeping by ensuring that we can get // the end of the last block. assert(Begin != End); auto BlockBegin = Begin->begin(); auto BlockEnd = std::prev(End)->end(); return make_range( InvokeStateChangeIterator(EHInfo, Begin, End, BlockBegin, BaseState), InvokeStateChangeIterator(EHInfo, End, End, BlockEnd, BaseState)); } // Iterator methods. bool operator==(const InvokeStateChangeIterator &O) const { assert(BaseState == O.BaseState); // Must be visiting same block. if (MFI != O.MFI) return false; // Must be visiting same isntr. if (MBBI != O.MBBI) return false; // At end of block/instr iteration, we can still have two distinct states: // one to report the final EndLabel, and another indicating the end of the // state change iteration. Check for CurrentEndLabel equality to // distinguish these. return CurrentEndLabel == O.CurrentEndLabel; } bool operator!=(const InvokeStateChangeIterator &O) const { return !operator==(O); } InvokeStateChange &operator*() { return LastStateChange; } InvokeStateChange *operator->() { return &LastStateChange; } InvokeStateChangeIterator &operator++() { return scan(); } private: InvokeStateChangeIterator &scan(); const WinEHFuncInfo &EHInfo; const MCSymbol *CurrentEndLabel = nullptr; MachineFunction::const_iterator MFI; MachineFunction::const_iterator MFE; MachineBasicBlock::const_iterator MBBI; InvokeStateChange LastStateChange; bool VisitingInvoke = false; int BaseState; }; } // end anonymous namespace InvokeStateChangeIterator &InvokeStateChangeIterator::scan() { bool IsNewBlock = false; for (; MFI != MFE; ++MFI, IsNewBlock = true) { if (IsNewBlock) MBBI = MFI->begin(); for (auto MBBE = MFI->end(); MBBI != MBBE; ++MBBI) { const MachineInstr &MI = *MBBI; if (!VisitingInvoke && LastStateChange.NewState != BaseState && MI.isCall() && !EHStreamer::callToNoUnwindFunction(&MI)) { // Indicate a change of state to the null state. We don't have // start/end EH labels handy but the caller won't expect them for // null state regions. LastStateChange.PreviousEndLabel = CurrentEndLabel; LastStateChange.NewStartLabel = nullptr; LastStateChange.NewState = BaseState; CurrentEndLabel = nullptr; // Don't re-visit this instr on the next scan ++MBBI; return *this; } // All other state changes are at EH labels before/after invokes. if (!MI.isEHLabel()) continue; MCSymbol *Label = MI.getOperand(0).getMCSymbol(); if (Label == CurrentEndLabel) { VisitingInvoke = false; continue; } auto InvokeMapIter = EHInfo.LabelToStateMap.find(Label); // Ignore EH labels that aren't the ones inserted before an invoke if (InvokeMapIter == EHInfo.LabelToStateMap.end()) continue; auto &StateAndEnd = InvokeMapIter->second; int NewState = StateAndEnd.first; // Keep track of the fact that we're between EH start/end labels so // we know not to treat the inoke we'll see as unwinding to caller. VisitingInvoke = true; if (NewState == LastStateChange.NewState) { // The state isn't actually changing here. Record the new end and // keep going. CurrentEndLabel = StateAndEnd.second; continue; } // Found a state change to report LastStateChange.PreviousEndLabel = CurrentEndLabel; LastStateChange.NewStartLabel = Label; LastStateChange.NewState = NewState; // Start keeping track of the new current end CurrentEndLabel = StateAndEnd.second; // Don't re-visit this instr on the next scan ++MBBI; return *this; } } // Iteration hit the end of the block range. if (LastStateChange.NewState != BaseState) { // Report the end of the last new state LastStateChange.PreviousEndLabel = CurrentEndLabel; LastStateChange.NewStartLabel = nullptr; LastStateChange.NewState = BaseState; // Leave CurrentEndLabel non-null to distinguish this state from end. assert(CurrentEndLabel != nullptr); return *this; } // We've reported all state changes and hit the end state. CurrentEndLabel = nullptr; return *this; } /// Emit the language-specific data that __C_specific_handler expects. This /// handler lives in the x64 Microsoft C runtime and allows catching or cleaning /// up after faults with __try, __except, and __finally. The typeinfo values /// are not really RTTI data, but pointers to filter functions that return an /// integer (1, 0, or -1) indicating how to handle the exception. For __finally /// blocks and other cleanups, the landing pad label is zero, and the filter /// function is actually a cleanup handler with the same prototype. A catch-all /// entry is modeled with a null filter function field and a non-zero landing /// pad label. /// /// Possible filter function return values: /// EXCEPTION_EXECUTE_HANDLER (1): /// Jump to the landing pad label after cleanups. /// EXCEPTION_CONTINUE_SEARCH (0): /// Continue searching this table or continue unwinding. /// EXCEPTION_CONTINUE_EXECUTION (-1): /// Resume execution at the trapping PC. /// /// Inferred table structure: /// struct Table { /// int NumEntries; /// struct Entry { /// imagerel32 LabelStart; /// imagerel32 LabelEnd; /// imagerel32 FilterOrFinally; // One means catch-all. /// imagerel32 LabelLPad; // Zero means __finally. /// } Entries[NumEntries]; /// }; void WinException::emitCSpecificHandlerTable(const MachineFunction *MF) { auto &OS = *Asm->OutStreamer; MCContext &Ctx = Asm->OutContext; const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo(); // Emit a label assignment with the SEH frame offset so we can use it for // llvm.x86.seh.recoverfp. StringRef FLinkageName = GlobalValue::getRealLinkageName(MF->getFunction()->getName()); MCSymbol *ParentFrameOffset = Ctx.getOrCreateParentFrameOffsetSymbol(FLinkageName); const MCExpr *MCOffset = MCConstantExpr::create(FuncInfo.SEHSetFrameOffset, Ctx); Asm->OutStreamer->EmitAssignment(ParentFrameOffset, MCOffset); // Use the assembler to compute the number of table entries through label // difference and division. MCSymbol *TableBegin = Ctx.createTempSymbol("lsda_begin", /*AlwaysAddSuffix=*/true); MCSymbol *TableEnd = Ctx.createTempSymbol("lsda_end", /*AlwaysAddSuffix=*/true); const MCExpr *LabelDiff = getOffset(TableEnd, TableBegin); const MCExpr *EntrySize = MCConstantExpr::create(16, Ctx); const MCExpr *EntryCount = MCBinaryExpr::createDiv(LabelDiff, EntrySize, Ctx); OS.EmitValue(EntryCount, 4); OS.EmitLabel(TableBegin); // Iterate over all the invoke try ranges. Unlike MSVC, LLVM currently only // models exceptions from invokes. LLVM also allows arbitrary reordering of // the code, so our tables end up looking a bit different. Rather than // trying to match MSVC's tables exactly, we emit a denormalized table. For // each range of invokes in the same state, we emit table entries for all // the actions that would be taken in that state. This means our tables are // slightly bigger, which is OK. const MCSymbol *LastStartLabel = nullptr; int LastEHState = -1; // Break out before we enter into a finally funclet. // FIXME: We need to emit separate EH tables for cleanups. MachineFunction::const_iterator End = MF->end(); MachineFunction::const_iterator Stop = std::next(MF->begin()); while (Stop != End && !Stop->isEHFuncletEntry()) ++Stop; for (const auto &StateChange : InvokeStateChangeIterator::range(FuncInfo, MF->begin(), Stop)) { // Emit all the actions for the state we just transitioned out of // if it was not the null state if (LastEHState != -1) emitSEHActionsForRange(FuncInfo, LastStartLabel, StateChange.PreviousEndLabel, LastEHState); LastStartLabel = StateChange.NewStartLabel; LastEHState = StateChange.NewState; } OS.EmitLabel(TableEnd); } void WinException::emitSEHActionsForRange(const WinEHFuncInfo &FuncInfo, const MCSymbol *BeginLabel, const MCSymbol *EndLabel, int State) { auto &OS = *Asm->OutStreamer; MCContext &Ctx = Asm->OutContext; assert(BeginLabel && EndLabel); while (State != -1) { const SEHUnwindMapEntry &UME = FuncInfo.SEHUnwindMap[State]; const MCExpr *FilterOrFinally; const MCExpr *ExceptOrNull; auto *Handler = UME.Handler.get<MachineBasicBlock *>(); if (UME.IsFinally) { FilterOrFinally = create32bitRef(getMCSymbolForMBB(Asm, Handler)); ExceptOrNull = MCConstantExpr::create(0, Ctx); } else { // For an except, the filter can be 1 (catch-all) or a function // label. FilterOrFinally = UME.Filter ? create32bitRef(UME.Filter) : MCConstantExpr::create(1, Ctx); ExceptOrNull = create32bitRef(Handler->getSymbol()); } OS.EmitValue(getLabelPlusOne(BeginLabel), 4); OS.EmitValue(getLabelPlusOne(EndLabel), 4); OS.EmitValue(FilterOrFinally, 4); OS.EmitValue(ExceptOrNull, 4); assert(UME.ToState < State && "states should decrease"); State = UME.ToState; } } void WinException::emitCXXFrameHandler3Table(const MachineFunction *MF) { const Function *F = MF->getFunction(); auto &OS = *Asm->OutStreamer; const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo(); StringRef FuncLinkageName = GlobalValue::getRealLinkageName(F->getName()); SmallVector<std::pair<const MCExpr *, int>, 4> IPToStateTable; MCSymbol *FuncInfoXData = nullptr; if (shouldEmitPersonality) { // If we're 64-bit, emit a pointer to the C++ EH data, and build a map from // IPs to state numbers. FuncInfoXData = Asm->OutContext.getOrCreateSymbol(Twine("$cppxdata$", FuncLinkageName)); computeIP2StateTable(MF, FuncInfo, IPToStateTable); } else { FuncInfoXData = Asm->OutContext.getOrCreateLSDASymbol(FuncLinkageName); } int UnwindHelpOffset = 0; if (Asm->MAI->usesWindowsCFI()) UnwindHelpOffset = getFrameIndexOffset(FuncInfo.UnwindHelpFrameIdx, FuncInfo); MCSymbol *UnwindMapXData = nullptr; MCSymbol *TryBlockMapXData = nullptr; MCSymbol *IPToStateXData = nullptr; if (!FuncInfo.CxxUnwindMap.empty()) UnwindMapXData = Asm->OutContext.getOrCreateSymbol( Twine("$stateUnwindMap$", FuncLinkageName)); if (!FuncInfo.TryBlockMap.empty()) TryBlockMapXData = Asm->OutContext.getOrCreateSymbol(Twine("$tryMap$", FuncLinkageName)); if (!IPToStateTable.empty()) IPToStateXData = Asm->OutContext.getOrCreateSymbol(Twine("$ip2state$", FuncLinkageName)); // FuncInfo { // uint32_t MagicNumber // int32_t MaxState; // UnwindMapEntry *UnwindMap; // uint32_t NumTryBlocks; // TryBlockMapEntry *TryBlockMap; // uint32_t IPMapEntries; // always 0 for x86 // IPToStateMapEntry *IPToStateMap; // always 0 for x86 // uint32_t UnwindHelp; // non-x86 only // ESTypeList *ESTypeList; // int32_t EHFlags; // } // EHFlags & 1 -> Synchronous exceptions only, no async exceptions. // EHFlags & 2 -> ??? // EHFlags & 4 -> The function is noexcept(true), unwinding can't continue. OS.EmitValueToAlignment(4); OS.EmitLabel(FuncInfoXData); OS.EmitIntValue(0x19930522, 4); // MagicNumber OS.EmitIntValue(FuncInfo.CxxUnwindMap.size(), 4); // MaxState OS.EmitValue(create32bitRef(UnwindMapXData), 4); // UnwindMap OS.EmitIntValue(FuncInfo.TryBlockMap.size(), 4); // NumTryBlocks OS.EmitValue(create32bitRef(TryBlockMapXData), 4); // TryBlockMap OS.EmitIntValue(IPToStateTable.size(), 4); // IPMapEntries OS.EmitValue(create32bitRef(IPToStateXData), 4); // IPToStateMap if (Asm->MAI->usesWindowsCFI()) OS.EmitIntValue(UnwindHelpOffset, 4); // UnwindHelp OS.EmitIntValue(0, 4); // ESTypeList OS.EmitIntValue(1, 4); // EHFlags // UnwindMapEntry { // int32_t ToState; // void (*Action)(); // }; if (UnwindMapXData) { OS.EmitLabel(UnwindMapXData); for (const CxxUnwindMapEntry &UME : FuncInfo.CxxUnwindMap) { MCSymbol *CleanupSym = getMCSymbolForMBB(Asm, UME.Cleanup.dyn_cast<MachineBasicBlock *>()); OS.EmitIntValue(UME.ToState, 4); // ToState OS.EmitValue(create32bitRef(CleanupSym), 4); // Action } } // TryBlockMap { // int32_t TryLow; // int32_t TryHigh; // int32_t CatchHigh; // int32_t NumCatches; // HandlerType *HandlerArray; // }; if (TryBlockMapXData) { OS.EmitLabel(TryBlockMapXData); SmallVector<MCSymbol *, 1> HandlerMaps; for (size_t I = 0, E = FuncInfo.TryBlockMap.size(); I != E; ++I) { const WinEHTryBlockMapEntry &TBME = FuncInfo.TryBlockMap[I]; MCSymbol *HandlerMapXData = nullptr; if (!TBME.HandlerArray.empty()) HandlerMapXData = Asm->OutContext.getOrCreateSymbol(Twine("$handlerMap$") .concat(Twine(I)) .concat("$") .concat(FuncLinkageName)); HandlerMaps.push_back(HandlerMapXData); // TBMEs should form intervals. assert(0 <= TBME.TryLow && "bad trymap interval"); assert(TBME.TryLow <= TBME.TryHigh && "bad trymap interval"); assert(TBME.TryHigh < TBME.CatchHigh && "bad trymap interval"); assert(TBME.CatchHigh < int(FuncInfo.CxxUnwindMap.size()) && "bad trymap interval"); OS.EmitIntValue(TBME.TryLow, 4); // TryLow OS.EmitIntValue(TBME.TryHigh, 4); // TryHigh OS.EmitIntValue(TBME.CatchHigh, 4); // CatchHigh OS.EmitIntValue(TBME.HandlerArray.size(), 4); // NumCatches OS.EmitValue(create32bitRef(HandlerMapXData), 4); // HandlerArray } // All funclets use the same parent frame offset currently. unsigned ParentFrameOffset = 0; if (shouldEmitPersonality) { const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); ParentFrameOffset = TFI->getWinEHParentFrameOffset(*MF); } for (size_t I = 0, E = FuncInfo.TryBlockMap.size(); I != E; ++I) { const WinEHTryBlockMapEntry &TBME = FuncInfo.TryBlockMap[I]; MCSymbol *HandlerMapXData = HandlerMaps[I]; if (!HandlerMapXData) continue; // HandlerType { // int32_t Adjectives; // TypeDescriptor *Type; // int32_t CatchObjOffset; // void (*Handler)(); // int32_t ParentFrameOffset; // x64 only // }; OS.EmitLabel(HandlerMapXData); for (const WinEHHandlerType &HT : TBME.HandlerArray) { // Get the frame escape label with the offset of the catch object. If // the index is INT_MAX, then there is no catch object, and we should // emit an offset of zero, indicating that no copy will occur. const MCExpr *FrameAllocOffsetRef = nullptr; if (HT.CatchObj.FrameIndex != INT_MAX) { int Offset = getFrameIndexOffset(HT.CatchObj.FrameIndex, FuncInfo); FrameAllocOffsetRef = MCConstantExpr::create(Offset, Asm->OutContext); } else { FrameAllocOffsetRef = MCConstantExpr::create(0, Asm->OutContext); } MCSymbol *HandlerSym = getMCSymbolForMBB(Asm, HT.Handler.dyn_cast<MachineBasicBlock *>()); OS.EmitIntValue(HT.Adjectives, 4); // Adjectives OS.EmitValue(create32bitRef(HT.TypeDescriptor), 4); // Type OS.EmitValue(FrameAllocOffsetRef, 4); // CatchObjOffset OS.EmitValue(create32bitRef(HandlerSym), 4); // Handler if (shouldEmitPersonality) OS.EmitIntValue(ParentFrameOffset, 4); // ParentFrameOffset } } } // IPToStateMapEntry { // void *IP; // int32_t State; // }; if (IPToStateXData) { OS.EmitLabel(IPToStateXData); for (auto &IPStatePair : IPToStateTable) { OS.EmitValue(IPStatePair.first, 4); // IP OS.EmitIntValue(IPStatePair.second, 4); // State } } } void WinException::computeIP2StateTable( const MachineFunction *MF, const WinEHFuncInfo &FuncInfo, SmallVectorImpl<std::pair<const MCExpr *, int>> &IPToStateTable) { for (MachineFunction::const_iterator FuncletStart = MF->begin(), FuncletEnd = MF->begin(), End = MF->end(); FuncletStart != End; FuncletStart = FuncletEnd) { // Find the end of the funclet while (++FuncletEnd != End) { if (FuncletEnd->isEHFuncletEntry()) { break; } } // Don't emit ip2state entries for cleanup funclets. Any interesting // exceptional actions in cleanups must be handled in a separate IR // function. if (FuncletStart->isCleanupFuncletEntry()) continue; MCSymbol *StartLabel; int BaseState; if (FuncletStart == MF->begin()) { BaseState = NullState; StartLabel = Asm->getFunctionBegin(); } else { auto *FuncletPad = cast<FuncletPadInst>(FuncletStart->getBasicBlock()->getFirstNonPHI()); assert(FuncInfo.FuncletBaseStateMap.count(FuncletPad) != 0); BaseState = FuncInfo.FuncletBaseStateMap.find(FuncletPad)->second; StartLabel = getMCSymbolForMBB(Asm, &*FuncletStart); } assert(StartLabel && "need local function start label"); IPToStateTable.push_back( std::make_pair(create32bitRef(StartLabel), BaseState)); for (const auto &StateChange : InvokeStateChangeIterator::range( FuncInfo, FuncletStart, FuncletEnd, BaseState)) { // Compute the label to report as the start of this entry; use the EH // start label for the invoke if we have one, otherwise (this is a call // which may unwind to our caller and does not have an EH start label, so) // use the previous end label. const MCSymbol *ChangeLabel = StateChange.NewStartLabel; if (!ChangeLabel) ChangeLabel = StateChange.PreviousEndLabel; // Emit an entry indicating that PCs after 'Label' have this EH state. IPToStateTable.push_back( std::make_pair(getLabelPlusOne(ChangeLabel), StateChange.NewState)); // FIXME: assert that NewState is between CatchLow and CatchHigh. } } } void WinException::emitEHRegistrationOffsetLabel(const WinEHFuncInfo &FuncInfo, StringRef FLinkageName) { // Outlined helpers called by the EH runtime need to know the offset of the EH // registration in order to recover the parent frame pointer. Now that we know // we've code generated the parent, we can emit the label assignment that // those helpers use to get the offset of the registration node. MCContext &Ctx = Asm->OutContext; MCSymbol *ParentFrameOffset = Ctx.getOrCreateParentFrameOffsetSymbol(FLinkageName); unsigned UnusedReg; const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering(); int64_t Offset = TFI->getFrameIndexReference( *Asm->MF, FuncInfo.EHRegNodeFrameIndex, UnusedReg); const MCExpr *MCOffset = MCConstantExpr::create(Offset, Ctx); Asm->OutStreamer->EmitAssignment(ParentFrameOffset, MCOffset); } /// Emit the language-specific data that _except_handler3 and 4 expect. This is /// functionally equivalent to the __C_specific_handler table, except it is /// indexed by state number instead of IP. void WinException::emitExceptHandlerTable(const MachineFunction *MF) { MCStreamer &OS = *Asm->OutStreamer; const Function *F = MF->getFunction(); StringRef FLinkageName = GlobalValue::getRealLinkageName(F->getName()); const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo(); emitEHRegistrationOffsetLabel(FuncInfo, FLinkageName); // Emit the __ehtable label that we use for llvm.x86.seh.lsda. MCSymbol *LSDALabel = Asm->OutContext.getOrCreateLSDASymbol(FLinkageName); OS.EmitValueToAlignment(4); OS.EmitLabel(LSDALabel); const Function *Per = dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts()); StringRef PerName = Per->getName(); int BaseState = -1; if (PerName == "_except_handler4") { // The LSDA for _except_handler4 starts with this struct, followed by the // scope table: // // struct EH4ScopeTable { // int32_t GSCookieOffset; // int32_t GSCookieXOROffset; // int32_t EHCookieOffset; // int32_t EHCookieXOROffset; // ScopeTableEntry ScopeRecord[]; // }; // // Only the EHCookieOffset field appears to vary, and it appears to be the // offset from the final saved SP value to the retaddr. OS.EmitIntValue(-2, 4); OS.EmitIntValue(0, 4); // FIXME: Calculate. OS.EmitIntValue(9999, 4); OS.EmitIntValue(0, 4); BaseState = -2; } assert(!FuncInfo.SEHUnwindMap.empty()); for (const SEHUnwindMapEntry &UME : FuncInfo.SEHUnwindMap) { MCSymbol *ExceptOrFinally = UME.Handler.get<MachineBasicBlock *>()->getSymbol(); // -1 is usually the base state for "unwind to caller", but for // _except_handler4 it's -2. Do that replacement here if necessary. int ToState = UME.ToState == -1 ? BaseState : UME.ToState; OS.EmitIntValue(ToState, 4); // ToState OS.EmitValue(create32bitRef(UME.Filter), 4); // Filter OS.EmitValue(create32bitRef(ExceptOrFinally), 4); // Except/Finally } } static int getRank(const WinEHFuncInfo &FuncInfo, int State) { int Rank = 0; while (State != -1) { ++Rank; State = FuncInfo.ClrEHUnwindMap[State].Parent; } return Rank; } static int getAncestor(const WinEHFuncInfo &FuncInfo, int Left, int Right) { int LeftRank = getRank(FuncInfo, Left); int RightRank = getRank(FuncInfo, Right); while (LeftRank < RightRank) { Right = FuncInfo.ClrEHUnwindMap[Right].Parent; --RightRank; } while (RightRank < LeftRank) { Left = FuncInfo.ClrEHUnwindMap[Left].Parent; --LeftRank; } while (Left != Right) { Left = FuncInfo.ClrEHUnwindMap[Left].Parent; Right = FuncInfo.ClrEHUnwindMap[Right].Parent; } return Left; } void WinException::emitCLRExceptionTable(const MachineFunction *MF) { // CLR EH "states" are really just IDs that identify handlers/funclets; // states, handlers, and funclets all have 1:1 mappings between them, and a // handler/funclet's "state" is its index in the ClrEHUnwindMap. MCStreamer &OS = *Asm->OutStreamer; const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo(); MCSymbol *FuncBeginSym = Asm->getFunctionBegin(); MCSymbol *FuncEndSym = Asm->getFunctionEnd(); // A ClrClause describes a protected region. struct ClrClause { const MCSymbol *StartLabel; // Start of protected region const MCSymbol *EndLabel; // End of protected region int State; // Index of handler protecting the protected region int EnclosingState; // Index of funclet enclosing the protected region }; SmallVector<ClrClause, 8> Clauses; // Build a map from handler MBBs to their corresponding states (i.e. their // indices in the ClrEHUnwindMap). int NumStates = FuncInfo.ClrEHUnwindMap.size(); assert(NumStates > 0 && "Don't need exception table!"); DenseMap<const MachineBasicBlock *, int> HandlerStates; for (int State = 0; State < NumStates; ++State) { MachineBasicBlock *HandlerBlock = FuncInfo.ClrEHUnwindMap[State].Handler.get<MachineBasicBlock *>(); HandlerStates[HandlerBlock] = State; // Use this loop through all handlers to verify our assumption (used in // the MinEnclosingState computation) that ancestors have lower state // numbers than their descendants. assert(FuncInfo.ClrEHUnwindMap[State].Parent < State && "ill-formed state numbering"); } // Map the main function to the NullState. HandlerStates[&MF->front()] = NullState; // Write out a sentinel indicating the end of the standard (Windows) xdata // and the start of the additional (CLR) info. OS.EmitIntValue(0xffffffff, 4); // Write out the number of funclets OS.EmitIntValue(NumStates, 4); // Walk the machine blocks/instrs, computing and emitting a few things: // 1. Emit a list of the offsets to each handler entry, in lexical order. // 2. Compute a map (EndSymbolMap) from each funclet to the symbol at its end. // 3. Compute the list of ClrClauses, in the required order (inner before // outer, earlier before later; the order by which a forward scan with // early termination will find the innermost enclosing clause covering // a given address). // 4. A map (MinClauseMap) from each handler index to the index of the // outermost funclet/function which contains a try clause targeting the // key handler. This will be used to determine IsDuplicate-ness when // emitting ClrClauses. The NullState value is used to indicate that the // top-level function contains a try clause targeting the key handler. // HandlerStack is a stack of (PendingStartLabel, PendingState) pairs for // try regions we entered before entering the PendingState try but which // we haven't yet exited. SmallVector<std::pair<const MCSymbol *, int>, 4> HandlerStack; // EndSymbolMap and MinClauseMap are maps described above. std::unique_ptr<MCSymbol *[]> EndSymbolMap(new MCSymbol *[NumStates]); SmallVector<int, 4> MinClauseMap((size_t)NumStates, NumStates); // Visit the root function and each funclet. for (MachineFunction::const_iterator FuncletStart = MF->begin(), FuncletEnd = MF->begin(), End = MF->end(); FuncletStart != End; FuncletStart = FuncletEnd) { int FuncletState = HandlerStates[&*FuncletStart]; // Find the end of the funclet MCSymbol *EndSymbol = FuncEndSym; while (++FuncletEnd != End) { if (FuncletEnd->isEHFuncletEntry()) { EndSymbol = getMCSymbolForMBB(Asm, &*FuncletEnd); break; } } // Emit the function/funclet end and, if this is a funclet (and not the // root function), record it in the EndSymbolMap. OS.EmitValue(getOffset(EndSymbol, FuncBeginSym), 4); if (FuncletState != NullState) { // Record the end of the handler. EndSymbolMap[FuncletState] = EndSymbol; } // Walk the state changes in this function/funclet and compute its clauses. // Funclets always start in the null state. const MCSymbol *CurrentStartLabel = nullptr; int CurrentState = NullState; assert(HandlerStack.empty()); for (const auto &StateChange : InvokeStateChangeIterator::range(FuncInfo, FuncletStart, FuncletEnd)) { // Close any try regions we're not still under int AncestorState = getAncestor(FuncInfo, CurrentState, StateChange.NewState); while (CurrentState != AncestorState) { assert(CurrentState != NullState && "Failed to find ancestor!"); // Close the pending clause Clauses.push_back({CurrentStartLabel, StateChange.PreviousEndLabel, CurrentState, FuncletState}); // Now the parent handler is current CurrentState = FuncInfo.ClrEHUnwindMap[CurrentState].Parent; // Pop the new start label from the handler stack if we've exited all // descendants of the corresponding handler. if (HandlerStack.back().second == CurrentState) CurrentStartLabel = HandlerStack.pop_back_val().first; } if (StateChange.NewState != CurrentState) { // For each clause we're starting, update the MinClauseMap so we can // know which is the topmost funclet containing a clause targeting // it. for (int EnteredState = StateChange.NewState; EnteredState != CurrentState; EnteredState = FuncInfo.ClrEHUnwindMap[EnteredState].Parent) { int &MinEnclosingState = MinClauseMap[EnteredState]; if (FuncletState < MinEnclosingState) MinEnclosingState = FuncletState; } // Save the previous current start/label on the stack and update to // the newly-current start/state. HandlerStack.emplace_back(CurrentStartLabel, CurrentState); CurrentStartLabel = StateChange.NewStartLabel; CurrentState = StateChange.NewState; } } assert(HandlerStack.empty()); } // Now emit the clause info, starting with the number of clauses. OS.EmitIntValue(Clauses.size(), 4); for (ClrClause &Clause : Clauses) { // Emit a CORINFO_EH_CLAUSE : /* struct CORINFO_EH_CLAUSE { CORINFO_EH_CLAUSE_FLAGS Flags; // actually a CorExceptionFlag DWORD TryOffset; DWORD TryLength; // actually TryEndOffset DWORD HandlerOffset; DWORD HandlerLength; // actually HandlerEndOffset union { DWORD ClassToken; // use for catch clauses DWORD FilterOffset; // use for filter clauses }; }; enum CORINFO_EH_CLAUSE_FLAGS { CORINFO_EH_CLAUSE_NONE = 0, CORINFO_EH_CLAUSE_FILTER = 0x0001, // This clause is for a filter CORINFO_EH_CLAUSE_FINALLY = 0x0002, // This clause is a finally clause CORINFO_EH_CLAUSE_FAULT = 0x0004, // This clause is a fault clause }; typedef enum CorExceptionFlag { COR_ILEXCEPTION_CLAUSE_NONE, COR_ILEXCEPTION_CLAUSE_FILTER = 0x0001, // This is a filter clause COR_ILEXCEPTION_CLAUSE_FINALLY = 0x0002, // This is a finally clause COR_ILEXCEPTION_CLAUSE_FAULT = 0x0004, // This is a fault clause COR_ILEXCEPTION_CLAUSE_DUPLICATED = 0x0008, // duplicated clause. This // clause was duplicated // to a funclet which was // pulled out of line } CorExceptionFlag; */ // Add 1 to the start/end of the EH clause; the IP associated with a // call when the runtime does its scan is the IP of the next instruction // (the one to which control will return after the call), so we need // to add 1 to the end of the clause to cover that offset. We also add // 1 to the start of the clause to make sure that the ranges reported // for all clauses are disjoint. Note that we'll need some additional // logic when machine traps are supported, since in that case the IP // that the runtime uses is the offset of the faulting instruction // itself; if such an instruction immediately follows a call but the // two belong to different clauses, we'll need to insert a nop between // them so the runtime can distinguish the point to which the call will // return from the point at which the fault occurs. const MCExpr *ClauseBegin = getOffsetPlusOne(Clause.StartLabel, FuncBeginSym); const MCExpr *ClauseEnd = getOffsetPlusOne(Clause.EndLabel, FuncBeginSym); const ClrEHUnwindMapEntry &Entry = FuncInfo.ClrEHUnwindMap[Clause.State]; MachineBasicBlock *HandlerBlock = Entry.Handler.get<MachineBasicBlock *>(); MCSymbol *BeginSym = getMCSymbolForMBB(Asm, HandlerBlock); const MCExpr *HandlerBegin = getOffset(BeginSym, FuncBeginSym); MCSymbol *EndSym = EndSymbolMap[Clause.State]; const MCExpr *HandlerEnd = getOffset(EndSym, FuncBeginSym); uint32_t Flags = 0; switch (Entry.HandlerType) { case ClrHandlerType::Catch: // Leaving bits 0-2 clear indicates catch. break; case ClrHandlerType::Filter: Flags |= 1; break; case ClrHandlerType::Finally: Flags |= 2; break; case ClrHandlerType::Fault: Flags |= 4; break; } if (Clause.EnclosingState != MinClauseMap[Clause.State]) { // This is a "duplicate" clause; the handler needs to be entered from a // frame above the one holding the invoke. assert(Clause.EnclosingState > MinClauseMap[Clause.State]); Flags |= 8; } OS.EmitIntValue(Flags, 4); // Write the clause start/end OS.EmitValue(ClauseBegin, 4); OS.EmitValue(ClauseEnd, 4); // Write out the handler start/end OS.EmitValue(HandlerBegin, 4); OS.EmitValue(HandlerEnd, 4); // Write out the type token or filter offset assert(Entry.HandlerType != ClrHandlerType::Filter && "NYI: filters"); OS.EmitIntValue(Entry.TypeToken, 4); } }