/* * Copyright 2013 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "../util/ssim.h" // NOLINT #include <string.h> #ifdef __cplusplus extern "C" { #endif typedef unsigned int uint32; // NOLINT typedef unsigned short uint16; // NOLINT #if !defined(LIBYUV_DISABLE_X86) && !defined(__SSE2__) && \ (defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP >= 2))) #define __SSE2__ #endif #if !defined(LIBYUV_DISABLE_X86) && defined(__SSE2__) #include <emmintrin.h> #endif #ifdef _OPENMP #include <omp.h> #endif // SSIM enum { KERNEL = 3, KERNEL_SIZE = 2 * KERNEL + 1 }; // Symmetric Gaussian kernel: K[i] = ~11 * exp(-0.3 * i * i) // The maximum value (11 x 11) must be less than 128 to avoid sign // problems during the calls to _mm_mullo_epi16(). static const int K[KERNEL_SIZE] = { 1, 3, 7, 11, 7, 3, 1 // ~11 * exp(-0.3 * i * i) }; static const double kiW[KERNEL + 1 + 1] = { 1. / 1089., // 1 / sum(i:0..6, j..6) K[i]*K[j] 1. / 1089., // 1 / sum(i:0..6, j..6) K[i]*K[j] 1. / 1056., // 1 / sum(i:0..5, j..6) K[i]*K[j] 1. / 957., // 1 / sum(i:0..4, j..6) K[i]*K[j] 1. / 726., // 1 / sum(i:0..3, j..6) K[i]*K[j] }; #if !defined(LIBYUV_DISABLE_X86) && defined(__SSE2__) #define PWEIGHT(A, B) static_cast<uint16>(K[(A)] * K[(B)]) // weight product #define MAKE_WEIGHT(L) \ { { { PWEIGHT(L, 0), PWEIGHT(L, 1), PWEIGHT(L, 2), PWEIGHT(L, 3), \ PWEIGHT(L, 4), PWEIGHT(L, 5), PWEIGHT(L, 6), 0 } } } // We need this union trick to be able to initialize constant static __m128i // values. We can't call _mm_set_epi16() for static compile-time initialization. static const struct { union { uint16 i16_[8]; __m128i m_; } values_; } W0 = MAKE_WEIGHT(0), W1 = MAKE_WEIGHT(1), W2 = MAKE_WEIGHT(2), W3 = MAKE_WEIGHT(3); // ... the rest is symmetric. #undef MAKE_WEIGHT #undef PWEIGHT #endif // Common final expression for SSIM, once the weighted sums are known. static double FinalizeSSIM(double iw, double xm, double ym, double xxm, double xym, double yym) { const double iwx = xm * iw; const double iwy = ym * iw; double sxx = xxm * iw - iwx * iwx; double syy = yym * iw - iwy * iwy; // small errors are possible, due to rounding. Clamp to zero. if (sxx < 0.) sxx = 0.; if (syy < 0.) syy = 0.; const double sxsy = sqrt(sxx * syy); const double sxy = xym * iw - iwx * iwy; static const double C11 = (0.01 * 0.01) * (255 * 255); static const double C22 = (0.03 * 0.03) * (255 * 255); static const double C33 = (0.015 * 0.015) * (255 * 255); const double l = (2. * iwx * iwy + C11) / (iwx * iwx + iwy * iwy + C11); const double c = (2. * sxsy + C22) / (sxx + syy + C22); const double s = (sxy + C33) / (sxsy + C33); return l * c * s; } // GetSSIM() does clipping. GetSSIMFullKernel() does not // TODO(skal): use summed tables? // Note: worst case of accumulation is a weight of 33 = 11 + 2 * (7 + 3 + 1) // with a diff of 255, squared. The maximum error is thus 0x4388241, // which fits into 32 bits integers. double GetSSIM(const uint8 *org, const uint8 *rec, int xo, int yo, int W, int H, int stride) { uint32 ws = 0, xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0; org += (yo - KERNEL) * stride; org += (xo - KERNEL); rec += (yo - KERNEL) * stride; rec += (xo - KERNEL); for (int y_ = 0; y_ < KERNEL_SIZE; ++y_, org += stride, rec += stride) { if (((yo - KERNEL + y_) < 0) || ((yo - KERNEL + y_) >= H)) continue; const int Wy = K[y_]; for (int x_ = 0; x_ < KERNEL_SIZE; ++x_) { const int Wxy = Wy * K[x_]; if (((xo - KERNEL + x_) >= 0) && ((xo - KERNEL + x_) < W)) { const int org_x = org[x_]; const int rec_x = rec[x_]; ws += Wxy; xm += Wxy * org_x; ym += Wxy * rec_x; xxm += Wxy * org_x * org_x; xym += Wxy * org_x * rec_x; yym += Wxy * rec_x * rec_x; } } } return FinalizeSSIM(1. / ws, xm, ym, xxm, xym, yym); } double GetSSIMFullKernel(const uint8 *org, const uint8 *rec, int xo, int yo, int stride, double area_weight) { uint32 xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0; #if defined(LIBYUV_DISABLE_X86) || !defined(__SSE2__) org += yo * stride + xo; rec += yo * stride + xo; for (int y = 1; y <= KERNEL; y++) { const int dy1 = y * stride; const int dy2 = y * stride; const int Wy = K[KERNEL + y]; for (int x = 1; x <= KERNEL; x++) { // Compute the contributions of upper-left (ul), upper-right (ur) // lower-left (ll) and lower-right (lr) points (see the diagram below). // Symmetric Kernel will have same weight on those points. // - - - - - - - // - ul - - - ur - // - - - - - - - // - - - 0 - - - // - - - - - - - // - ll - - - lr - // - - - - - - - const int Wxy = Wy * K[KERNEL + x]; const int ul1 = org[-dy1 - x]; const int ur1 = org[-dy1 + x]; const int ll1 = org[dy1 - x]; const int lr1 = org[dy1 + x]; const int ul2 = rec[-dy2 - x]; const int ur2 = rec[-dy2 + x]; const int ll2 = rec[dy2 - x]; const int lr2 = rec[dy2 + x]; xm += Wxy * (ul1 + ur1 + ll1 + lr1); ym += Wxy * (ul2 + ur2 + ll2 + lr2); xxm += Wxy * (ul1 * ul1 + ur1 * ur1 + ll1 * ll1 + lr1 * lr1); xym += Wxy * (ul1 * ul2 + ur1 * ur2 + ll1 * ll2 + lr1 * lr2); yym += Wxy * (ul2 * ul2 + ur2 * ur2 + ll2 * ll2 + lr2 * lr2); } // Compute the contributions of up (u), down (d), left (l) and right (r) // points across the main axes (see the diagram below). // Symmetric Kernel will have same weight on those points. // - - - - - - - // - - - u - - - // - - - - - - - // - l - 0 - r - // - - - - - - - // - - - d - - - // - - - - - - - const int Wxy = Wy * K[KERNEL]; const int u1 = org[-dy1]; const int d1 = org[dy1]; const int l1 = org[-y]; const int r1 = org[y]; const int u2 = rec[-dy2]; const int d2 = rec[dy2]; const int l2 = rec[-y]; const int r2 = rec[y]; xm += Wxy * (u1 + d1 + l1 + r1); ym += Wxy * (u2 + d2 + l2 + r2); xxm += Wxy * (u1 * u1 + d1 * d1 + l1 * l1 + r1 * r1); xym += Wxy * (u1 * u2 + d1 * d2 + l1 * l2 + r1 * r2); yym += Wxy * (u2 * u2 + d2 * d2 + l2 * l2 + r2 * r2); } // Lastly the contribution of (x0, y0) point. const int Wxy = K[KERNEL] * K[KERNEL]; const int s1 = org[0]; const int s2 = rec[0]; xm += Wxy * s1; ym += Wxy * s2; xxm += Wxy * s1 * s1; xym += Wxy * s1 * s2; yym += Wxy * s2 * s2; #else // __SSE2__ org += (yo - KERNEL) * stride + (xo - KERNEL); rec += (yo - KERNEL) * stride + (xo - KERNEL); const __m128i zero = _mm_setzero_si128(); __m128i x = zero; __m128i y = zero; __m128i xx = zero; __m128i xy = zero; __m128i yy = zero; // Read 8 pixels at line #L, and convert to 16bit, perform weighting // and acccumulate. #define LOAD_LINE_PAIR(L, WEIGHT) do { \ const __m128i v0 = \ _mm_loadl_epi64(reinterpret_cast<const __m128i*>(org + (L) * stride)); \ const __m128i v1 = \ _mm_loadl_epi64(reinterpret_cast<const __m128i*>(rec + (L) * stride)); \ const __m128i w0 = _mm_unpacklo_epi8(v0, zero); \ const __m128i w1 = _mm_unpacklo_epi8(v1, zero); \ const __m128i ww0 = _mm_mullo_epi16(w0, (WEIGHT).values_.m_); \ const __m128i ww1 = _mm_mullo_epi16(w1, (WEIGHT).values_.m_); \ x = _mm_add_epi32(x, _mm_unpacklo_epi16(ww0, zero)); \ y = _mm_add_epi32(y, _mm_unpacklo_epi16(ww1, zero)); \ x = _mm_add_epi32(x, _mm_unpackhi_epi16(ww0, zero)); \ y = _mm_add_epi32(y, _mm_unpackhi_epi16(ww1, zero)); \ xx = _mm_add_epi32(xx, _mm_madd_epi16(ww0, w0)); \ xy = _mm_add_epi32(xy, _mm_madd_epi16(ww0, w1)); \ yy = _mm_add_epi32(yy, _mm_madd_epi16(ww1, w1)); \ } while (0) #define ADD_AND_STORE_FOUR_EPI32(M, OUT) do { \ uint32 tmp[4]; \ _mm_storeu_si128(reinterpret_cast<__m128i*>(tmp), (M)); \ (OUT) = tmp[3] + tmp[2] + tmp[1] + tmp[0]; \ } while (0) LOAD_LINE_PAIR(0, W0); LOAD_LINE_PAIR(1, W1); LOAD_LINE_PAIR(2, W2); LOAD_LINE_PAIR(3, W3); LOAD_LINE_PAIR(4, W2); LOAD_LINE_PAIR(5, W1); LOAD_LINE_PAIR(6, W0); ADD_AND_STORE_FOUR_EPI32(x, xm); ADD_AND_STORE_FOUR_EPI32(y, ym); ADD_AND_STORE_FOUR_EPI32(xx, xxm); ADD_AND_STORE_FOUR_EPI32(xy, xym); ADD_AND_STORE_FOUR_EPI32(yy, yym); #undef LOAD_LINE_PAIR #undef ADD_AND_STORE_FOUR_EPI32 #endif return FinalizeSSIM(area_weight, xm, ym, xxm, xym, yym); } static int start_max(int x, int y) { return (x > y) ? x : y; } double CalcSSIM(const uint8 *org, const uint8 *rec, const int image_width, const int image_height) { double SSIM = 0.; const int KERNEL_Y = (image_height < KERNEL) ? image_height : KERNEL; const int KERNEL_X = (image_width < KERNEL) ? image_width : KERNEL; const int start_x = start_max(image_width - 8 + KERNEL_X, KERNEL_X); const int start_y = start_max(image_height - KERNEL_Y, KERNEL_Y); const int stride = image_width; for (int j = 0; j < KERNEL_Y; ++j) { for (int i = 0; i < image_width; ++i) { SSIM += GetSSIM(org, rec, i, j, image_width, image_height, stride); } } #ifdef _OPENMP #pragma omp parallel for reduction(+: SSIM) #endif for (int j = KERNEL_Y; j < image_height - KERNEL_Y; ++j) { for (int i = 0; i < KERNEL_X; ++i) { SSIM += GetSSIM(org, rec, i, j, image_width, image_height, stride); } for (int i = KERNEL_X; i < start_x; ++i) { SSIM += GetSSIMFullKernel(org, rec, i, j, stride, kiW[0]); } if (start_x < image_width) { // GetSSIMFullKernel() needs to be able to read 8 pixels (in SSE2). So we // copy the 8 rightmost pixels on a cache area, and pad this area with // zeros which won't contribute to the overall SSIM value (but we need // to pass the correct normalizing constant!). By using this cache, we can // still call GetSSIMFullKernel() instead of the slower GetSSIM(). // NOTE: we could use similar method for the left-most pixels too. const int kScratchWidth = 8; const int kScratchStride = kScratchWidth + KERNEL + 1; uint8 scratch_org[KERNEL_SIZE * kScratchStride] = { 0 }; uint8 scratch_rec[KERNEL_SIZE * kScratchStride] = { 0 }; for (int k = 0; k < KERNEL_SIZE; ++k) { const int offset = (j - KERNEL + k) * stride + image_width - kScratchWidth; memcpy(scratch_org + k * kScratchStride, org + offset, kScratchWidth); memcpy(scratch_rec + k * kScratchStride, rec + offset, kScratchWidth); } for (int k = 0; k <= KERNEL_X + 1; ++k) { SSIM += GetSSIMFullKernel(scratch_org, scratch_rec, KERNEL + k, KERNEL, kScratchStride, kiW[k]); } } } for (int j = start_y; j < image_height; ++j) { for (int i = 0; i < image_width; ++i) { SSIM += GetSSIM(org, rec, i, j, image_width, image_height, stride); } } return SSIM; } double CalcLSSIM(double ssim) { return -10.0 * log10(1.0 - ssim); } #ifdef __cplusplus } // extern "C" #endif