/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <stdlib.h> #include <time.h> #include "libyuv/convert_argb.h" #include "libyuv/cpu_id.h" #include "libyuv/scale_argb.h" #include "libyuv/video_common.h" #include "../unit_test/unit_test.h" namespace libyuv { #define STRINGIZE(line) #line #define FILELINESTR(file, line) file ":" STRINGIZE(line) // Test scaling with C vs Opt and return maximum pixel difference. 0 = exact. static int ARGBTestFilter(int src_width, int src_height, int dst_width, int dst_height, FilterMode f, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info) { if (!SizeValid(src_width, src_height, dst_width, dst_height)) { return 0; } int i, j; const int b = 0; // 128 to test for padding/stride. int64 src_argb_plane_size = (Abs(src_width) + b * 2) * (Abs(src_height) + b * 2) * 4LL; int src_stride_argb = (b * 2 + Abs(src_width)) * 4; align_buffer_page_end(src_argb, src_argb_plane_size); if (!src_argb) { printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n"); return 0; } MemRandomize(src_argb, src_argb_plane_size); int64 dst_argb_plane_size = (dst_width + b * 2) * (dst_height + b * 2) * 4LL; int dst_stride_argb = (b * 2 + dst_width) * 4; align_buffer_page_end(dst_argb_c, dst_argb_plane_size); align_buffer_page_end(dst_argb_opt, dst_argb_plane_size); if (!dst_argb_c || !dst_argb_opt) { printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n"); return 0; } memset(dst_argb_c, 2, dst_argb_plane_size); memset(dst_argb_opt, 3, dst_argb_plane_size); // Warm up both versions for consistent benchmarks. MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization. ARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb, src_width, src_height, dst_argb_c + (dst_stride_argb * b) + b * 4, dst_stride_argb, dst_width, dst_height, f); MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization. ARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb, src_width, src_height, dst_argb_opt + (dst_stride_argb * b) + b * 4, dst_stride_argb, dst_width, dst_height, f); MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization. double c_time = get_time(); ARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb, src_width, src_height, dst_argb_c + (dst_stride_argb * b) + b * 4, dst_stride_argb, dst_width, dst_height, f); c_time = (get_time() - c_time); MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization. double opt_time = get_time(); for (i = 0; i < benchmark_iterations; ++i) { ARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb, src_width, src_height, dst_argb_opt + (dst_stride_argb * b) + b * 4, dst_stride_argb, dst_width, dst_height, f); } opt_time = (get_time() - opt_time) / benchmark_iterations; // Report performance of C vs OPT printf("filter %d - %8d us C - %8d us OPT\n", f, static_cast<int>(c_time * 1e6), static_cast<int>(opt_time * 1e6)); // C version may be a little off from the optimized. Order of // operations may introduce rounding somewhere. So do a difference // of the buffers and look to see that the max difference isn't // over 2. int max_diff = 0; for (i = b; i < (dst_height + b); ++i) { for (j = b * 4; j < (dst_width + b) * 4; ++j) { int abs_diff = Abs(dst_argb_c[(i * dst_stride_argb) + j] - dst_argb_opt[(i * dst_stride_argb) + j]); if (abs_diff > max_diff) { max_diff = abs_diff; } } } free_aligned_buffer_page_end(dst_argb_c); free_aligned_buffer_page_end(dst_argb_opt); free_aligned_buffer_page_end(src_argb); return max_diff; } static const int kTileX = 8; static const int kTileY = 8; static int TileARGBScale(const uint8* src_argb, int src_stride_argb, int src_width, int src_height, uint8* dst_argb, int dst_stride_argb, int dst_width, int dst_height, FilterMode filtering) { for (int y = 0; y < dst_height; y += kTileY) { for (int x = 0; x < dst_width; x += kTileX) { int clip_width = kTileX; if (x + clip_width > dst_width) { clip_width = dst_width - x; } int clip_height = kTileY; if (y + clip_height > dst_height) { clip_height = dst_height - y; } int r = ARGBScaleClip(src_argb, src_stride_argb, src_width, src_height, dst_argb, dst_stride_argb, dst_width, dst_height, x, y, clip_width, clip_height, filtering); if (r) { return r; } } } return 0; } static int ARGBClipTestFilter(int src_width, int src_height, int dst_width, int dst_height, FilterMode f, int benchmark_iterations) { if (!SizeValid(src_width, src_height, dst_width, dst_height)) { return 0; } const int b = 128; int64 src_argb_plane_size = (Abs(src_width) + b * 2) * (Abs(src_height) + b * 2) * 4; int src_stride_argb = (b * 2 + Abs(src_width)) * 4; align_buffer_page_end(src_argb, src_argb_plane_size); if (!src_argb) { printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n"); return 0; } memset(src_argb, 1, src_argb_plane_size); int64 dst_argb_plane_size = (dst_width + b * 2) * (dst_height + b * 2) * 4; int dst_stride_argb = (b * 2 + dst_width) * 4; int i, j; for (i = b; i < (Abs(src_height) + b); ++i) { for (j = b; j < (Abs(src_width) + b) * 4; ++j) { src_argb[(i * src_stride_argb) + j] = (fastrand() & 0xff); } } align_buffer_page_end(dst_argb_c, dst_argb_plane_size); align_buffer_page_end(dst_argb_opt, dst_argb_plane_size); if (!dst_argb_c || !dst_argb_opt) { printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n"); return 0; } memset(dst_argb_c, 2, dst_argb_plane_size); memset(dst_argb_opt, 3, dst_argb_plane_size); // Do full image, no clipping. double c_time = get_time(); ARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb, src_width, src_height, dst_argb_c + (dst_stride_argb * b) + b * 4, dst_stride_argb, dst_width, dst_height, f); c_time = (get_time() - c_time); // Do tiled image, clipping scale to a tile at a time. double opt_time = get_time(); for (i = 0; i < benchmark_iterations; ++i) { TileARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb, src_width, src_height, dst_argb_opt + (dst_stride_argb * b) + b * 4, dst_stride_argb, dst_width, dst_height, f); } opt_time = (get_time() - opt_time) / benchmark_iterations; // Report performance of Full vs Tiled. printf("filter %d - %8d us Full - %8d us Tiled\n", f, static_cast<int>(c_time * 1e6), static_cast<int>(opt_time * 1e6)); // Compare full scaled image vs tiled image. int max_diff = 0; for (i = b; i < (dst_height + b); ++i) { for (j = b * 4; j < (dst_width + b) * 4; ++j) { int abs_diff = Abs(dst_argb_c[(i * dst_stride_argb) + j] - dst_argb_opt[(i * dst_stride_argb) + j]); if (abs_diff > max_diff) { max_diff = abs_diff; } } } free_aligned_buffer_page_end(dst_argb_c); free_aligned_buffer_page_end(dst_argb_opt); free_aligned_buffer_page_end(src_argb); return max_diff; } // The following adjustments in dimensions ensure the scale factor will be // exactly achieved. #define DX(x, nom, denom) static_cast<int>((Abs(x) / nom) * nom) #define SX(x, nom, denom) static_cast<int>((x / nom) * denom) #define TEST_FACTOR1(name, filter, nom, denom, max_diff) \ TEST_F(LibYUVScaleTest, ARGBScaleDownBy##name##_##filter) { \ int diff = ARGBTestFilter(SX(benchmark_width_, nom, denom), \ SX(benchmark_height_, nom, denom), \ DX(benchmark_width_, nom, denom), \ DX(benchmark_height_, nom, denom), \ kFilter##filter, benchmark_iterations_, \ disable_cpu_flags_, benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } \ TEST_F(LibYUVScaleTest, ARGBScaleDownClipBy##name##_##filter) { \ int diff = ARGBClipTestFilter(SX(benchmark_width_, nom, denom), \ SX(benchmark_height_, nom, denom), \ DX(benchmark_width_, nom, denom), \ DX(benchmark_height_, nom, denom), \ kFilter##filter, benchmark_iterations_); \ EXPECT_LE(diff, max_diff); \ } // Test a scale factor with all 4 filters. Expect unfiltered to be exact, but // filtering is different fixed point implementations for SSSE3, Neon and C. #define TEST_FACTOR(name, nom, denom) \ TEST_FACTOR1(name, None, nom, denom, 0) \ TEST_FACTOR1(name, Linear, nom, denom, 3) \ TEST_FACTOR1(name, Bilinear, nom, denom, 3) \ TEST_FACTOR1(name, Box, nom, denom, 3) TEST_FACTOR(2, 1, 2) TEST_FACTOR(4, 1, 4) TEST_FACTOR(8, 1, 8) TEST_FACTOR(3by4, 3, 4) TEST_FACTOR(3by8, 3, 8) TEST_FACTOR(3, 1, 3) #undef TEST_FACTOR1 #undef TEST_FACTOR #undef SX #undef DX #define TEST_SCALETO1(name, width, height, filter, max_diff) \ TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter) { \ int diff = ARGBTestFilter(benchmark_width_, benchmark_height_, \ width, height, \ kFilter##filter, benchmark_iterations_, \ disable_cpu_flags_, benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } \ TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter) { \ int diff = ARGBTestFilter(width, height, \ Abs(benchmark_width_), Abs(benchmark_height_), \ kFilter##filter, benchmark_iterations_, \ disable_cpu_flags_, benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } \ TEST_F(LibYUVScaleTest, name##ClipTo##width##x##height##_##filter) { \ int diff = ARGBClipTestFilter(benchmark_width_, benchmark_height_, \ width, height, \ kFilter##filter, benchmark_iterations_); \ EXPECT_LE(diff, max_diff); \ } \ TEST_F(LibYUVScaleTest, name##ClipFrom##width##x##height##_##filter) { \ int diff = ARGBClipTestFilter(width, height, \ Abs(benchmark_width_), \ Abs(benchmark_height_), \ kFilter##filter, benchmark_iterations_); \ EXPECT_LE(diff, max_diff); \ } /// Test scale to a specified size with all 4 filters. #define TEST_SCALETO(name, width, height) \ TEST_SCALETO1(name, width, height, None, 0) \ TEST_SCALETO1(name, width, height, Linear, 3) \ TEST_SCALETO1(name, width, height, Bilinear, 3) TEST_SCALETO(ARGBScale, 1, 1) TEST_SCALETO(ARGBScale, 320, 240) TEST_SCALETO(ARGBScale, 352, 288) TEST_SCALETO(ARGBScale, 569, 480) TEST_SCALETO(ARGBScale, 640, 360) TEST_SCALETO(ARGBScale, 1280, 720) #undef TEST_SCALETO1 #undef TEST_SCALETO // Scale with YUV conversion to ARGB and clipping. LIBYUV_API int YUVToARGBScaleReference2(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint32 src_fourcc, int src_width, int src_height, uint8* dst_argb, int dst_stride_argb, uint32 dst_fourcc, int dst_width, int dst_height, int clip_x, int clip_y, int clip_width, int clip_height, enum FilterMode filtering) { uint8* argb_buffer = static_cast<uint8*>(malloc(src_width * src_height * 4)); int r; I420ToARGB(src_y, src_stride_y, src_u, src_stride_u, src_v, src_stride_v, argb_buffer, src_width * 4, src_width, src_height); r = ARGBScaleClip(argb_buffer, src_width * 4, src_width, src_height, dst_argb, dst_stride_argb, dst_width, dst_height, clip_x, clip_y, clip_width, clip_height, filtering); free(argb_buffer); return r; } static void FillRamp(uint8* buf, int width, int height, int v, int dx, int dy) { int rv = v; for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { *buf++ = v; v += dx; if (v < 0 || v > 255) { dx = -dx; v += dx; } } v = rv + dy; if (v < 0 || v > 255) { dy = -dy; v += dy; } rv = v; } } // Test scaling with C vs Opt and return maximum pixel difference. 0 = exact. static int YUVToARGBTestFilter(int src_width, int src_height, int dst_width, int dst_height, FilterMode f, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info) { int64 src_y_plane_size = Abs(src_width) * Abs(src_height); int64 src_uv_plane_size = ((Abs(src_width) + 1) / 2) * ((Abs(src_height) + 1) / 2); int src_stride_y = Abs(src_width); int src_stride_uv = (Abs(src_width) + 1) / 2; align_buffer_page_end(src_y, src_y_plane_size); align_buffer_page_end(src_u, src_uv_plane_size); align_buffer_page_end(src_v, src_uv_plane_size); int64 dst_argb_plane_size = (dst_width) * (dst_height) * 4LL; int dst_stride_argb = (dst_width) * 4; align_buffer_page_end(dst_argb_c, dst_argb_plane_size); align_buffer_page_end(dst_argb_opt, dst_argb_plane_size); if (!dst_argb_c || !dst_argb_opt || !src_y || !src_u || !src_v) { printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n"); return 0; } // Fill YUV image with continuous ramp, which is less sensitive to // subsampling and filtering differences for test purposes. FillRamp(src_y, Abs(src_width), Abs(src_height), 128, 1, 1); FillRamp(src_u, (Abs(src_width) + 1) / 2, (Abs(src_height) + 1) / 2, 3, 1, 1); FillRamp(src_v, (Abs(src_width) + 1) / 2, (Abs(src_height) + 1) / 2, 4, 1, 1); memset(dst_argb_c, 2, dst_argb_plane_size); memset(dst_argb_opt, 3, dst_argb_plane_size); YUVToARGBScaleReference2(src_y, src_stride_y, src_u, src_stride_uv, src_v, src_stride_uv, libyuv::FOURCC_I420, src_width, src_height, dst_argb_c, dst_stride_argb, libyuv::FOURCC_I420, dst_width, dst_height, 0, 0, dst_width, dst_height, f); for (int i = 0; i < benchmark_iterations; ++i) { YUVToARGBScaleClip(src_y, src_stride_y, src_u, src_stride_uv, src_v, src_stride_uv, libyuv::FOURCC_I420, src_width, src_height, dst_argb_opt, dst_stride_argb, libyuv::FOURCC_I420, dst_width, dst_height, 0, 0, dst_width, dst_height, f); } int max_diff = 0; for (int i = 0; i < dst_height; ++i) { for (int j = 0; j < dst_width * 4; ++j) { int abs_diff = Abs(dst_argb_c[(i * dst_stride_argb) + j] - dst_argb_opt[(i * dst_stride_argb) + j]); if (abs_diff > max_diff) { printf("error %d at %d,%d c %d opt %d", abs_diff, j, i, dst_argb_c[(i * dst_stride_argb) + j], dst_argb_opt[(i * dst_stride_argb) + j]); EXPECT_LE(abs_diff, 40); max_diff = abs_diff; } } } free_aligned_buffer_page_end(dst_argb_c); free_aligned_buffer_page_end(dst_argb_opt); free_aligned_buffer_page_end(src_y); free_aligned_buffer_page_end(src_u); free_aligned_buffer_page_end(src_v); return max_diff; } TEST_F(LibYUVScaleTest, YUVToRGBScaleUp) { int diff = YUVToARGBTestFilter(benchmark_width_, benchmark_height_, benchmark_width_ * 3 / 2, benchmark_height_ * 3 / 2, libyuv::kFilterBilinear, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_); EXPECT_LE(diff, 10); } TEST_F(LibYUVScaleTest, YUVToRGBScaleDown) { int diff = YUVToARGBTestFilter(benchmark_width_ * 3 / 2, benchmark_height_ * 3 / 2, benchmark_width_, benchmark_height_, libyuv::kFilterBilinear, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_); EXPECT_LE(diff, 10); } } // namespace libyuv