/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <stdlib.h> #include <string.h> #include <time.h> #include "../unit_test/unit_test.h" #include "libyuv/basic_types.h" #include "libyuv/compare.h" #include "libyuv/cpu_id.h" #include "libyuv/video_common.h" namespace libyuv { // hash seed of 5381 recommended. static uint32 ReferenceHashDjb2(const uint8* src, uint64 count, uint32 seed) { uint32 hash = seed; if (count > 0) { do { hash = hash * 33 + *src++; } while (--count); } return hash; } TEST_F(LibYUVBaseTest, Djb2_Test) { const int kMaxTest = benchmark_width_ * benchmark_height_; align_buffer_page_end(src_a, kMaxTest); align_buffer_page_end(src_b, kMaxTest); const char* fox = "The quick brown fox jumps over the lazy dog" " and feels as if he were in the seventh heaven of typography" " together with Hermann Zapf"; uint32 foxhash = HashDjb2(reinterpret_cast<const uint8*>(fox), 131, 5381); const uint32 kExpectedFoxHash = 2611006483u; EXPECT_EQ(kExpectedFoxHash, foxhash); for (int i = 0; i < kMaxTest; ++i) { src_a[i] = (fastrand() & 0xff); src_b[i] = (fastrand() & 0xff); } // Compare different buffers. Expect hash is different. uint32 h1 = HashDjb2(src_a, kMaxTest, 5381); uint32 h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make last half same. Expect hash is different. memcpy(src_a + kMaxTest / 2, src_b + kMaxTest / 2, kMaxTest / 2); h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make first half same. Expect hash is different. memcpy(src_a + kMaxTest / 2, src_a, kMaxTest / 2); memcpy(src_b + kMaxTest / 2, src_b, kMaxTest / 2); memcpy(src_a, src_b, kMaxTest / 2); h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make same. Expect hash is same. memcpy(src_a, src_b, kMaxTest); h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_EQ(h1, h2); // Mask seed different. Expect hash is different. memcpy(src_a, src_b, kMaxTest); h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 1234); EXPECT_NE(h1, h2); // Make one byte different in middle. Expect hash is different. memcpy(src_a, src_b, kMaxTest); ++src_b[kMaxTest / 2]; h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make first byte different. Expect hash is different. memcpy(src_a, src_b, kMaxTest); ++src_b[0]; h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make last byte different. Expect hash is different. memcpy(src_a, src_b, kMaxTest); ++src_b[kMaxTest - 1]; h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make a zeros. Test different lengths. Expect hash is different. memset(src_a, 0, kMaxTest); h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_a, kMaxTest / 2, 5381); EXPECT_NE(h1, h2); // Make a zeros and seed of zero. Test different lengths. Expect hash is same. memset(src_a, 0, kMaxTest); h1 = HashDjb2(src_a, kMaxTest, 0); h2 = HashDjb2(src_a, kMaxTest / 2, 0); EXPECT_EQ(h1, h2); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVBaseTest, BenchmarkDjb2_Opt) { const int kMaxTest = benchmark_width_ * benchmark_height_; align_buffer_page_end(src_a, kMaxTest); for (int i = 0; i < kMaxTest; ++i) { src_a[i] = i; } uint32 h2 = ReferenceHashDjb2(src_a, kMaxTest, 5381); uint32 h1; for (int i = 0; i < benchmark_iterations_; ++i) { h1 = HashDjb2(src_a, kMaxTest, 5381); } EXPECT_EQ(h1, h2); free_aligned_buffer_page_end(src_a); } TEST_F(LibYUVBaseTest, BenchmarkDjb2_Unaligned) { const int kMaxTest = benchmark_width_ * benchmark_height_; align_buffer_page_end(src_a, kMaxTest + 1); for (int i = 0; i < kMaxTest; ++i) { src_a[i + 1] = i; } uint32 h2 = ReferenceHashDjb2(src_a + 1, kMaxTest, 5381); uint32 h1; for (int i = 0; i < benchmark_iterations_; ++i) { h1 = HashDjb2(src_a + 1, kMaxTest, 5381); } EXPECT_EQ(h1, h2); free_aligned_buffer_page_end(src_a); } TEST_F(LibYUVBaseTest, BenchmarkARGBDetect_Opt) { uint32 fourcc; const int kMaxTest = benchmark_width_ * benchmark_height_ * 4; align_buffer_page_end(src_a, kMaxTest); for (int i = 0; i < kMaxTest; ++i) { src_a[i] = 255; } src_a[0] = 0; fourcc = ARGBDetect(src_a, benchmark_width_ * 4, benchmark_width_, benchmark_height_); EXPECT_EQ(libyuv::FOURCC_BGRA, fourcc); src_a[0] = 255; src_a[3] = 0; fourcc = ARGBDetect(src_a, benchmark_width_ * 4, benchmark_width_, benchmark_height_); EXPECT_EQ(libyuv::FOURCC_ARGB, fourcc); src_a[3] = 255; for (int i = 0; i < benchmark_iterations_; ++i) { fourcc = ARGBDetect(src_a, benchmark_width_ * 4, benchmark_width_, benchmark_height_); } EXPECT_EQ(0, fourcc); free_aligned_buffer_page_end(src_a); } TEST_F(LibYUVBaseTest, BenchmarkARGBDetect_Unaligned) { uint32 fourcc; const int kMaxTest = benchmark_width_ * benchmark_height_ * 4 + 1; align_buffer_page_end(src_a, kMaxTest); for (int i = 1; i < kMaxTest; ++i) { src_a[i] = 255; } src_a[0 + 1] = 0; fourcc = ARGBDetect(src_a + 1, benchmark_width_ * 4, benchmark_width_, benchmark_height_); EXPECT_EQ(libyuv::FOURCC_BGRA, fourcc); src_a[0 + 1] = 255; src_a[3 + 1] = 0; fourcc = ARGBDetect(src_a + 1, benchmark_width_ * 4, benchmark_width_, benchmark_height_); EXPECT_EQ(libyuv::FOURCC_ARGB, fourcc); src_a[3 + 1] = 255; for (int i = 0; i < benchmark_iterations_; ++i) { fourcc = ARGBDetect(src_a + 1, benchmark_width_ * 4, benchmark_width_, benchmark_height_); } EXPECT_EQ(0, fourcc); free_aligned_buffer_page_end(src_a); } TEST_F(LibYUVBaseTest, BenchmarkSumSquareError_Opt) { const int kMaxWidth = 4096 * 3; align_buffer_page_end(src_a, kMaxWidth); align_buffer_page_end(src_b, kMaxWidth); memset(src_a, 0, kMaxWidth); memset(src_b, 0, kMaxWidth); memcpy(src_a, "test0123test4567", 16); memcpy(src_b, "tick0123tock4567", 16); uint64 h1 = ComputeSumSquareError(src_a, src_b, 16); EXPECT_EQ(790u, h1); for (int i = 0; i < kMaxWidth; ++i) { src_a[i] = i; src_b[i] = i; } memset(src_a, 0, kMaxWidth); memset(src_b, 0, kMaxWidth); int count = benchmark_iterations_ * ((benchmark_width_ * benchmark_height_ + kMaxWidth - 1) / kMaxWidth); for (int i = 0; i < count; ++i) { h1 = ComputeSumSquareError(src_a, src_b, kMaxWidth); } EXPECT_EQ(0, h1); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVBaseTest, SumSquareError) { const int kMaxWidth = 4096 * 3; align_buffer_page_end(src_a, kMaxWidth); align_buffer_page_end(src_b, kMaxWidth); memset(src_a, 0, kMaxWidth); memset(src_b, 0, kMaxWidth); uint64 err; err = ComputeSumSquareError(src_a, src_b, kMaxWidth); EXPECT_EQ(0, err); memset(src_a, 1, kMaxWidth); err = ComputeSumSquareError(src_a, src_b, kMaxWidth); EXPECT_EQ(err, kMaxWidth); memset(src_a, 190, kMaxWidth); memset(src_b, 193, kMaxWidth); err = ComputeSumSquareError(src_a, src_b, kMaxWidth); EXPECT_EQ(kMaxWidth * 3 * 3, err); for (int i = 0; i < kMaxWidth; ++i) { src_a[i] = (fastrand() & 0xff); src_b[i] = (fastrand() & 0xff); } MaskCpuFlags(disable_cpu_flags_); uint64 c_err = ComputeSumSquareError(src_a, src_b, kMaxWidth); MaskCpuFlags(benchmark_cpu_info_); uint64 opt_err = ComputeSumSquareError(src_a, src_b, kMaxWidth); EXPECT_EQ(c_err, opt_err); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVBaseTest, BenchmarkPsnr_Opt) { align_buffer_page_end(src_a, benchmark_width_ * benchmark_height_); align_buffer_page_end(src_b, benchmark_width_ * benchmark_height_); for (int i = 0; i < benchmark_width_ * benchmark_height_; ++i) { src_a[i] = i; src_b[i] = i; } MaskCpuFlags(benchmark_cpu_info_); double opt_time = get_time(); for (int i = 0; i < benchmark_iterations_; ++i) CalcFramePsnr(src_a, benchmark_width_, src_b, benchmark_width_, benchmark_width_, benchmark_height_); opt_time = (get_time() - opt_time) / benchmark_iterations_; printf("BenchmarkPsnr_Opt - %8.2f us opt\n", opt_time * 1e6); EXPECT_EQ(0, 0); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVBaseTest, BenchmarkPsnr_Unaligned) { align_buffer_page_end(src_a, benchmark_width_ * benchmark_height_ + 1); align_buffer_page_end(src_b, benchmark_width_ * benchmark_height_); for (int i = 0; i < benchmark_width_ * benchmark_height_; ++i) { src_a[i + 1] = i; src_b[i] = i; } MaskCpuFlags(benchmark_cpu_info_); double opt_time = get_time(); for (int i = 0; i < benchmark_iterations_; ++i) CalcFramePsnr(src_a + 1, benchmark_width_, src_b, benchmark_width_, benchmark_width_, benchmark_height_); opt_time = (get_time() - opt_time) / benchmark_iterations_; printf("BenchmarkPsnr_Opt - %8.2f us opt\n", opt_time * 1e6); EXPECT_EQ(0, 0); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVBaseTest, Psnr) { const int kSrcWidth = benchmark_width_; const int kSrcHeight = benchmark_height_; const int b = 128; const int kSrcPlaneSize = (kSrcWidth + b * 2) * (kSrcHeight + b * 2); const int kSrcStride = 2 * b + kSrcWidth; align_buffer_page_end(src_a, kSrcPlaneSize); align_buffer_page_end(src_b, kSrcPlaneSize); memset(src_a, 0, kSrcPlaneSize); memset(src_b, 0, kSrcPlaneSize); double err; err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); EXPECT_EQ(err, kMaxPsnr); memset(src_a, 255, kSrcPlaneSize); err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); EXPECT_EQ(err, 0.0); memset(src_a, 1, kSrcPlaneSize); err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); EXPECT_GT(err, 48.0); EXPECT_LT(err, 49.0); for (int i = 0; i < kSrcPlaneSize; ++i) { src_a[i] = i; } err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); EXPECT_GT(err, 2.0); if (kSrcWidth * kSrcHeight >= 256) { EXPECT_LT(err, 6.0); } memset(src_a, 0, kSrcPlaneSize); memset(src_b, 0, kSrcPlaneSize); for (int i = b; i < (kSrcHeight + b); ++i) { for (int j = b; j < (kSrcWidth + b); ++j) { src_a[(i * kSrcStride) + j] = (fastrand() & 0xff); src_b[(i * kSrcStride) + j] = (fastrand() & 0xff); } } MaskCpuFlags(disable_cpu_flags_); double c_err, opt_err; c_err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); MaskCpuFlags(benchmark_cpu_info_); opt_err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); EXPECT_EQ(opt_err, c_err); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVBaseTest, DISABLED_BenchmarkSsim_Opt) { align_buffer_page_end(src_a, benchmark_width_ * benchmark_height_); align_buffer_page_end(src_b, benchmark_width_ * benchmark_height_); for (int i = 0; i < benchmark_width_ * benchmark_height_; ++i) { src_a[i] = i; src_b[i] = i; } MaskCpuFlags(benchmark_cpu_info_); double opt_time = get_time(); for (int i = 0; i < benchmark_iterations_; ++i) CalcFrameSsim(src_a, benchmark_width_, src_b, benchmark_width_, benchmark_width_, benchmark_height_); opt_time = (get_time() - opt_time) / benchmark_iterations_; printf("BenchmarkSsim_Opt - %8.2f us opt\n", opt_time * 1e6); EXPECT_EQ(0, 0); // Pass if we get this far. free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVBaseTest, Ssim) { const int kSrcWidth = benchmark_width_; const int kSrcHeight = benchmark_height_; const int b = 128; const int kSrcPlaneSize = (kSrcWidth + b * 2) * (kSrcHeight + b * 2); const int kSrcStride = 2 * b + kSrcWidth; align_buffer_page_end(src_a, kSrcPlaneSize); align_buffer_page_end(src_b, kSrcPlaneSize); memset(src_a, 0, kSrcPlaneSize); memset(src_b, 0, kSrcPlaneSize); if (kSrcWidth <=8 || kSrcHeight <= 8) { printf("warning - Ssim size too small. Testing function executes.\n"); } double err; err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); if (kSrcWidth > 8 && kSrcHeight > 8) { EXPECT_EQ(err, 1.0); } memset(src_a, 255, kSrcPlaneSize); err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); if (kSrcWidth > 8 && kSrcHeight > 8) { EXPECT_LT(err, 0.0001); } memset(src_a, 1, kSrcPlaneSize); err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); if (kSrcWidth > 8 && kSrcHeight > 8) { EXPECT_GT(err, 0.0001); EXPECT_LT(err, 0.9); } for (int i = 0; i < kSrcPlaneSize; ++i) { src_a[i] = i; } err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); if (kSrcWidth > 8 && kSrcHeight > 8) { EXPECT_GT(err, 0.0); EXPECT_LT(err, 0.01); } for (int i = b; i < (kSrcHeight + b); ++i) { for (int j = b; j < (kSrcWidth + b); ++j) { src_a[(i * kSrcStride) + j] = (fastrand() & 0xff); src_b[(i * kSrcStride) + j] = (fastrand() & 0xff); } } MaskCpuFlags(disable_cpu_flags_); double c_err, opt_err; c_err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); MaskCpuFlags(benchmark_cpu_info_); opt_err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); if (kSrcWidth > 8 && kSrcHeight > 8) { EXPECT_EQ(opt_err, c_err); } free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } } // namespace libyuv