/************************************************************************** * * Copyright 2006 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* Originally a fake version of the buffer manager so that we can * prototype the changes in a driver fairly quickly, has been fleshed * out to a fully functional interim solution. * * Basically wraps the old style memory management in the new * programming interface, but is more expressive and avoids many of * the bugs in the old texture manager. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <stdlib.h> #include <string.h> #include <assert.h> #include <errno.h> #include <strings.h> #include <xf86drm.h> #include <pthread.h> #include "intel_bufmgr.h" #include "intel_bufmgr_priv.h" #include "drm.h" #include "i915_drm.h" #include "mm.h" #include "libdrm_macros.h" #include "libdrm_lists.h" #define DBG(...) do { \ if (bufmgr_fake->bufmgr.debug) \ drmMsg(__VA_ARGS__); \ } while (0) /* Internal flags: */ #define BM_NO_BACKING_STORE 0x00000001 #define BM_NO_FENCE_SUBDATA 0x00000002 #define BM_PINNED 0x00000004 /* Wrapper around mm.c's mem_block, which understands that you must * wait for fences to expire before memory can be freed. This is * specific to our use of memcpy for uploads - an upload that was * processed through the command queue wouldn't need to care about * fences. */ #define MAX_RELOCS 4096 struct fake_buffer_reloc { /** Buffer object that the relocation points at. */ drm_intel_bo *target_buf; /** Offset of the relocation entry within reloc_buf. */ uint32_t offset; /** * Cached value of the offset when we last performed this relocation. */ uint32_t last_target_offset; /** Value added to target_buf's offset to get the relocation entry. */ uint32_t delta; /** Cache domains the target buffer is read into. */ uint32_t read_domains; /** Cache domain the target buffer will have dirty cachelines in. */ uint32_t write_domain; }; struct block { struct block *next, *prev; struct mem_block *mem; /* BM_MEM_AGP */ /** * Marks that the block is currently in the aperture and has yet to be * fenced. */ unsigned on_hardware:1; /** * Marks that the block is currently fenced (being used by rendering) * and can't be freed until @fence is passed. */ unsigned fenced:1; /** Fence cookie for the block. */ unsigned fence; /* Split to read_fence, write_fence */ drm_intel_bo *bo; void *virtual; }; typedef struct _bufmgr_fake { drm_intel_bufmgr bufmgr; pthread_mutex_t lock; unsigned long low_offset; unsigned long size; void *virtual; struct mem_block *heap; unsigned buf_nr; /* for generating ids */ /** * List of blocks which are currently in the GART but haven't been * fenced yet. */ struct block on_hardware; /** * List of blocks which are in the GART and have an active fence on * them. */ struct block fenced; /** * List of blocks which have an expired fence and are ready to be * evicted. */ struct block lru; unsigned int last_fence; unsigned fail:1; unsigned need_fence:1; int thrashing; /** * Driver callback to emit a fence, returning the cookie. * * This allows the driver to hook in a replacement for the DRM usage in * bufmgr_fake. * * Currently, this also requires that a write flush be emitted before * emitting the fence, but this should change. */ unsigned int (*fence_emit) (void *private); /** Driver callback to wait for a fence cookie to have passed. */ void (*fence_wait) (unsigned int fence, void *private); void *fence_priv; /** * Driver callback to execute a buffer. * * This allows the driver to hook in a replacement for the DRM usage in * bufmgr_fake. */ int (*exec) (drm_intel_bo *bo, unsigned int used, void *priv); void *exec_priv; /** Driver-supplied argument to driver callbacks */ void *driver_priv; /** * Pointer to kernel-updated sarea data for the last completed user irq */ volatile int *last_dispatch; int fd; int debug; int performed_rendering; } drm_intel_bufmgr_fake; typedef struct _drm_intel_bo_fake { drm_intel_bo bo; unsigned id; /* debug only */ const char *name; unsigned dirty:1; /** * has the card written to this buffer - we make need to copy it back */ unsigned card_dirty:1; unsigned int refcount; /* Flags may consist of any of the DRM_BO flags, plus * DRM_BO_NO_BACKING_STORE and BM_NO_FENCE_SUBDATA, which are the * first two driver private flags. */ uint64_t flags; /** Cache domains the target buffer is read into. */ uint32_t read_domains; /** Cache domain the target buffer will have dirty cachelines in. */ uint32_t write_domain; unsigned int alignment; int is_static, validated; unsigned int map_count; /** relocation list */ struct fake_buffer_reloc *relocs; int nr_relocs; /** * Total size of the target_bos of this buffer. * * Used for estimation in check_aperture. */ unsigned int child_size; struct block *block; void *backing_store; void (*invalidate_cb) (drm_intel_bo *bo, void *ptr); void *invalidate_ptr; } drm_intel_bo_fake; static int clear_fenced(drm_intel_bufmgr_fake *bufmgr_fake, unsigned int fence_cookie); #define MAXFENCE 0x7fffffff static int FENCE_LTE(unsigned a, unsigned b) { if (a == b) return 1; if (a < b && b - a < (1 << 24)) return 1; if (a > b && MAXFENCE - a + b < (1 << 24)) return 1; return 0; } void drm_intel_bufmgr_fake_set_fence_callback(drm_intel_bufmgr *bufmgr, unsigned int (*emit) (void *priv), void (*wait) (unsigned int fence, void *priv), void *priv) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bufmgr; bufmgr_fake->fence_emit = emit; bufmgr_fake->fence_wait = wait; bufmgr_fake->fence_priv = priv; } static unsigned int _fence_emit_internal(drm_intel_bufmgr_fake *bufmgr_fake) { struct drm_i915_irq_emit ie; int ret, seq = 1; if (bufmgr_fake->fence_emit != NULL) { seq = bufmgr_fake->fence_emit(bufmgr_fake->fence_priv); return seq; } ie.irq_seq = &seq; ret = drmCommandWriteRead(bufmgr_fake->fd, DRM_I915_IRQ_EMIT, &ie, sizeof(ie)); if (ret) { drmMsg("%s: drm_i915_irq_emit: %d\n", __func__, ret); abort(); } DBG("emit 0x%08x\n", seq); return seq; } static void _fence_wait_internal(drm_intel_bufmgr_fake *bufmgr_fake, int seq) { struct drm_i915_irq_wait iw; int hw_seq, busy_count = 0; int ret; int kernel_lied; if (bufmgr_fake->fence_wait != NULL) { bufmgr_fake->fence_wait(seq, bufmgr_fake->fence_priv); clear_fenced(bufmgr_fake, seq); return; } iw.irq_seq = seq; DBG("wait 0x%08x\n", iw.irq_seq); /* The kernel IRQ_WAIT implementation is all sorts of broken. * 1) It returns 1 to 0x7fffffff instead of using the full 32-bit * unsigned range. * 2) It returns 0 if hw_seq >= seq, not seq - hw_seq < 0 on the 32-bit * signed range. * 3) It waits if seq < hw_seq, not seq - hw_seq > 0 on the 32-bit * signed range. * 4) It returns -EBUSY in 3 seconds even if the hardware is still * successfully chewing through buffers. * * Assume that in userland we treat sequence numbers as ints, which * makes some of the comparisons convenient, since the sequence * numbers are all postive signed integers. * * From this we get several cases we need to handle. Here's a timeline. * 0x2 0x7 0x7ffffff8 0x7ffffffd * | | | | * ------------------------------------------------------------ * * A) Normal wait for hw to catch up * hw_seq seq * | | * ------------------------------------------------------------ * seq - hw_seq = 5. If we call IRQ_WAIT, it will wait for hw to * catch up. * * B) Normal wait for a sequence number that's already passed. * seq hw_seq * | | * ------------------------------------------------------------ * seq - hw_seq = -5. If we call IRQ_WAIT, it returns 0 quickly. * * C) Hardware has already wrapped around ahead of us * hw_seq seq * | | * ------------------------------------------------------------ * seq - hw_seq = 0x80000000 - 5. If we called IRQ_WAIT, it would wait * for hw_seq >= seq, which may never occur. Thus, we want to catch * this in userland and return 0. * * D) We've wrapped around ahead of the hardware. * seq hw_seq * | | * ------------------------------------------------------------ * seq - hw_seq = -(0x80000000 - 5). If we called IRQ_WAIT, it would * return 0 quickly because hw_seq >= seq, even though the hardware * isn't caught up. Thus, we need to catch this early return in * userland and bother the kernel until the hardware really does * catch up. * * E) Hardware might wrap after we test in userland. * hw_seq seq * | | * ------------------------------------------------------------ * seq - hw_seq = 5. If we call IRQ_WAIT, it will likely see seq >= * hw_seq and wait. However, suppose hw_seq wraps before we make it * into the kernel. The kernel sees hw_seq >= seq and waits for 3 * seconds then returns -EBUSY. This is case C). We should catch * this and then return successfully. * * F) Hardware might take a long time on a buffer. * hw_seq seq * | | * ------------------------------------------------------------------- * seq - hw_seq = 5. If we call IRQ_WAIT, if sequence 2 through 5 * take too long, it will return -EBUSY. Batchbuffers in the * gltestperf demo were seen to take up to 7 seconds. We should * catch early -EBUSY return and keep trying. */ do { /* Keep a copy of last_dispatch so that if the wait -EBUSYs * because the hardware didn't catch up in 3 seconds, we can * see if it at least made progress and retry. */ hw_seq = *bufmgr_fake->last_dispatch; /* Catch case C */ if (seq - hw_seq > 0x40000000) return; ret = drmCommandWrite(bufmgr_fake->fd, DRM_I915_IRQ_WAIT, &iw, sizeof(iw)); /* Catch case D */ kernel_lied = (ret == 0) && (seq - *bufmgr_fake->last_dispatch < -0x40000000); /* Catch case E */ if (ret == -EBUSY && (seq - *bufmgr_fake->last_dispatch > 0x40000000)) ret = 0; /* Catch case F: Allow up to 15 seconds chewing on one buffer. */ if ((ret == -EBUSY) && (hw_seq != *bufmgr_fake->last_dispatch)) busy_count = 0; else busy_count++; } while (kernel_lied || ret == -EAGAIN || ret == -EINTR || (ret == -EBUSY && busy_count < 5)); if (ret != 0) { drmMsg("%s:%d: Error waiting for fence: %s.\n", __FILE__, __LINE__, strerror(-ret)); abort(); } clear_fenced(bufmgr_fake, seq); } static int _fence_test(drm_intel_bufmgr_fake *bufmgr_fake, unsigned fence) { /* Slight problem with wrap-around: */ return fence == 0 || FENCE_LTE(fence, bufmgr_fake->last_fence); } /** * Allocate a memory manager block for the buffer. */ static int alloc_block(drm_intel_bo *bo) { drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; struct block *block = (struct block *)calloc(sizeof *block, 1); unsigned int align_log2 = ffs(bo_fake->alignment) - 1; unsigned int sz; if (!block) return 1; sz = (bo->size + bo_fake->alignment - 1) & ~(bo_fake->alignment - 1); block->mem = mmAllocMem(bufmgr_fake->heap, sz, align_log2, 0); if (!block->mem) { free(block); return 0; } DRMINITLISTHEAD(block); /* Insert at head or at tail??? */ DRMLISTADDTAIL(block, &bufmgr_fake->lru); block->virtual = (uint8_t *) bufmgr_fake->virtual + block->mem->ofs - bufmgr_fake->low_offset; block->bo = bo; bo_fake->block = block; return 1; } /* Release the card storage associated with buf: */ static void free_block(drm_intel_bufmgr_fake *bufmgr_fake, struct block *block, int skip_dirty_copy) { drm_intel_bo_fake *bo_fake; DBG("free block %p %08x %d %d\n", block, block->mem->ofs, block->on_hardware, block->fenced); if (!block) return; bo_fake = (drm_intel_bo_fake *) block->bo; if (bo_fake->flags & (BM_PINNED | BM_NO_BACKING_STORE)) skip_dirty_copy = 1; if (!skip_dirty_copy && (bo_fake->card_dirty == 1)) { memcpy(bo_fake->backing_store, block->virtual, block->bo->size); bo_fake->card_dirty = 0; bo_fake->dirty = 1; } if (block->on_hardware) { block->bo = NULL; } else if (block->fenced) { block->bo = NULL; } else { DBG(" - free immediately\n"); DRMLISTDEL(block); mmFreeMem(block->mem); free(block); } } static void alloc_backing_store(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; assert(!bo_fake->backing_store); assert(!(bo_fake->flags & (BM_PINNED | BM_NO_BACKING_STORE))); bo_fake->backing_store = malloc(bo->size); DBG("alloc_backing - buf %d %p %lu\n", bo_fake->id, bo_fake->backing_store, bo->size); assert(bo_fake->backing_store); } static void free_backing_store(drm_intel_bo *bo) { drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; if (bo_fake->backing_store) { assert(!(bo_fake->flags & (BM_PINNED | BM_NO_BACKING_STORE))); free(bo_fake->backing_store); bo_fake->backing_store = NULL; } } static void set_dirty(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; if (bo_fake->flags & BM_NO_BACKING_STORE && bo_fake->invalidate_cb != NULL) bo_fake->invalidate_cb(bo, bo_fake->invalidate_ptr); assert(!(bo_fake->flags & BM_PINNED)); DBG("set_dirty - buf %d\n", bo_fake->id); bo_fake->dirty = 1; } static int evict_lru(drm_intel_bufmgr_fake *bufmgr_fake, unsigned int max_fence) { struct block *block, *tmp; DBG("%s\n", __func__); DRMLISTFOREACHSAFE(block, tmp, &bufmgr_fake->lru) { drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) block->bo; if (bo_fake != NULL && (bo_fake->flags & BM_NO_FENCE_SUBDATA)) continue; if (block->fence && max_fence && !FENCE_LTE(block->fence, max_fence)) return 0; set_dirty(&bo_fake->bo); bo_fake->block = NULL; free_block(bufmgr_fake, block, 0); return 1; } return 0; } static int evict_mru(drm_intel_bufmgr_fake *bufmgr_fake) { struct block *block, *tmp; DBG("%s\n", __func__); DRMLISTFOREACHSAFEREVERSE(block, tmp, &bufmgr_fake->lru) { drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) block->bo; if (bo_fake && (bo_fake->flags & BM_NO_FENCE_SUBDATA)) continue; set_dirty(&bo_fake->bo); bo_fake->block = NULL; free_block(bufmgr_fake, block, 0); return 1; } return 0; } /** * Removes all objects from the fenced list older than the given fence. */ static int clear_fenced(drm_intel_bufmgr_fake *bufmgr_fake, unsigned int fence_cookie) { struct block *block, *tmp; int ret = 0; bufmgr_fake->last_fence = fence_cookie; DRMLISTFOREACHSAFE(block, tmp, &bufmgr_fake->fenced) { assert(block->fenced); if (_fence_test(bufmgr_fake, block->fence)) { block->fenced = 0; if (!block->bo) { DBG("delayed free: offset %x sz %x\n", block->mem->ofs, block->mem->size); DRMLISTDEL(block); mmFreeMem(block->mem); free(block); } else { DBG("return to lru: offset %x sz %x\n", block->mem->ofs, block->mem->size); DRMLISTDEL(block); DRMLISTADDTAIL(block, &bufmgr_fake->lru); } ret = 1; } else { /* Blocks are ordered by fence, so if one fails, all * from here will fail also: */ DBG("fence not passed: offset %x sz %x %d %d \n", block->mem->ofs, block->mem->size, block->fence, bufmgr_fake->last_fence); break; } } DBG("%s: %d\n", __func__, ret); return ret; } static void fence_blocks(drm_intel_bufmgr_fake *bufmgr_fake, unsigned fence) { struct block *block, *tmp; DRMLISTFOREACHSAFE(block, tmp, &bufmgr_fake->on_hardware) { DBG("Fence block %p (sz 0x%x ofs %x buf %p) with fence %d\n", block, block->mem->size, block->mem->ofs, block->bo, fence); block->fence = fence; block->on_hardware = 0; block->fenced = 1; /* Move to tail of pending list here */ DRMLISTDEL(block); DRMLISTADDTAIL(block, &bufmgr_fake->fenced); } assert(DRMLISTEMPTY(&bufmgr_fake->on_hardware)); } static int evict_and_alloc_block(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; assert(bo_fake->block == NULL); /* Search for already free memory: */ if (alloc_block(bo)) return 1; /* If we're not thrashing, allow lru eviction to dig deeper into * recently used textures. We'll probably be thrashing soon: */ if (!bufmgr_fake->thrashing) { while (evict_lru(bufmgr_fake, 0)) if (alloc_block(bo)) return 1; } /* Keep thrashing counter alive? */ if (bufmgr_fake->thrashing) bufmgr_fake->thrashing = 20; /* Wait on any already pending fences - here we are waiting for any * freed memory that has been submitted to hardware and fenced to * become available: */ while (!DRMLISTEMPTY(&bufmgr_fake->fenced)) { uint32_t fence = bufmgr_fake->fenced.next->fence; _fence_wait_internal(bufmgr_fake, fence); if (alloc_block(bo)) return 1; } if (!DRMLISTEMPTY(&bufmgr_fake->on_hardware)) { while (!DRMLISTEMPTY(&bufmgr_fake->fenced)) { uint32_t fence = bufmgr_fake->fenced.next->fence; _fence_wait_internal(bufmgr_fake, fence); } if (!bufmgr_fake->thrashing) { DBG("thrashing\n"); } bufmgr_fake->thrashing = 20; if (alloc_block(bo)) return 1; } while (evict_mru(bufmgr_fake)) if (alloc_block(bo)) return 1; DBG("%s 0x%lx bytes failed\n", __func__, bo->size); return 0; } /*********************************************************************** * Public functions */ /** * Wait for hardware idle by emitting a fence and waiting for it. */ static void drm_intel_bufmgr_fake_wait_idle(drm_intel_bufmgr_fake *bufmgr_fake) { unsigned int cookie; cookie = _fence_emit_internal(bufmgr_fake); _fence_wait_internal(bufmgr_fake, cookie); } /** * Wait for rendering to a buffer to complete. * * It is assumed that the bathcbuffer which performed the rendering included * the necessary flushing. */ static void drm_intel_fake_bo_wait_rendering_locked(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; if (bo_fake->block == NULL || !bo_fake->block->fenced) return; _fence_wait_internal(bufmgr_fake, bo_fake->block->fence); } static void drm_intel_fake_bo_wait_rendering(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; pthread_mutex_lock(&bufmgr_fake->lock); drm_intel_fake_bo_wait_rendering_locked(bo); pthread_mutex_unlock(&bufmgr_fake->lock); } /* Specifically ignore texture memory sharing. * -- just evict everything * -- and wait for idle */ void drm_intel_bufmgr_fake_contended_lock_take(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bufmgr; struct block *block, *tmp; pthread_mutex_lock(&bufmgr_fake->lock); bufmgr_fake->need_fence = 1; bufmgr_fake->fail = 0; /* Wait for hardware idle. We don't know where acceleration has been * happening, so we'll need to wait anyway before letting anything get * put on the card again. */ drm_intel_bufmgr_fake_wait_idle(bufmgr_fake); /* Check that we hadn't released the lock without having fenced the last * set of buffers. */ assert(DRMLISTEMPTY(&bufmgr_fake->fenced)); assert(DRMLISTEMPTY(&bufmgr_fake->on_hardware)); DRMLISTFOREACHSAFE(block, tmp, &bufmgr_fake->lru) { assert(_fence_test(bufmgr_fake, block->fence)); set_dirty(block->bo); } pthread_mutex_unlock(&bufmgr_fake->lock); } static drm_intel_bo * drm_intel_fake_bo_alloc(drm_intel_bufmgr *bufmgr, const char *name, unsigned long size, unsigned int alignment) { drm_intel_bufmgr_fake *bufmgr_fake; drm_intel_bo_fake *bo_fake; bufmgr_fake = (drm_intel_bufmgr_fake *) bufmgr; assert(size != 0); bo_fake = calloc(1, sizeof(*bo_fake)); if (!bo_fake) return NULL; bo_fake->bo.size = size; bo_fake->bo.offset = -1; bo_fake->bo.virtual = NULL; bo_fake->bo.bufmgr = bufmgr; bo_fake->refcount = 1; /* Alignment must be a power of two */ assert((alignment & (alignment - 1)) == 0); if (alignment == 0) alignment = 1; bo_fake->alignment = alignment; bo_fake->id = ++bufmgr_fake->buf_nr; bo_fake->name = name; bo_fake->flags = 0; bo_fake->is_static = 0; DBG("drm_bo_alloc: (buf %d: %s, %lu kb)\n", bo_fake->id, bo_fake->name, bo_fake->bo.size / 1024); return &bo_fake->bo; } static drm_intel_bo * drm_intel_fake_bo_alloc_tiled(drm_intel_bufmgr * bufmgr, const char *name, int x, int y, int cpp, uint32_t *tiling_mode, unsigned long *pitch, unsigned long flags) { unsigned long stride, aligned_y; /* No runtime tiling support for fake. */ *tiling_mode = I915_TILING_NONE; /* Align it for being a render target. Shouldn't need anything else. */ stride = x * cpp; stride = ROUND_UP_TO(stride, 64); /* 965 subspan loading alignment */ aligned_y = ALIGN(y, 2); *pitch = stride; return drm_intel_fake_bo_alloc(bufmgr, name, stride * aligned_y, 4096); } drm_intel_bo * drm_intel_bo_fake_alloc_static(drm_intel_bufmgr *bufmgr, const char *name, unsigned long offset, unsigned long size, void *virtual) { drm_intel_bufmgr_fake *bufmgr_fake; drm_intel_bo_fake *bo_fake; bufmgr_fake = (drm_intel_bufmgr_fake *) bufmgr; assert(size != 0); bo_fake = calloc(1, sizeof(*bo_fake)); if (!bo_fake) return NULL; bo_fake->bo.size = size; bo_fake->bo.offset = offset; bo_fake->bo.virtual = virtual; bo_fake->bo.bufmgr = bufmgr; bo_fake->refcount = 1; bo_fake->id = ++bufmgr_fake->buf_nr; bo_fake->name = name; bo_fake->flags = BM_PINNED; bo_fake->is_static = 1; DBG("drm_bo_alloc_static: (buf %d: %s, %lu kb)\n", bo_fake->id, bo_fake->name, bo_fake->bo.size / 1024); return &bo_fake->bo; } static void drm_intel_fake_bo_reference(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; pthread_mutex_lock(&bufmgr_fake->lock); bo_fake->refcount++; pthread_mutex_unlock(&bufmgr_fake->lock); } static void drm_intel_fake_bo_reference_locked(drm_intel_bo *bo) { drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; bo_fake->refcount++; } static void drm_intel_fake_bo_unreference_locked(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; int i; if (--bo_fake->refcount == 0) { assert(bo_fake->map_count == 0); /* No remaining references, so free it */ if (bo_fake->block) free_block(bufmgr_fake, bo_fake->block, 1); free_backing_store(bo); for (i = 0; i < bo_fake->nr_relocs; i++) drm_intel_fake_bo_unreference_locked(bo_fake->relocs[i]. target_buf); DBG("drm_bo_unreference: free buf %d %s\n", bo_fake->id, bo_fake->name); free(bo_fake->relocs); free(bo); } } static void drm_intel_fake_bo_unreference(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; pthread_mutex_lock(&bufmgr_fake->lock); drm_intel_fake_bo_unreference_locked(bo); pthread_mutex_unlock(&bufmgr_fake->lock); } /** * Set the buffer as not requiring backing store, and instead get the callback * invoked whenever it would be set dirty. */ void drm_intel_bo_fake_disable_backing_store(drm_intel_bo *bo, void (*invalidate_cb) (drm_intel_bo *bo, void *ptr), void *ptr) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; pthread_mutex_lock(&bufmgr_fake->lock); if (bo_fake->backing_store) free_backing_store(bo); bo_fake->flags |= BM_NO_BACKING_STORE; DBG("disable_backing_store set buf %d dirty\n", bo_fake->id); bo_fake->dirty = 1; bo_fake->invalidate_cb = invalidate_cb; bo_fake->invalidate_ptr = ptr; /* Note that it is invalid right from the start. Also note * invalidate_cb is called with the bufmgr locked, so cannot * itself make bufmgr calls. */ if (invalidate_cb != NULL) invalidate_cb(bo, ptr); pthread_mutex_unlock(&bufmgr_fake->lock); } /** * Map a buffer into bo->virtual, allocating either card memory space (If * BM_NO_BACKING_STORE or BM_PINNED) or backing store, as necessary. */ static int drm_intel_fake_bo_map_locked(drm_intel_bo *bo, int write_enable) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; /* Static buffers are always mapped. */ if (bo_fake->is_static) { if (bo_fake->card_dirty) { drm_intel_bufmgr_fake_wait_idle(bufmgr_fake); bo_fake->card_dirty = 0; } return 0; } /* Allow recursive mapping. Mesa may recursively map buffers with * nested display loops, and it is used internally in bufmgr_fake * for relocation. */ if (bo_fake->map_count++ != 0) return 0; { DBG("drm_bo_map: (buf %d: %s, %lu kb)\n", bo_fake->id, bo_fake->name, bo_fake->bo.size / 1024); if (bo->virtual != NULL) { drmMsg("%s: already mapped\n", __func__); abort(); } else if (bo_fake->flags & (BM_NO_BACKING_STORE | BM_PINNED)) { if (!bo_fake->block && !evict_and_alloc_block(bo)) { DBG("%s: alloc failed\n", __func__); bufmgr_fake->fail = 1; return 1; } else { assert(bo_fake->block); bo_fake->dirty = 0; if (!(bo_fake->flags & BM_NO_FENCE_SUBDATA) && bo_fake->block->fenced) { drm_intel_fake_bo_wait_rendering_locked (bo); } bo->virtual = bo_fake->block->virtual; } } else { if (write_enable) set_dirty(bo); if (bo_fake->backing_store == 0) alloc_backing_store(bo); if ((bo_fake->card_dirty == 1) && bo_fake->block) { if (bo_fake->block->fenced) drm_intel_fake_bo_wait_rendering_locked (bo); memcpy(bo_fake->backing_store, bo_fake->block->virtual, bo_fake->block->bo->size); bo_fake->card_dirty = 0; } bo->virtual = bo_fake->backing_store; } } return 0; } static int drm_intel_fake_bo_map(drm_intel_bo *bo, int write_enable) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; int ret; pthread_mutex_lock(&bufmgr_fake->lock); ret = drm_intel_fake_bo_map_locked(bo, write_enable); pthread_mutex_unlock(&bufmgr_fake->lock); return ret; } static int drm_intel_fake_bo_unmap_locked(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; /* Static buffers are always mapped. */ if (bo_fake->is_static) return 0; assert(bo_fake->map_count != 0); if (--bo_fake->map_count != 0) return 0; DBG("drm_bo_unmap: (buf %d: %s, %lu kb)\n", bo_fake->id, bo_fake->name, bo_fake->bo.size / 1024); bo->virtual = NULL; return 0; } static int drm_intel_fake_bo_unmap(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; int ret; pthread_mutex_lock(&bufmgr_fake->lock); ret = drm_intel_fake_bo_unmap_locked(bo); pthread_mutex_unlock(&bufmgr_fake->lock); return ret; } static int drm_intel_fake_bo_subdata(drm_intel_bo *bo, unsigned long offset, unsigned long size, const void *data) { int ret; if (size == 0 || data == NULL) return 0; ret = drm_intel_bo_map(bo, 1); if (ret) return ret; memcpy((unsigned char *)bo->virtual + offset, data, size); drm_intel_bo_unmap(bo); return 0; } static void drm_intel_fake_kick_all_locked(drm_intel_bufmgr_fake *bufmgr_fake) { struct block *block, *tmp; bufmgr_fake->performed_rendering = 0; /* okay for ever BO that is on the HW kick it off. seriously not afraid of the POLICE right now */ DRMLISTFOREACHSAFE(block, tmp, &bufmgr_fake->on_hardware) { drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) block->bo; block->on_hardware = 0; free_block(bufmgr_fake, block, 0); bo_fake->block = NULL; bo_fake->validated = 0; if (!(bo_fake->flags & BM_NO_BACKING_STORE)) bo_fake->dirty = 1; } } static int drm_intel_fake_bo_validate(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; DBG("drm_bo_validate: (buf %d: %s, %lu kb)\n", bo_fake->id, bo_fake->name, bo_fake->bo.size / 1024); /* Sanity check: Buffers should be unmapped before being validated. * This is not so much of a problem for bufmgr_fake, but TTM refuses, * and the problem is harder to debug there. */ assert(bo_fake->map_count == 0); if (bo_fake->is_static) { /* Add it to the needs-fence list */ bufmgr_fake->need_fence = 1; return 0; } /* Allocate the card memory */ if (!bo_fake->block && !evict_and_alloc_block(bo)) { bufmgr_fake->fail = 1; DBG("Failed to validate buf %d:%s\n", bo_fake->id, bo_fake->name); return -1; } assert(bo_fake->block); assert(bo_fake->block->bo == &bo_fake->bo); bo->offset = bo_fake->block->mem->ofs; /* Upload the buffer contents if necessary */ if (bo_fake->dirty) { DBG("Upload dirty buf %d:%s, sz %lu offset 0x%x\n", bo_fake->id, bo_fake->name, bo->size, bo_fake->block->mem->ofs); assert(!(bo_fake->flags & (BM_NO_BACKING_STORE | BM_PINNED))); /* Actually, should be able to just wait for a fence on the * mmory, hich we would be tracking when we free it. Waiting * for idle is a sufficiently large hammer for now. */ drm_intel_bufmgr_fake_wait_idle(bufmgr_fake); /* we may never have mapped this BO so it might not have any * backing store if this happens it should be rare, but 0 the * card memory in any case */ if (bo_fake->backing_store) memcpy(bo_fake->block->virtual, bo_fake->backing_store, bo->size); else memset(bo_fake->block->virtual, 0, bo->size); bo_fake->dirty = 0; } bo_fake->block->fenced = 0; bo_fake->block->on_hardware = 1; DRMLISTDEL(bo_fake->block); DRMLISTADDTAIL(bo_fake->block, &bufmgr_fake->on_hardware); bo_fake->validated = 1; bufmgr_fake->need_fence = 1; return 0; } static void drm_intel_fake_fence_validated(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bufmgr; unsigned int cookie; cookie = _fence_emit_internal(bufmgr_fake); fence_blocks(bufmgr_fake, cookie); DBG("drm_fence_validated: 0x%08x cookie\n", cookie); } static void drm_intel_fake_destroy(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bufmgr; pthread_mutex_destroy(&bufmgr_fake->lock); mmDestroy(bufmgr_fake->heap); free(bufmgr); } static int drm_intel_fake_emit_reloc(drm_intel_bo *bo, uint32_t offset, drm_intel_bo *target_bo, uint32_t target_offset, uint32_t read_domains, uint32_t write_domain) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; struct fake_buffer_reloc *r; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; drm_intel_bo_fake *target_fake = (drm_intel_bo_fake *) target_bo; int i; pthread_mutex_lock(&bufmgr_fake->lock); assert(bo); assert(target_bo); if (bo_fake->relocs == NULL) { bo_fake->relocs = malloc(sizeof(struct fake_buffer_reloc) * MAX_RELOCS); } r = &bo_fake->relocs[bo_fake->nr_relocs++]; assert(bo_fake->nr_relocs <= MAX_RELOCS); drm_intel_fake_bo_reference_locked(target_bo); if (!target_fake->is_static) { bo_fake->child_size += ALIGN(target_bo->size, target_fake->alignment); bo_fake->child_size += target_fake->child_size; } r->target_buf = target_bo; r->offset = offset; r->last_target_offset = target_bo->offset; r->delta = target_offset; r->read_domains = read_domains; r->write_domain = write_domain; if (bufmgr_fake->debug) { /* Check that a conflicting relocation hasn't already been * emitted. */ for (i = 0; i < bo_fake->nr_relocs - 1; i++) { struct fake_buffer_reloc *r2 = &bo_fake->relocs[i]; assert(r->offset != r2->offset); } } pthread_mutex_unlock(&bufmgr_fake->lock); return 0; } /** * Incorporates the validation flags associated with each relocation into * the combined validation flags for the buffer on this batchbuffer submission. */ static void drm_intel_fake_calculate_domains(drm_intel_bo *bo) { drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; int i; for (i = 0; i < bo_fake->nr_relocs; i++) { struct fake_buffer_reloc *r = &bo_fake->relocs[i]; drm_intel_bo_fake *target_fake = (drm_intel_bo_fake *) r->target_buf; /* Do the same for the tree of buffers we depend on */ drm_intel_fake_calculate_domains(r->target_buf); target_fake->read_domains |= r->read_domains; target_fake->write_domain |= r->write_domain; } } static int drm_intel_fake_reloc_and_validate_buffer(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; int i, ret; assert(bo_fake->map_count == 0); for (i = 0; i < bo_fake->nr_relocs; i++) { struct fake_buffer_reloc *r = &bo_fake->relocs[i]; drm_intel_bo_fake *target_fake = (drm_intel_bo_fake *) r->target_buf; uint32_t reloc_data; /* Validate the target buffer if that hasn't been done. */ if (!target_fake->validated) { ret = drm_intel_fake_reloc_and_validate_buffer(r->target_buf); if (ret != 0) { if (bo->virtual != NULL) drm_intel_fake_bo_unmap_locked(bo); return ret; } } /* Calculate the value of the relocation entry. */ if (r->target_buf->offset != r->last_target_offset) { reloc_data = r->target_buf->offset + r->delta; if (bo->virtual == NULL) drm_intel_fake_bo_map_locked(bo, 1); *(uint32_t *) ((uint8_t *) bo->virtual + r->offset) = reloc_data; r->last_target_offset = r->target_buf->offset; } } if (bo->virtual != NULL) drm_intel_fake_bo_unmap_locked(bo); if (bo_fake->write_domain != 0) { if (!(bo_fake->flags & (BM_NO_BACKING_STORE | BM_PINNED))) { if (bo_fake->backing_store == 0) alloc_backing_store(bo); } bo_fake->card_dirty = 1; bufmgr_fake->performed_rendering = 1; } return drm_intel_fake_bo_validate(bo); } static void drm_intel_bo_fake_post_submit(drm_intel_bo *bo) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo; int i; for (i = 0; i < bo_fake->nr_relocs; i++) { struct fake_buffer_reloc *r = &bo_fake->relocs[i]; drm_intel_bo_fake *target_fake = (drm_intel_bo_fake *) r->target_buf; if (target_fake->validated) drm_intel_bo_fake_post_submit(r->target_buf); DBG("%s@0x%08x + 0x%08x -> %s@0x%08x + 0x%08x\n", bo_fake->name, (uint32_t) bo->offset, r->offset, target_fake->name, (uint32_t) r->target_buf->offset, r->delta); } assert(bo_fake->map_count == 0); bo_fake->validated = 0; bo_fake->read_domains = 0; bo_fake->write_domain = 0; } void drm_intel_bufmgr_fake_set_exec_callback(drm_intel_bufmgr *bufmgr, int (*exec) (drm_intel_bo *bo, unsigned int used, void *priv), void *priv) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bufmgr; bufmgr_fake->exec = exec; bufmgr_fake->exec_priv = priv; } static int drm_intel_fake_bo_exec(drm_intel_bo *bo, int used, drm_clip_rect_t * cliprects, int num_cliprects, int DR4) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo->bufmgr; drm_intel_bo_fake *batch_fake = (drm_intel_bo_fake *) bo; struct drm_i915_batchbuffer batch; int ret; int retry_count = 0; pthread_mutex_lock(&bufmgr_fake->lock); bufmgr_fake->performed_rendering = 0; drm_intel_fake_calculate_domains(bo); batch_fake->read_domains = I915_GEM_DOMAIN_COMMAND; /* we've ran out of RAM so blow the whole lot away and retry */ restart: ret = drm_intel_fake_reloc_and_validate_buffer(bo); if (bufmgr_fake->fail == 1) { if (retry_count == 0) { retry_count++; drm_intel_fake_kick_all_locked(bufmgr_fake); bufmgr_fake->fail = 0; goto restart; } else /* dump out the memory here */ mmDumpMemInfo(bufmgr_fake->heap); } assert(ret == 0); if (bufmgr_fake->exec != NULL) { ret = bufmgr_fake->exec(bo, used, bufmgr_fake->exec_priv); if (ret != 0) { pthread_mutex_unlock(&bufmgr_fake->lock); return ret; } } else { batch.start = bo->offset; batch.used = used; batch.cliprects = cliprects; batch.num_cliprects = num_cliprects; batch.DR1 = 0; batch.DR4 = DR4; if (drmCommandWrite (bufmgr_fake->fd, DRM_I915_BATCHBUFFER, &batch, sizeof(batch))) { drmMsg("DRM_I915_BATCHBUFFER: %d\n", -errno); pthread_mutex_unlock(&bufmgr_fake->lock); return -errno; } } drm_intel_fake_fence_validated(bo->bufmgr); drm_intel_bo_fake_post_submit(bo); pthread_mutex_unlock(&bufmgr_fake->lock); return 0; } /** * Return an error if the list of BOs will exceed the aperture size. * * This is a rough guess and likely to fail, as during the validate sequence we * may place a buffer in an inopportune spot early on and then fail to fit * a set smaller than the aperture. */ static int drm_intel_fake_check_aperture_space(drm_intel_bo ** bo_array, int count) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bo_array[0]->bufmgr; unsigned int sz = 0; int i; for (i = 0; i < count; i++) { drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) bo_array[i]; if (bo_fake == NULL) continue; if (!bo_fake->is_static) sz += ALIGN(bo_array[i]->size, bo_fake->alignment); sz += bo_fake->child_size; } if (sz > bufmgr_fake->size) { DBG("check_space: overflowed bufmgr size, %ukb vs %lukb\n", sz / 1024, bufmgr_fake->size / 1024); return -1; } DBG("drm_check_space: sz %ukb vs bufgr %lukb\n", sz / 1024, bufmgr_fake->size / 1024); return 0; } /** * Evicts all buffers, waiting for fences to pass and copying contents out * as necessary. * * Used by the X Server on LeaveVT, when the card memory is no longer our * own. */ void drm_intel_bufmgr_fake_evict_all(drm_intel_bufmgr *bufmgr) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bufmgr; struct block *block, *tmp; pthread_mutex_lock(&bufmgr_fake->lock); bufmgr_fake->need_fence = 1; bufmgr_fake->fail = 0; /* Wait for hardware idle. We don't know where acceleration has been * happening, so we'll need to wait anyway before letting anything get * put on the card again. */ drm_intel_bufmgr_fake_wait_idle(bufmgr_fake); /* Check that we hadn't released the lock without having fenced the last * set of buffers. */ assert(DRMLISTEMPTY(&bufmgr_fake->fenced)); assert(DRMLISTEMPTY(&bufmgr_fake->on_hardware)); DRMLISTFOREACHSAFE(block, tmp, &bufmgr_fake->lru) { drm_intel_bo_fake *bo_fake = (drm_intel_bo_fake *) block->bo; /* Releases the memory, and memcpys dirty contents out if * necessary. */ free_block(bufmgr_fake, block, 0); bo_fake->block = NULL; } pthread_mutex_unlock(&bufmgr_fake->lock); } void drm_intel_bufmgr_fake_set_last_dispatch(drm_intel_bufmgr *bufmgr, volatile unsigned int *last_dispatch) { drm_intel_bufmgr_fake *bufmgr_fake = (drm_intel_bufmgr_fake *) bufmgr; bufmgr_fake->last_dispatch = (volatile int *)last_dispatch; } drm_intel_bufmgr * drm_intel_bufmgr_fake_init(int fd, unsigned long low_offset, void *low_virtual, unsigned long size, volatile unsigned int *last_dispatch) { drm_intel_bufmgr_fake *bufmgr_fake; bufmgr_fake = calloc(1, sizeof(*bufmgr_fake)); if (pthread_mutex_init(&bufmgr_fake->lock, NULL) != 0) { free(bufmgr_fake); return NULL; } /* Initialize allocator */ DRMINITLISTHEAD(&bufmgr_fake->fenced); DRMINITLISTHEAD(&bufmgr_fake->on_hardware); DRMINITLISTHEAD(&bufmgr_fake->lru); bufmgr_fake->low_offset = low_offset; bufmgr_fake->virtual = low_virtual; bufmgr_fake->size = size; bufmgr_fake->heap = mmInit(low_offset, size); /* Hook in methods */ bufmgr_fake->bufmgr.bo_alloc = drm_intel_fake_bo_alloc; bufmgr_fake->bufmgr.bo_alloc_for_render = drm_intel_fake_bo_alloc; bufmgr_fake->bufmgr.bo_alloc_tiled = drm_intel_fake_bo_alloc_tiled; bufmgr_fake->bufmgr.bo_reference = drm_intel_fake_bo_reference; bufmgr_fake->bufmgr.bo_unreference = drm_intel_fake_bo_unreference; bufmgr_fake->bufmgr.bo_map = drm_intel_fake_bo_map; bufmgr_fake->bufmgr.bo_unmap = drm_intel_fake_bo_unmap; bufmgr_fake->bufmgr.bo_subdata = drm_intel_fake_bo_subdata; bufmgr_fake->bufmgr.bo_wait_rendering = drm_intel_fake_bo_wait_rendering; bufmgr_fake->bufmgr.bo_emit_reloc = drm_intel_fake_emit_reloc; bufmgr_fake->bufmgr.destroy = drm_intel_fake_destroy; bufmgr_fake->bufmgr.bo_exec = drm_intel_fake_bo_exec; bufmgr_fake->bufmgr.check_aperture_space = drm_intel_fake_check_aperture_space; bufmgr_fake->bufmgr.debug = 0; bufmgr_fake->fd = fd; bufmgr_fake->last_dispatch = (volatile int *)last_dispatch; return &bufmgr_fake->bufmgr; }