/****************************************************************************** * * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ***************************************************************************** * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore */ /** ******************************************************************************* * @file * ih264_iquant_itrans_recon_sse42.c * * @brief * Contains function definitions for inverse quantization, inverse * transform and reconstruction * * @author * Mohit [100664] * * @par List of Functions: * - ih264_iquant_itrans_recon_4x4_sse42() * - ih264_iquant_itrans_recon_chroma_4x4_sse42() * * @remarks * None * ******************************************************************************* */ /* User include files */ #include "ih264_typedefs.h" #include "ih264_defs.h" #include "ih264_trans_macros.h" #include "ih264_macros.h" #include "ih264_platform_macros.h" #include "ih264_trans_data.h" #include "ih264_size_defs.h" #include "ih264_structs.h" #include "ih264_trans_quant_itrans_iquant.h" #include <immintrin.h> /* ******************************************************************************** * * @brief This function reconstructs a 4x4 sub block from quantized resiude and * prediction buffer * * @par Description: * The quantized residue is first inverse quantized, then inverse transformed. * This inverse transformed content is added to the prediction buffer to recon- * struct the end output * * @param[in] pi2_src * quantized 4x4 block * * @param[in] pu1_pred * prediction 4x4 block * * @param[out] pu1_out * reconstructed 4x4 block * * @param[in] src_strd * quantization buffer stride * * @param[in] pred_strd, * Prediction buffer stride * * @param[in] out_strd * recon buffer Stride * * @param[in] pu2_scaling_list * pointer to scaling list * * @param[in] pu2_norm_adjust * pointer to inverse scale matrix * * @param[in] u4_qp_div_6 * Floor (qp/6) * * @param[in] pi4_tmp * temporary buffer of size 1*16 * * @returns none * * @remarks none * ******************************************************************************* */ void ih264_iquant_itrans_recon_4x4_sse42(WORD16 *pi2_src, UWORD8 *pu1_pred, UWORD8 *pu1_out, WORD32 pred_strd, WORD32 out_strd, const UWORD16 *pu2_iscal_mat, const UWORD16 *pu2_weigh_mat, UWORD32 u4_qp_div_6, WORD16 *pi2_tmp, WORD32 iq_start_idx, WORD16 *pi2_dc_ld_addr) { UWORD32 *pu4_out = (UWORD32 *) pu1_out; __m128i src_r0_r1, src_r2_r3; __m128i src_r0, src_r1, src_r2, src_r3; __m128i scalemat_r0_r1, scalemat_r2_r3; __m128i pred_r0, pred_r1, pred_r2, pred_r3; __m128i sign_reg, dequant_r0_r1, dequant_r2_r3; __m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero __m128i temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; __m128i resq_r0, resq_r1, resq_r2, resq_r3; __m128i add_rshift = _mm_set1_epi32((1 << (3 - u4_qp_div_6))); __m128i value_32 = _mm_set1_epi32(32); UNUSED (pi2_tmp); /*************************************************************/ /* Dequantization of coefficients. Will be replaced by SIMD */ /* operations on platform */ /*************************************************************/ src_r0_r1 = _mm_loadu_si128((__m128i *) (pi2_src)); //a00 a01 a02 a03 a10 a11 a12 a13 -- the source matrix 0th,1st row src_r2_r3 = _mm_loadu_si128((__m128i *) (pi2_src + 8)); //a20 a21 a22 a23 a30 a31 a32 a33 -- the source matrix 2nd,3rd row scalemat_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat)); //b00 b01 b02 b03 b10 b11 b12 b13 -- the scaling matrix 0th,1st row scalemat_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat + 8)); //b20 b21 b22 b23 b30 b31 b32 b33 -- the scaling matrix 2nd,3rd row dequant_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat)); //q00 q01 q02 q03 q10 q11 q12 q13 -- all 16 bits dequant_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat + 8)); //q20 q21 q22 q23 q30 q31 q32 q33 -- all 16 bits temp0 = _mm_mullo_epi16(scalemat_r0_r1, dequant_r0_r1); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result temp1 = _mm_mullo_epi16(scalemat_r2_r3, dequant_r2_r3); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result temp4 = _mm_unpacklo_epi16(temp0, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long temp5 = _mm_unpackhi_epi16(temp0, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long temp6 = _mm_unpacklo_epi16(temp1, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long temp7 = _mm_unpackhi_epi16(temp1, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long src_r0 = _mm_unpacklo_epi16(src_r0_r1, zero_8x16b); // a00 0 a01 0 a02 0 a03 0 -- 16 bit long src_r1 = _mm_unpackhi_epi16(src_r0_r1, zero_8x16b); // a10 0 a11 0 a12 0 a13 0 -- 16 bit long src_r2 = _mm_unpacklo_epi16(src_r2_r3, zero_8x16b); // a20 0 a21 0 a22 0 a23 0 -- 16 bit long src_r3 = _mm_unpackhi_epi16(src_r2_r3, zero_8x16b); // a30 0 a31 0 a32 0 a33 0 -- 16 bit long temp4 = _mm_madd_epi16(src_r0, temp4); //a00*b00*q00 a10*b10*q10 a20*b20*q20 a30*b30 q30 -- 32 bits long temp5 = _mm_madd_epi16(src_r1, temp5); temp6 = _mm_madd_epi16(src_r2, temp6); temp7 = _mm_madd_epi16(src_r3, temp7); if (u4_qp_div_6 >= 4) { resq_r0 = _mm_slli_epi32(temp4, u4_qp_div_6 - 4); resq_r1 = _mm_slli_epi32(temp5, u4_qp_div_6 - 4); resq_r2 = _mm_slli_epi32(temp6, u4_qp_div_6 - 4); resq_r3 = _mm_slli_epi32(temp7, u4_qp_div_6 - 4); } else { temp4 = _mm_add_epi32(temp4, add_rshift); temp5 = _mm_add_epi32(temp5, add_rshift); temp6 = _mm_add_epi32(temp6, add_rshift); temp7 = _mm_add_epi32(temp7, add_rshift); resq_r0 = _mm_srai_epi32(temp4, 4 - u4_qp_div_6); resq_r1 = _mm_srai_epi32(temp5, 4 - u4_qp_div_6); resq_r2 = _mm_srai_epi32(temp6, 4 - u4_qp_div_6); resq_r3 = _mm_srai_epi32(temp7, 4 - u4_qp_div_6); } if (iq_start_idx == 1) resq_r0 = _mm_insert_epi32(resq_r0,(WORD32)pi2_dc_ld_addr[0],0); /* Perform Inverse transform */ /*-------------------------------------------------------------*/ /* IDCT [ Horizontal transformation ] */ /*-------------------------------------------------------------*/ // Matrix transpose /* * a0 a1 a2 a3 * b0 b1 b2 b3 * c0 c1 c2 c3 * d0 d1 d2 d3 */ temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 b0 a1 b1 temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //c0 d0 c1 d1 temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //a2 b2 a3 b3 temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 d2 c3 d3 resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 b0 c0 d0 resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //a1 b1 c1 d1 resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //a2 b2 c2 d2 resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //a3 b3 c3 d3 //Transform starts -- horizontal transform /*------------------------------------------------------------------*/ /* z0 = w0 + w2 */ temp0 = _mm_add_epi32(resq_r0, resq_r2); /* z1 = w0 - w2 */ temp1 = _mm_sub_epi32(resq_r0, resq_r2); /* z2 = (w1 >> 1) - w3 */ temp2 = _mm_srai_epi32(resq_r1, 1); //(w1>>1) temp2 = _mm_sub_epi32(temp2, resq_r3); //(w1>>1) - w3 /* z3 = w1 + (w3 >> 1) */ temp3 = _mm_srai_epi32(resq_r3, 1); //(w3>>1) + w1 temp3 = _mm_add_epi32(temp3, resq_r1); /*----------------------------------------------------------*/ /* x0 = z0 + z3 */ resq_r0 = _mm_add_epi32(temp0, temp3); /* x1 = z1 + z2 */ resq_r1 = _mm_add_epi32(temp1, temp2); /* x2 = z1 - z2 */ resq_r2 = _mm_sub_epi32(temp1, temp2); /* x3 = z0 - z3 */ resq_r3 = _mm_sub_epi32(temp0, temp3); // Matrix transpose /* * a0 b0 c0 d0 * a1 b1 c1 d1 * a2 b2 c2 d2 * a3 b3 c3 d3 */ temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 a1 b0 b1 temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //a2 a3 b2 b3 temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //c0 c1 d0 d1 temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 c3 d2 d3 resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 a1 a2 a3 resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //b0 b1 b2 b3 resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //c0 c1 c2 c3 resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //d0 d1 d2 d3 //Transform ends -- horizontal transform //Load pred buffer pred_r0 = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits pred_r1 = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits pred_r2 = _mm_loadl_epi64((__m128i *) (&pu1_pred[2 * pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits pred_r3 = _mm_loadl_epi64((__m128i *) (&pu1_pred[3 * pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits pred_r0 = _mm_cvtepu8_epi32(pred_r0); //p00 p01 p02 p03 -- all 32 bits pred_r1 = _mm_cvtepu8_epi32(pred_r1); //p10 p11 p12 p13 -- all 32 bits pred_r2 = _mm_cvtepu8_epi32(pred_r2); //p20 p21 p22 p23 -- all 32 bits pred_r3 = _mm_cvtepu8_epi32(pred_r3); //p30 p31 p32 p33 -- all 32 bits /*--------------------------------------------------------------*/ /* IDCT [ Vertical transformation] and Xij = (xij + 32)>>6 */ /* */ /* Add the prediction and store it back to same buffer */ /*--------------------------------------------------------------*/ /* z0j = y0j + y2j */ temp0 = _mm_add_epi32(resq_r0, resq_r2); /* z1j = y0j - y2j */ temp1 = _mm_sub_epi32(resq_r0, resq_r2); /* z2j = (y1j>>1) - y3j */ temp2 = _mm_srai_epi32(resq_r1, 1); //(y1j>>1) temp2 = _mm_sub_epi32(temp2, resq_r3); /* z3j = y1j + (y3j>>1) */ temp3 = _mm_srai_epi32(resq_r3, 1); //(y3j>>1) temp3 = _mm_add_epi32(temp3, resq_r1); /* x0j = z0j + z3j */ temp4 = _mm_add_epi32(temp0, temp3); temp4 = _mm_add_epi32(temp4, value_32); temp4 = _mm_srai_epi32(temp4, 6); temp4 = _mm_add_epi32(temp4, pred_r0); /* x1j = z1j + z2j */ temp5 = _mm_add_epi32(temp1, temp2); temp5 = _mm_add_epi32(temp5, value_32); temp5 = _mm_srai_epi32(temp5, 6); temp5 = _mm_add_epi32(temp5, pred_r1); /* x2j = z1j - z2j */ temp6 = _mm_sub_epi32(temp1, temp2); temp6 = _mm_add_epi32(temp6, value_32); temp6 = _mm_srai_epi32(temp6, 6); temp6 = _mm_add_epi32(temp6, pred_r2); /* x3j = z0j - z3j */ temp7 = _mm_sub_epi32(temp0, temp3); temp7 = _mm_add_epi32(temp7, value_32); temp7 = _mm_srai_epi32(temp7, 6); temp7 = _mm_add_epi32(temp7, pred_r3); // 32-bit to 16-bit conversion temp0 = _mm_packs_epi32(temp4, temp5); temp1 = _mm_packs_epi32(temp6, temp7); /*------------------------------------------------------------------*/ //Clipping the results to 8 bits sign_reg = _mm_cmpgt_epi16(temp0, zero_8x16b); // sign check temp0 = _mm_and_si128(temp0, sign_reg); sign_reg = _mm_cmpgt_epi16(temp1, zero_8x16b); temp1 = _mm_and_si128(temp1, sign_reg); resq_r0 = _mm_packus_epi16(temp0, temp1); resq_r1 = _mm_srli_si128(resq_r0, 4); resq_r2 = _mm_srli_si128(resq_r1, 4); resq_r3 = _mm_srli_si128(resq_r2, 4); *pu4_out = _mm_cvtsi128_si32(resq_r0); pu1_out += out_strd; pu4_out = (UWORD32 *) (pu1_out); *(pu4_out) = _mm_cvtsi128_si32(resq_r1); pu1_out += out_strd; pu4_out = (UWORD32 *) (pu1_out); *(pu4_out) = _mm_cvtsi128_si32(resq_r2); pu1_out += out_strd; pu4_out = (UWORD32 *) (pu1_out); *(pu4_out) = _mm_cvtsi128_si32(resq_r3); } /* ******************************************************************************** * * @brief This function reconstructs a 4x4 sub block from quantized chroma resiude and * prediction buffer * * @par Description: * The quantized residue is first inverse quantized, then inverse transformed. * This inverse transformed content is added to the prediction buffer to recon- * struct the end output * * @param[in] pi2_src * quantized 4x4 block * * @param[in] pu1_pred * prediction 4x4 block * * @param[out] pu1_out * reconstructed 4x4 block * * @param[in] src_strd * quantization buffer stride * * @param[in] pred_strd, * Prediction buffer stride * * @param[in] out_strd * recon buffer Stride * * @param[in] pu2_scaling_list * pointer to scaling list * * @param[in] pu2_norm_adjust * pointer to inverse scale matrix * * @param[in] u4_qp_div_6 * Floor (qp/6) * * @param[in] pi4_tmp * temporary buffer of size 1*16 * * @returns none * * @remarks none * ******************************************************************************* */ void ih264_iquant_itrans_recon_chroma_4x4_sse42(WORD16 *pi2_src, UWORD8 *pu1_pred, UWORD8 *pu1_out, WORD32 pred_strd, WORD32 out_strd, const UWORD16 *pu2_iscal_mat, const UWORD16 *pu2_weigh_mat, UWORD32 u4_qp_div_6, WORD16 *pi2_tmp, WORD16 *pi2_dc_ld_addr) { __m128i src_r0_r1, src_r2_r3; __m128i src_r0, src_r1, src_r2, src_r3; __m128i scalemat_r0_r1, scalemat_r2_r3; __m128i pred_r0, pred_r1, pred_r2, pred_r3; __m128i sign_reg, dequant_r0_r1, dequant_r2_r3; __m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero __m128i temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; __m128i resq_r0, resq_r1, resq_r2, resq_r3; __m128i add_rshift = _mm_set1_epi32((1 << (3 - u4_qp_div_6))); __m128i value_32 = _mm_set1_epi32(32); __m128i chroma_mask = _mm_set1_epi16 (0xFF); __m128i out_r0, out_r1, out_r2, out_r3; UNUSED (pi2_tmp); /*************************************************************/ /* Dequantization of coefficients. Will be replaced by SIMD */ /* operations on platform */ /*************************************************************/ src_r0_r1 = _mm_loadu_si128((__m128i *) (pi2_src)); //a00 a01 a02 a03 a10 a11 a12 a13 -- the source matrix 0th,1st row src_r2_r3 = _mm_loadu_si128((__m128i *) (pi2_src + 8)); //a20 a21 a22 a23 a30 a31 a32 a33 -- the source matrix 2nd,3rd row scalemat_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat)); //b00 b01 b02 b03 b10 b11 b12 b13 -- the scaling matrix 0th,1st row scalemat_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat + 8)); //b20 b21 b22 b23 b30 b31 b32 b33 -- the scaling matrix 2nd,3rd row dequant_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat)); //q00 q01 q02 q03 q10 q11 q12 q13 -- all 16 bits dequant_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat + 8)); //q20 q21 q22 q23 q30 q31 q32 q33 -- all 16 bits temp0 = _mm_mullo_epi16(scalemat_r0_r1, dequant_r0_r1); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result temp1 = _mm_mullo_epi16(scalemat_r2_r3, dequant_r2_r3); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result temp4 = _mm_unpacklo_epi16(temp0, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long temp5 = _mm_unpackhi_epi16(temp0, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long temp6 = _mm_unpacklo_epi16(temp1, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long temp7 = _mm_unpackhi_epi16(temp1, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long src_r0 = _mm_unpacklo_epi16(src_r0_r1, zero_8x16b); // a00 0 a01 0 a02 0 a03 0 -- 16 bit long src_r1 = _mm_unpackhi_epi16(src_r0_r1, zero_8x16b); // a10 0 a11 0 a12 0 a13 0 -- 16 bit long src_r2 = _mm_unpacklo_epi16(src_r2_r3, zero_8x16b); // a20 0 a21 0 a22 0 a23 0 -- 16 bit long src_r3 = _mm_unpackhi_epi16(src_r2_r3, zero_8x16b); // a30 0 a31 0 a32 0 a33 0 -- 16 bit long temp4 = _mm_madd_epi16(src_r0, temp4); //a00*b00*q00 a10*b10*q10 a20*b20*q20 a30*b30 q30 -- 32 bits long temp5 = _mm_madd_epi16(src_r1, temp5); temp6 = _mm_madd_epi16(src_r2, temp6); temp7 = _mm_madd_epi16(src_r3, temp7); if (u4_qp_div_6 >= 4) { resq_r0 = _mm_slli_epi32(temp4, u4_qp_div_6 - 4); resq_r1 = _mm_slli_epi32(temp5, u4_qp_div_6 - 4); resq_r2 = _mm_slli_epi32(temp6, u4_qp_div_6 - 4); resq_r3 = _mm_slli_epi32(temp7, u4_qp_div_6 - 4); } else { temp4 = _mm_add_epi32(temp4, add_rshift); temp5 = _mm_add_epi32(temp5, add_rshift); temp6 = _mm_add_epi32(temp6, add_rshift); temp7 = _mm_add_epi32(temp7, add_rshift); resq_r0 = _mm_srai_epi32(temp4, 4 - u4_qp_div_6); resq_r1 = _mm_srai_epi32(temp5, 4 - u4_qp_div_6); resq_r2 = _mm_srai_epi32(temp6, 4 - u4_qp_div_6); resq_r3 = _mm_srai_epi32(temp7, 4 - u4_qp_div_6); } resq_r0 = _mm_insert_epi32(resq_r0,(WORD32)pi2_dc_ld_addr[0],0); /* Perform Inverse transform */ /*-------------------------------------------------------------*/ /* IDCT [ Horizontal transformation ] */ /*-------------------------------------------------------------*/ // Matrix transpose /* * a0 a1 a2 a3 * b0 b1 b2 b3 * c0 c1 c2 c3 * d0 d1 d2 d3 */ temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 b0 a1 b1 temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //c0 d0 c1 d1 temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //a2 b2 a3 b3 temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 d2 c3 d3 resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 b0 c0 d0 resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //a1 b1 c1 d1 resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //a2 b2 c2 d2 resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //a3 b3 c3 d3 //Transform starts -- horizontal transform /*------------------------------------------------------------------*/ /* z0 = w0 + w2 */ temp0 = _mm_add_epi32(resq_r0, resq_r2); /* z1 = w0 - w2 */ temp1 = _mm_sub_epi32(resq_r0, resq_r2); /* z2 = (w1 >> 1) - w3 */ temp2 = _mm_srai_epi32(resq_r1, 1); //(w1>>1) temp2 = _mm_sub_epi32(temp2, resq_r3); //(w1>>1) - w3 /* z3 = w1 + (w3 >> 1) */ temp3 = _mm_srai_epi32(resq_r3, 1); //(w3>>1) + w1 temp3 = _mm_add_epi32(temp3, resq_r1); /*----------------------------------------------------------*/ /* x0 = z0 + z3 */ resq_r0 = _mm_add_epi32(temp0, temp3); /* x1 = z1 + z2 */ resq_r1 = _mm_add_epi32(temp1, temp2); /* x2 = z1 - z2 */ resq_r2 = _mm_sub_epi32(temp1, temp2); /* x3 = z0 - z3 */ resq_r3 = _mm_sub_epi32(temp0, temp3); // Matrix transpose /* * a0 b0 c0 d0 * a1 b1 c1 d1 * a2 b2 c2 d2 * a3 b3 c3 d3 */ temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 a1 b0 b1 temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //a2 a3 b2 b3 temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //c0 c1 d0 d1 temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 c3 d2 d3 resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 a1 a2 a3 resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //b0 b1 b2 b3 resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //c0 c1 c2 c3 resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //d0 d1 d2 d3 //Transform ends -- horizontal transform //Load pred buffer pred_r0 = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits pred_r1 = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits pred_r2 = _mm_loadl_epi64((__m128i *) (&pu1_pred[2 * pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits pred_r3 = _mm_loadl_epi64((__m128i *) (&pu1_pred[3 * pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits pred_r0 = _mm_and_si128(pred_r0, chroma_mask); pred_r1 = _mm_and_si128(pred_r1, chroma_mask); pred_r2 = _mm_and_si128(pred_r2, chroma_mask); pred_r3 = _mm_and_si128(pred_r3, chroma_mask); pred_r0 = _mm_cvtepu16_epi32(pred_r0); //p00 p01 p02 p03 -- all 32 bits pred_r1 = _mm_cvtepu16_epi32(pred_r1); //p10 p11 p12 p13 -- all 32 bits pred_r2 = _mm_cvtepu16_epi32(pred_r2); //p20 p21 p22 p23 -- all 32 bits pred_r3 = _mm_cvtepu16_epi32(pred_r3); //p30 p31 p32 p33 -- all 32 bits /*--------------------------------------------------------------*/ /* IDCT [ Vertical transformation] and Xij = (xij + 32)>>6 */ /* */ /* Add the prediction and store it back to same buffer */ /*--------------------------------------------------------------*/ /* z0j = y0j + y2j */ temp0 = _mm_add_epi32(resq_r0, resq_r2); /* z1j = y0j - y2j */ temp1 = _mm_sub_epi32(resq_r0, resq_r2); /* z2j = (y1j>>1) - y3j */ temp2 = _mm_srai_epi32(resq_r1, 1); //(y1j>>1) temp2 = _mm_sub_epi32(temp2, resq_r3); /* z3j = y1j + (y3j>>1) */ temp3 = _mm_srai_epi32(resq_r3, 1); //(y3j>>1) temp3 = _mm_add_epi32(temp3, resq_r1); /* x0j = z0j + z3j */ temp4 = _mm_add_epi32(temp0, temp3); temp4 = _mm_add_epi32(temp4, value_32); temp4 = _mm_srai_epi32(temp4, 6); temp4 = _mm_add_epi32(temp4, pred_r0); /* x1j = z1j + z2j */ temp5 = _mm_add_epi32(temp1, temp2); temp5 = _mm_add_epi32(temp5, value_32); temp5 = _mm_srai_epi32(temp5, 6); temp5 = _mm_add_epi32(temp5, pred_r1); /* x2j = z1j - z2j */ temp6 = _mm_sub_epi32(temp1, temp2); temp6 = _mm_add_epi32(temp6, value_32); temp6 = _mm_srai_epi32(temp6, 6); temp6 = _mm_add_epi32(temp6, pred_r2); /* x3j = z0j - z3j */ temp7 = _mm_sub_epi32(temp0, temp3); temp7 = _mm_add_epi32(temp7, value_32); temp7 = _mm_srai_epi32(temp7, 6); temp7 = _mm_add_epi32(temp7, pred_r3); // 32-bit to 16-bit conversion temp0 = _mm_packs_epi32(temp4, temp5); temp1 = _mm_packs_epi32(temp6, temp7); /*------------------------------------------------------------------*/ //Clipping the results to 8 bits sign_reg = _mm_cmpgt_epi16(temp0, zero_8x16b); // sign check temp0 = _mm_and_si128(temp0, sign_reg); sign_reg = _mm_cmpgt_epi16(temp1, zero_8x16b); temp1 = _mm_and_si128(temp1, sign_reg); resq_r0 = _mm_packus_epi16(temp0, temp1); resq_r1 = _mm_srli_si128(resq_r0, 4); resq_r2 = _mm_srli_si128(resq_r1, 4); resq_r3 = _mm_srli_si128(resq_r2, 4); resq_r0 = _mm_cvtepu8_epi16(resq_r0); //p00 p01 p02 p03 -- all 16 bits resq_r1 = _mm_cvtepu8_epi16(resq_r1); //p10 p11 p12 p13 -- all 16 bits resq_r2 = _mm_cvtepu8_epi16(resq_r2); //p20 p21 p22 p23 -- all 16 bits resq_r3 = _mm_cvtepu8_epi16(resq_r3); //p30 p31 p32 p33 -- all 16 bits chroma_mask = _mm_set1_epi16 (0xFF00); out_r0 = _mm_loadl_epi64((__m128i *) (&pu1_out[0])); out_r1 = _mm_loadl_epi64((__m128i *) (&pu1_out[out_strd])); out_r2 = _mm_loadl_epi64((__m128i *) (&pu1_out[2 * out_strd])); out_r3 = _mm_loadl_epi64((__m128i *) (&pu1_out[3 * out_strd])); out_r0 = _mm_and_si128(out_r0, chroma_mask); out_r1 = _mm_and_si128(out_r1, chroma_mask); out_r2 = _mm_and_si128(out_r2, chroma_mask); out_r3 = _mm_and_si128(out_r3, chroma_mask); out_r0 = _mm_add_epi8(out_r0, resq_r0); out_r1 = _mm_add_epi8(out_r1, resq_r1); out_r2 = _mm_add_epi8(out_r2, resq_r2); out_r3 = _mm_add_epi8(out_r3, resq_r3); _mm_storel_epi64((__m128i *)(&pu1_out[0]), out_r0); _mm_storel_epi64((__m128i *)(&pu1_out[out_strd]), out_r1); _mm_storel_epi64((__m128i *)(&pu1_out[2 * out_strd]), out_r2); _mm_storel_epi64((__m128i *)(&pu1_out[3 * out_strd]), out_r3); }