/* ********************************************************************** * Copyright (C) 2001-2015 IBM and others. All rights reserved. ********************************************************************** * Date Name Description * 07/02/2001 synwee Creation. ********************************************************************** */ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION && !UCONFIG_NO_BREAK_ITERATION #include "unicode/usearch.h" #include "unicode/ustring.h" #include "unicode/uchar.h" #include "unicode/utf16.h" #include "normalizer2impl.h" #include "usrchimp.h" #include "cmemory.h" #include "ucln_in.h" #include "uassert.h" #include "ustr_imp.h" U_NAMESPACE_USE // don't use Boyer-Moore // (and if we decide to turn this on again there are several new TODOs that will need to be addressed) #define BOYER_MOORE 0 // internal definition --------------------------------------------------- #define LAST_BYTE_MASK_ 0xFF #define SECOND_LAST_BYTE_SHIFT_ 8 #define SUPPLEMENTARY_MIN_VALUE_ 0x10000 static const Normalizer2Impl *g_nfcImpl = NULL; // internal methods ------------------------------------------------- /** * Fast collation element iterator setOffset. * This function does not check for bounds. * @param coleiter collation element iterator * @param offset to set */ static inline void setColEIterOffset(UCollationElements *elems, int32_t offset) { // Note: Not "fast" any more after the 2013 collation rewrite. // We do not want to expose more internals than necessary. UErrorCode status = U_ZERO_ERROR; ucol_setOffset(elems, offset, &status); } /** * Getting the mask for collation strength * @param strength collation strength * @return collation element mask */ static inline uint32_t getMask(UCollationStrength strength) { switch (strength) { case UCOL_PRIMARY: return UCOL_PRIMARYORDERMASK; case UCOL_SECONDARY: return UCOL_SECONDARYORDERMASK | UCOL_PRIMARYORDERMASK; default: return UCOL_TERTIARYORDERMASK | UCOL_SECONDARYORDERMASK | UCOL_PRIMARYORDERMASK; } } /** * @param ce 32-bit collation element * @return hash code */ static inline int hashFromCE32(uint32_t ce) { int hc = (int)( ((((((ce >> 24) * 37) + (ce >> 16)) * 37) + (ce >> 8)) * 37) + ce); hc %= MAX_TABLE_SIZE_; if (hc < 0) { hc += MAX_TABLE_SIZE_; } return hc; } U_CDECL_BEGIN static UBool U_CALLCONV usearch_cleanup(void) { g_nfcImpl = NULL; return TRUE; } U_CDECL_END /** * Initializing the fcd tables. * Internal method, status assumed to be a success. * @param status output error if any, caller to check status before calling * method, status assumed to be success when passed in. */ static inline void initializeFCD(UErrorCode *status) { if (g_nfcImpl == NULL) { g_nfcImpl = Normalizer2Factory::getNFCImpl(*status); ucln_i18n_registerCleanup(UCLN_I18N_USEARCH, usearch_cleanup); } } /** * Gets the fcd value for a character at the argument index. * This method takes into accounts of the supplementary characters. * @param str UTF16 string where character for fcd retrieval resides * @param offset position of the character whose fcd is to be retrieved, to be * overwritten with the next character position, taking * surrogate characters into consideration. * @param strlength length of the argument string * @return fcd value */ static uint16_t getFCD(const UChar *str, int32_t *offset, int32_t strlength) { const UChar *temp = str + *offset; uint16_t result = g_nfcImpl->nextFCD16(temp, str + strlength); *offset = (int32_t)(temp - str); return result; } /** * Getting the modified collation elements taking into account the collation * attributes * @param strsrch string search data * @param sourcece * @return the modified collation element */ static inline int32_t getCE(const UStringSearch *strsrch, uint32_t sourcece) { // note for tertiary we can't use the collator->tertiaryMask, that // is a preprocessed mask that takes into account case options. since // we are only concerned with exact matches, we don't need that. sourcece &= strsrch->ceMask; if (strsrch->toShift) { // alternate handling here, since only the 16 most significant digits // is only used, we can safely do a compare without masking // if the ce is a variable, we mask and get only the primary values // no shifting to quartenary is required since all primary values // less than variabletop will need to be masked off anyway. if (strsrch->variableTop > sourcece) { if (strsrch->strength >= UCOL_QUATERNARY) { sourcece &= UCOL_PRIMARYORDERMASK; } else { sourcece = UCOL_IGNORABLE; } } } else if (strsrch->strength >= UCOL_QUATERNARY && sourcece == UCOL_IGNORABLE) { sourcece = 0xFFFF; } return sourcece; } /** * Allocate a memory and returns NULL if it failed. * Internal method, status assumed to be a success. * @param size to allocate * @param status output error if any, caller to check status before calling * method, status assumed to be success when passed in. * @return newly allocated array, NULL otherwise */ static inline void * allocateMemory(uint32_t size, UErrorCode *status) { uint32_t *result = (uint32_t *)uprv_malloc(size); if (result == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; } return result; } /** * Adds a uint32_t value to a destination array. * Creates a new array if we run out of space. The caller will have to * manually deallocate the newly allocated array. * Internal method, status assumed to be success, caller has to check status * before calling this method. destination not to be NULL and has at least * size destinationlength. * @param destination target array * @param offset destination offset to add value * @param destinationlength target array size, return value for the new size * @param value to be added * @param increments incremental size expected * @param status output error if any, caller to check status before calling * method, status assumed to be success when passed in. * @return new destination array, destination if there was no new allocation */ static inline int32_t * addTouint32_tArray(int32_t *destination, uint32_t offset, uint32_t *destinationlength, uint32_t value, uint32_t increments, UErrorCode *status) { uint32_t newlength = *destinationlength; if (offset + 1 == newlength) { newlength += increments; int32_t *temp = (int32_t *)allocateMemory( sizeof(int32_t) * newlength, status); if (U_FAILURE(*status)) { return NULL; } uprv_memcpy(temp, destination, sizeof(int32_t) * offset); *destinationlength = newlength; destination = temp; } destination[offset] = value; return destination; } /** * Adds a uint64_t value to a destination array. * Creates a new array if we run out of space. The caller will have to * manually deallocate the newly allocated array. * Internal method, status assumed to be success, caller has to check status * before calling this method. destination not to be NULL and has at least * size destinationlength. * @param destination target array * @param offset destination offset to add value * @param destinationlength target array size, return value for the new size * @param value to be added * @param increments incremental size expected * @param status output error if any, caller to check status before calling * method, status assumed to be success when passed in. * @return new destination array, destination if there was no new allocation */ static inline int64_t * addTouint64_tArray(int64_t *destination, uint32_t offset, uint32_t *destinationlength, uint64_t value, uint32_t increments, UErrorCode *status) { uint32_t newlength = *destinationlength; if (offset + 1 == newlength) { newlength += increments; int64_t *temp = (int64_t *)allocateMemory( sizeof(int64_t) * newlength, status); if (U_FAILURE(*status)) { return NULL; } uprv_memcpy(temp, destination, sizeof(int64_t) * offset); *destinationlength = newlength; destination = temp; } destination[offset] = value; return destination; } /** * Initializing the ce table for a pattern. * Stores non-ignorable collation keys. * Table size will be estimated by the size of the pattern text. Table * expansion will be perform as we go along. Adding 1 to ensure that the table * size definitely increases. * Internal method, status assumed to be a success. * @param strsrch string search data * @param status output error if any, caller to check status before calling * method, status assumed to be success when passed in. * @return total number of expansions */ static inline uint16_t initializePatternCETable(UStringSearch *strsrch, UErrorCode *status) { UPattern *pattern = &(strsrch->pattern); uint32_t cetablesize = INITIAL_ARRAY_SIZE_; int32_t *cetable = pattern->cesBuffer; uint32_t patternlength = pattern->textLength; UCollationElements *coleiter = strsrch->utilIter; if (coleiter == NULL) { coleiter = ucol_openElements(strsrch->collator, pattern->text, patternlength, status); // status will be checked in ucol_next(..) later and if it is an // error UCOL_NULLORDER the result of ucol_next(..) and 0 will be // returned. strsrch->utilIter = coleiter; } else { ucol_setText(coleiter, pattern->text, pattern->textLength, status); } if(U_FAILURE(*status)) { return 0; } if (pattern->ces != cetable && pattern->ces) { uprv_free(pattern->ces); } uint16_t offset = 0; uint16_t result = 0; int32_t ce; while ((ce = ucol_next(coleiter, status)) != UCOL_NULLORDER && U_SUCCESS(*status)) { uint32_t newce = getCE(strsrch, ce); if (newce) { int32_t *temp = addTouint32_tArray(cetable, offset, &cetablesize, newce, patternlength - ucol_getOffset(coleiter) + 1, status); if (U_FAILURE(*status)) { return 0; } offset ++; if (cetable != temp && cetable != pattern->cesBuffer) { uprv_free(cetable); } cetable = temp; } result += (uint16_t)(ucol_getMaxExpansion(coleiter, ce) - 1); } cetable[offset] = 0; pattern->ces = cetable; pattern->cesLength = offset; return result; } /** * Initializing the pce table for a pattern. * Stores non-ignorable collation keys. * Table size will be estimated by the size of the pattern text. Table * expansion will be perform as we go along. Adding 1 to ensure that the table * size definitely increases. * Internal method, status assumed to be a success. * @param strsrch string search data * @param status output error if any, caller to check status before calling * method, status assumed to be success when passed in. * @return total number of expansions */ static inline uint16_t initializePatternPCETable(UStringSearch *strsrch, UErrorCode *status) { UPattern *pattern = &(strsrch->pattern); uint32_t pcetablesize = INITIAL_ARRAY_SIZE_; int64_t *pcetable = pattern->pcesBuffer; uint32_t patternlength = pattern->textLength; UCollationElements *coleiter = strsrch->utilIter; if (coleiter == NULL) { coleiter = ucol_openElements(strsrch->collator, pattern->text, patternlength, status); // status will be checked in ucol_next(..) later and if it is an // error UCOL_NULLORDER the result of ucol_next(..) and 0 will be // returned. strsrch->utilIter = coleiter; } else { ucol_setText(coleiter, pattern->text, pattern->textLength, status); } if(U_FAILURE(*status)) { return 0; } if (pattern->pces != pcetable && pattern->pces != NULL) { uprv_free(pattern->pces); } uint16_t offset = 0; uint16_t result = 0; int64_t pce; icu::UCollationPCE iter(coleiter); // ** Should processed CEs be signed or unsigned? // ** (the rest of the code in this file seems to play fast-and-loose with // ** whether a CE is signed or unsigned. For example, look at routine above this one.) while ((pce = iter.nextProcessed(NULL, NULL, status)) != UCOL_PROCESSED_NULLORDER && U_SUCCESS(*status)) { int64_t *temp = addTouint64_tArray(pcetable, offset, &pcetablesize, pce, patternlength - ucol_getOffset(coleiter) + 1, status); if (U_FAILURE(*status)) { return 0; } offset += 1; if (pcetable != temp && pcetable != pattern->pcesBuffer) { uprv_free(pcetable); } pcetable = temp; //result += (uint16_t)(ucol_getMaxExpansion(coleiter, ce) - 1); } pcetable[offset] = 0; pattern->pces = pcetable; pattern->pcesLength = offset; return result; } /** * Initializes the pattern struct. * Internal method, status assumed to be success. * @param strsrch UStringSearch data storage * @param status output error if any, caller to check status before calling * method, status assumed to be success when passed in. * @return expansionsize the total expansion size of the pattern */ static inline int16_t initializePattern(UStringSearch *strsrch, UErrorCode *status) { if (U_FAILURE(*status)) { return 0; } UPattern *pattern = &(strsrch->pattern); const UChar *patterntext = pattern->text; int32_t length = pattern->textLength; int32_t index = 0; // Since the strength is primary, accents are ignored in the pattern. if (strsrch->strength == UCOL_PRIMARY) { pattern->hasPrefixAccents = 0; pattern->hasSuffixAccents = 0; } else { pattern->hasPrefixAccents = getFCD(patterntext, &index, length) >> SECOND_LAST_BYTE_SHIFT_; index = length; U16_BACK_1(patterntext, 0, index); pattern->hasSuffixAccents = getFCD(patterntext, &index, length) & LAST_BYTE_MASK_; } // ** HACK ** if (strsrch->pattern.pces != NULL) { if (strsrch->pattern.pces != strsrch->pattern.pcesBuffer) { uprv_free(strsrch->pattern.pces); } strsrch->pattern.pces = NULL; } // since intializePattern is an internal method status is a success. return initializePatternCETable(strsrch, status); } /** * Initializing shift tables, with the default values. * If a corresponding default value is 0, the shift table is not set. * @param shift table for forwards shift * @param backshift table for backwards shift * @param cetable table containing pattern ce * @param cesize size of the pattern ces * @param expansionsize total size of the expansions * @param defaultforward the default forward value * @param defaultbackward the default backward value */ static inline void setShiftTable(int16_t shift[], int16_t backshift[], int32_t *cetable, int32_t cesize, int16_t expansionsize, int16_t defaultforward, int16_t defaultbackward) { // estimate the value to shift. to do that we estimate the smallest // number of characters to give the relevant ces, ie approximately // the number of ces minus their expansion, since expansions can come // from a character. int32_t count; for (count = 0; count < MAX_TABLE_SIZE_; count ++) { shift[count] = defaultforward; } cesize --; // down to the last index for (count = 0; count < cesize; count ++) { // number of ces from right of array to the count int temp = defaultforward - count - 1; shift[hashFromCE32(cetable[count])] = temp > 1 ? temp : 1; } shift[hashFromCE32(cetable[cesize])] = 1; // for ignorables we just shift by one. see test examples. shift[hashFromCE32(0)] = 1; for (count = 0; count < MAX_TABLE_SIZE_; count ++) { backshift[count] = defaultbackward; } for (count = cesize; count > 0; count --) { // the original value count does not seem to work backshift[hashFromCE32(cetable[count])] = count > expansionsize ? (int16_t)(count - expansionsize) : 1; } backshift[hashFromCE32(cetable[0])] = 1; backshift[hashFromCE32(0)] = 1; } /** * Building of the pattern collation element list and the boyer moore strsrch * table. * The canonical match will only be performed after the default match fails. * For both cases we need to remember the size of the composed and decomposed * versions of the string. Since the Boyer-Moore shift calculations shifts by * a number of characters in the text and tries to match the pattern from that * offset, the shift value can not be too large in case we miss some * characters. To choose a right shift size, we estimate the NFC form of the * and use its size as a shift guide. The NFC form should be the small * possible representation of the pattern. Anyways, we'll err on the smaller * shift size. Hence the calculation for minlength. * Canonical match will be performed slightly differently. We'll split the * pattern into 3 parts, the prefix accents (PA), the middle string bounded by * the first and last base character (MS), the ending accents (EA). Matches * will be done on MS first, and only when we match MS then some processing * will be required for the prefix and end accents in order to determine if * they match PA and EA. Hence the default shift values * for the canonical match will take the size of either end's accent into * consideration. Forwards search will take the end accents into consideration * for the default shift values and the backwards search will take the prefix * accents into consideration. * If pattern has no non-ignorable ce, we return a illegal argument error. * Internal method, status assumed to be success. * @param strsrch UStringSearch data storage * @param status for output errors if it occurs, status is assumed to be a * success when it is passed in. */ static inline void initialize(UStringSearch *strsrch, UErrorCode *status) { int16_t expandlength = initializePattern(strsrch, status); if (U_SUCCESS(*status) && strsrch->pattern.cesLength > 0) { UPattern *pattern = &strsrch->pattern; int32_t cesize = pattern->cesLength; int16_t minlength = cesize > expandlength ? (int16_t)cesize - expandlength : 1; pattern->defaultShiftSize = minlength; setShiftTable(pattern->shift, pattern->backShift, pattern->ces, cesize, expandlength, minlength, minlength); return; } strsrch->pattern.defaultShiftSize = 0; } #if BOYER_MOORE /** * Check to make sure that the match length is at the end of the character by * using the breakiterator. * @param strsrch string search data * @param start target text start offset * @param end target text end offset */ static void checkBreakBoundary(const UStringSearch *strsrch, int32_t * /*start*/, int32_t *end) { #if !UCONFIG_NO_BREAK_ITERATION UBreakIterator *breakiterator = strsrch->search->internalBreakIter; if (breakiterator) { int32_t matchend = *end; //int32_t matchstart = *start; if (!ubrk_isBoundary(breakiterator, matchend)) { *end = ubrk_following(breakiterator, matchend); } /* Check the start of the matched text to make sure it doesn't have any accents * before it. This code may not be necessary and so it is commented out */ /*if (!ubrk_isBoundary(breakiterator, matchstart) && !ubrk_isBoundary(breakiterator, matchstart-1)) { *start = ubrk_preceding(breakiterator, matchstart); }*/ } #endif } /** * Determine whether the target text in UStringSearch bounded by the offset * start and end is one or more whole units of text as * determined by the breakiterator in UStringSearch. * @param strsrch string search data * @param start target text start offset * @param end target text end offset */ static UBool isBreakUnit(const UStringSearch *strsrch, int32_t start, int32_t end) { #if !UCONFIG_NO_BREAK_ITERATION UBreakIterator *breakiterator = strsrch->search->breakIter; //TODO: Add here. if (breakiterator) { int32_t startindex = ubrk_first(breakiterator); int32_t endindex = ubrk_last(breakiterator); // out-of-range indexes are never boundary positions if (start < startindex || start > endindex || end < startindex || end > endindex) { return FALSE; } // otherwise, we can use following() on the position before the // specified one and return true of the position we get back is the // one the user specified UBool result = (start == startindex || ubrk_following(breakiterator, start - 1) == start) && (end == endindex || ubrk_following(breakiterator, end - 1) == end); if (result) { // iterates the individual ces UCollationElements *coleiter = strsrch->utilIter; const UChar *text = strsrch->search->text + start; UErrorCode status = U_ZERO_ERROR; ucol_setText(coleiter, text, end - start, &status); for (int32_t count = 0; count < strsrch->pattern.cesLength; count ++) { int32_t ce = getCE(strsrch, ucol_next(coleiter, &status)); if (ce == UCOL_IGNORABLE) { count --; continue; } if (U_FAILURE(status) || ce != strsrch->pattern.ces[count]) { return FALSE; } } int32_t nextce = ucol_next(coleiter, &status); while (ucol_getOffset(coleiter) == (end - start) && getCE(strsrch, nextce) == UCOL_IGNORABLE) { nextce = ucol_next(coleiter, &status); } if (ucol_getOffset(coleiter) == (end - start) && nextce != UCOL_NULLORDER) { // extra collation elements at the end of the match return FALSE; } } return result; } #endif return TRUE; } /** * Getting the next base character offset if current offset is an accent, * or the current offset if the current character contains a base character. * accents the following base character will be returned * @param text string * @param textoffset current offset * @param textlength length of text string * @return the next base character or the current offset * if the current character is contains a base character. */ static inline int32_t getNextBaseOffset(const UChar *text, int32_t textoffset, int32_t textlength) { if (textoffset < textlength) { int32_t temp = textoffset; if (getFCD(text, &temp, textlength) >> SECOND_LAST_BYTE_SHIFT_) { while (temp < textlength) { int32_t result = temp; if ((getFCD(text, &temp, textlength) >> SECOND_LAST_BYTE_SHIFT_) == 0) { return result; } } return textlength; } } return textoffset; } /** * Gets the next base character offset depending on the string search pattern * data * @param strsrch string search data * @param textoffset current offset, one offset away from the last character * to search for. * @return start index of the next base character or the current offset * if the current character is contains a base character. */ static inline int32_t getNextUStringSearchBaseOffset(UStringSearch *strsrch, int32_t textoffset) { int32_t textlength = strsrch->search->textLength; if (strsrch->pattern.hasSuffixAccents && textoffset < textlength) { int32_t temp = textoffset; const UChar *text = strsrch->search->text; U16_BACK_1(text, 0, temp); if (getFCD(text, &temp, textlength) & LAST_BYTE_MASK_) { return getNextBaseOffset(text, textoffset, textlength); } } return textoffset; } /** * Shifting the collation element iterator position forward to prepare for * a following match. If the last character is a unsafe character, we'll only * shift by 1 to capture contractions, normalization etc. * Internal method, status assumed to be success. * @param text strsrch string search data * @param textoffset start text position to do search * @param ce the text ce which failed the match. * @param patternceindex index of the ce within the pattern ce buffer which * failed the match * @return final offset */ static inline int32_t shiftForward(UStringSearch *strsrch, int32_t textoffset, int32_t ce, int32_t patternceindex) { UPattern *pattern = &(strsrch->pattern); if (ce != UCOL_NULLORDER) { int32_t shift = pattern->shift[hashFromCE32(ce)]; // this is to adjust for characters in the middle of the // substring for matching that failed. int32_t adjust = pattern->cesLength - patternceindex; if (adjust > 1 && shift >= adjust) { shift -= adjust - 1; } textoffset += shift; } else { textoffset += pattern->defaultShiftSize; } textoffset = getNextUStringSearchBaseOffset(strsrch, textoffset); // check for unsafe characters // * if it is the start or middle of a contraction: to be done after // a initial match is found // * thai or lao base consonant character: similar to contraction // * high surrogate character: similar to contraction // * next character is a accent: shift to the next base character return textoffset; } #endif // #if BOYER_MOORE /** * sets match not found * @param strsrch string search data */ static inline void setMatchNotFound(UStringSearch *strsrch) { // this method resets the match result regardless of the error status. strsrch->search->matchedIndex = USEARCH_DONE; strsrch->search->matchedLength = 0; if (strsrch->search->isForwardSearching) { setColEIterOffset(strsrch->textIter, strsrch->search->textLength); } else { setColEIterOffset(strsrch->textIter, 0); } } #if BOYER_MOORE /** * Gets the offset to the next safe point in text. * ie. not the middle of a contraction, swappable characters or supplementary * characters. * @param collator collation sata * @param text string to work with * @param textoffset offset in string * @param textlength length of text string * @return offset to the next safe character */ static inline int32_t getNextSafeOffset(const UCollator *collator, const UChar *text, int32_t textoffset, int32_t textlength) { int32_t result = textoffset; // first contraction character while (result != textlength && ucol_unsafeCP(text[result], collator)) { result ++; } return result; } /** * This checks for accents in the potential match started with a . * composite character. * This is really painful... we have to check that composite character do not * have any extra accents. We have to normalize the potential match and find * the immediate decomposed character before the match. * The first composite character would have been taken care of by the fcd * checks in checkForwardExactMatch. * This is the slow path after the fcd of the first character and * the last character has been checked by checkForwardExactMatch and we * determine that the potential match has extra non-ignorable preceding * ces. * E.g. looking for \u0301 acute in \u01FA A ring above and acute, * checkExtraMatchAccent should fail since there is a middle ring in \u01FA * Note here that accents checking are slow and cautioned in the API docs. * Internal method, status assumed to be a success, caller should check status * before calling this method * @param strsrch string search data * @param start index of the potential unfriendly composite character * @param end index of the potential unfriendly composite character * @param status output error status if any. * @return TRUE if there is non-ignorable accents before at the beginning * of the match, FALSE otherwise. */ static UBool checkExtraMatchAccents(const UStringSearch *strsrch, int32_t start, int32_t end, UErrorCode *status) { UBool result = FALSE; if (strsrch->pattern.hasPrefixAccents) { int32_t length = end - start; int32_t offset = 0; const UChar *text = strsrch->search->text + start; U16_FWD_1(text, offset, length); // we are only concerned with the first composite character if (unorm_quickCheck(text, offset, UNORM_NFD, status) == UNORM_NO) { int32_t safeoffset = getNextSafeOffset(strsrch->collator, text, 0, length); if (safeoffset != length) { safeoffset ++; } UChar *norm = NULL; UChar buffer[INITIAL_ARRAY_SIZE_]; int32_t size = unorm_normalize(text, safeoffset, UNORM_NFD, 0, buffer, INITIAL_ARRAY_SIZE_, status); if (U_FAILURE(*status)) { return FALSE; } if (size >= INITIAL_ARRAY_SIZE_) { norm = (UChar *)allocateMemory((size + 1) * sizeof(UChar), status); // if allocation failed, status will be set to // U_MEMORY_ALLOCATION_ERROR and unorm_normalize internally // checks for it. size = unorm_normalize(text, safeoffset, UNORM_NFD, 0, norm, size, status); if (U_FAILURE(*status) && norm != NULL) { uprv_free(norm); return FALSE; } } else { norm = buffer; } UCollationElements *coleiter = strsrch->utilIter; ucol_setText(coleiter, norm, size, status); uint32_t firstce = strsrch->pattern.ces[0]; UBool ignorable = TRUE; uint32_t ce = UCOL_IGNORABLE; while (U_SUCCESS(*status) && ce != firstce && ce != (uint32_t)UCOL_NULLORDER) { offset = ucol_getOffset(coleiter); if (ce != firstce && ce != UCOL_IGNORABLE) { ignorable = FALSE; } ce = ucol_next(coleiter, status); } UChar32 codepoint; U16_PREV(norm, 0, offset, codepoint); result = !ignorable && (u_getCombiningClass(codepoint) != 0); if (norm != buffer) { uprv_free(norm); } } } return result; } /** * Used by exact matches, checks if there are accents before the match. * This is really painful... we have to check that composite characters at * the start of the matches have to not have any extra accents. * We check the FCD of the character first, if it starts with an accent and * the first pattern ce does not match the first ce of the character, we bail. * Otherwise we try normalizing the first composite * character and find the immediate decomposed character before the match to * see if it is an non-ignorable accent. * Now normalizing the first composite character is enough because we ensure * that when the match is passed in here with extra beginning ces, the * first or last ce that match has to occur within the first character. * E.g. looking for \u0301 acute in \u01FA A ring above and acute, * checkExtraMatchAccent should fail since there is a middle ring in \u01FA * Note here that accents checking are slow and cautioned in the API docs. * @param strsrch string search data * @param start offset * @param end offset * @return TRUE if there are accents on either side of the match, * FALSE otherwise */ static UBool hasAccentsBeforeMatch(const UStringSearch *strsrch, int32_t start, int32_t end) { if (strsrch->pattern.hasPrefixAccents) { UCollationElements *coleiter = strsrch->textIter; UErrorCode status = U_ZERO_ERROR; // we have been iterating forwards previously uint32_t ignorable = TRUE; int32_t firstce = strsrch->pattern.ces[0]; setColEIterOffset(coleiter, start); int32_t ce = getCE(strsrch, ucol_next(coleiter, &status)); if (U_FAILURE(status)) { return TRUE; } while (ce != firstce) { if (ce != UCOL_IGNORABLE) { ignorable = FALSE; } ce = getCE(strsrch, ucol_next(coleiter, &status)); if (U_FAILURE(status) || ce == UCOL_NULLORDER) { return TRUE; } } if (!ignorable && inNormBuf(coleiter)) { // within normalization buffer, discontiguous handled here return TRUE; } // within text int32_t temp = start; // original code // accent = (getFCD(strsrch->search->text, &temp, // strsrch->search->textLength) // >> SECOND_LAST_BYTE_SHIFT_); // however this code does not work well with VC7 .net in release mode. // maybe the inlines for getFCD combined with shifting has bugs in // VC7. anyways this is a work around. UBool accent = getFCD(strsrch->search->text, &temp, strsrch->search->textLength) > 0xFF; if (!accent) { return checkExtraMatchAccents(strsrch, start, end, &status); } if (!ignorable) { return TRUE; } if (start > 0) { temp = start; U16_BACK_1(strsrch->search->text, 0, temp); if (getFCD(strsrch->search->text, &temp, strsrch->search->textLength) & LAST_BYTE_MASK_) { setColEIterOffset(coleiter, start); ce = ucol_previous(coleiter, &status); if (U_FAILURE(status) || (ce != UCOL_NULLORDER && ce != UCOL_IGNORABLE)) { return TRUE; } } } } return FALSE; } /** * Used by exact matches, checks if there are accents bounding the match. * Note this is the initial boundary check. If the potential match * starts or ends with composite characters, the accents in those * characters will be determined later. * Not doing backwards iteration here, since discontiguos contraction for * backwards collation element iterator, use up too many characters. * E.g. looking for \u030A ring in \u01FA A ring above and acute, * should fail since there is a acute at the end of \u01FA * Note here that accents checking are slow and cautioned in the API docs. * @param strsrch string search data * @param start offset of match * @param end end offset of the match * @return TRUE if there are accents on either side of the match, * FALSE otherwise */ static UBool hasAccentsAfterMatch(const UStringSearch *strsrch, int32_t start, int32_t end) { if (strsrch->pattern.hasSuffixAccents) { const UChar *text = strsrch->search->text; int32_t temp = end; int32_t textlength = strsrch->search->textLength; U16_BACK_1(text, 0, temp); if (getFCD(text, &temp, textlength) & LAST_BYTE_MASK_) { int32_t firstce = strsrch->pattern.ces[0]; UCollationElements *coleiter = strsrch->textIter; UErrorCode status = U_ZERO_ERROR; int32_t ce; setColEIterOffset(coleiter, start); while ((ce = getCE(strsrch, ucol_next(coleiter, &status))) != firstce) { if (U_FAILURE(status) || ce == UCOL_NULLORDER) { return TRUE; } } int32_t count = 1; while (count < strsrch->pattern.cesLength) { if (getCE(strsrch, ucol_next(coleiter, &status)) == UCOL_IGNORABLE) { // Thai can give an ignorable here. count --; } if (U_FAILURE(status)) { return TRUE; } count ++; } ce = ucol_next(coleiter, &status); if (U_FAILURE(status)) { return TRUE; } if (ce != UCOL_NULLORDER && ce != UCOL_IGNORABLE) { ce = getCE(strsrch, ce); } if (ce != UCOL_NULLORDER && ce != UCOL_IGNORABLE) { if (ucol_getOffset(coleiter) <= end) { return TRUE; } if (getFCD(text, &end, textlength) >> SECOND_LAST_BYTE_SHIFT_) { return TRUE; } } } } return FALSE; } #endif // #if BOYER_MOORE /** * Checks if the offset runs out of the text string * @param offset * @param textlength of the text string * @return TRUE if offset is out of bounds, FALSE otherwise */ static inline UBool isOutOfBounds(int32_t textlength, int32_t offset) { return offset < 0 || offset > textlength; } /** * Checks for identical match * @param strsrch string search data * @param start offset of possible match * @param end offset of possible match * @return TRUE if identical match is found */ static inline UBool checkIdentical(const UStringSearch *strsrch, int32_t start, int32_t end) { if (strsrch->strength != UCOL_IDENTICAL) { return TRUE; } // Note: We could use Normalizer::compare() or similar, but for short strings // which may not be in FCD it might be faster to just NFD them. UErrorCode status = U_ZERO_ERROR; UnicodeString t2, p2; strsrch->nfd->normalize( UnicodeString(FALSE, strsrch->search->text + start, end - start), t2, status); strsrch->nfd->normalize( UnicodeString(FALSE, strsrch->pattern.text, strsrch->pattern.textLength), p2, status); // return FALSE if NFD failed return U_SUCCESS(status) && t2 == p2; } #if BOYER_MOORE /** * Checks to see if the match is repeated * @param strsrch string search data * @param start new match start index * @param end new match end index * @return TRUE if the the match is repeated, FALSE otherwise */ static inline UBool checkRepeatedMatch(UStringSearch *strsrch, int32_t start, int32_t end) { int32_t lastmatchindex = strsrch->search->matchedIndex; UBool result; if (lastmatchindex == USEARCH_DONE) { return FALSE; } if (strsrch->search->isForwardSearching) { result = start <= lastmatchindex; } else { result = start >= lastmatchindex; } if (!result && !strsrch->search->isOverlap) { if (strsrch->search->isForwardSearching) { result = start < lastmatchindex + strsrch->search->matchedLength; } else { result = end > lastmatchindex; } } return result; } /** * Gets the collation element iterator's current offset. * @param coleiter collation element iterator * @param forwards flag TRUE if we are moving in th forwards direction * @return current offset */ static inline int32_t getColElemIterOffset(const UCollationElements *coleiter, UBool forwards) { int32_t result = ucol_getOffset(coleiter); // intricacies of the the backwards collation element iterator if (FALSE && !forwards && inNormBuf(coleiter) && !isFCDPointerNull(coleiter)) { result ++; } return result; } /** * Checks match for contraction. * If the match ends with a partial contraction we fail. * If the match starts too far off (because of backwards iteration) we try to * chip off the extra characters depending on whether a breakiterator has * been used. * Internal method, error assumed to be success, caller has to check status * before calling this method. * @param strsrch string search data * @param start offset of potential match, to be modified if necessary * @param end offset of potential match, to be modified if necessary * @param status output error status if any * @return TRUE if match passes the contraction test, FALSE otherwise */ static UBool checkNextExactContractionMatch(UStringSearch *strsrch, int32_t *start, int32_t *end, UErrorCode *status) { UCollationElements *coleiter = strsrch->textIter; int32_t textlength = strsrch->search->textLength; int32_t temp = *start; const UCollator *collator = strsrch->collator; const UChar *text = strsrch->search->text; // This part checks if either ends of the match contains potential // contraction. If so we'll have to iterate through them // The start contraction needs to be checked since ucol_previous dumps // all characters till the first safe character into the buffer. // *start + 1 is used to test for the unsafe characters instead of *start // because ucol_prev takes all unsafe characters till the first safe // character ie *start. so by testing *start + 1, we can estimate if // excess prefix characters has been included in the potential search // results. if ((*end < textlength && ucol_unsafeCP(text[*end], collator)) || (*start + 1 < textlength && ucol_unsafeCP(text[*start + 1], collator))) { int32_t expansion = getExpansionPrefix(coleiter); UBool expandflag = expansion > 0; setColEIterOffset(coleiter, *start); while (expansion > 0) { // getting rid of the redundant ce, caused by setOffset. // since backward contraction/expansion may have extra ces if we // are in the normalization buffer, hasAccentsBeforeMatch would // have taken care of it. // E.g. the character \u01FA will have an expansion of 3, but if // we are only looking for acute and ring \u030A and \u0301, we'll // have to skip the first ce in the expansion buffer. ucol_next(coleiter, status); if (U_FAILURE(*status)) { return FALSE; } if (ucol_getOffset(coleiter) != temp) { *start = temp; temp = ucol_getOffset(coleiter); } expansion --; } int32_t *patternce = strsrch->pattern.ces; int32_t patterncelength = strsrch->pattern.cesLength; int32_t count = 0; while (count < patterncelength) { int32_t ce = getCE(strsrch, ucol_next(coleiter, status)); if (ce == UCOL_IGNORABLE) { continue; } if (expandflag && count == 0 && ucol_getOffset(coleiter) != temp) { *start = temp; temp = ucol_getOffset(coleiter); } if (U_FAILURE(*status) || ce != patternce[count]) { (*end) ++; *end = getNextUStringSearchBaseOffset(strsrch, *end); return FALSE; } count ++; } } return TRUE; } /** * Checks and sets the match information if found. * Checks * <ul> * <li> the potential match does not repeat the previous match * <li> boundaries are correct * <li> exact matches has no extra accents * <li> identical matchesb * <li> potential match does not end in the middle of a contraction * <\ul> * Otherwise the offset will be shifted to the next character. * Internal method, status assumed to be success, caller has to check status * before calling this method. * @param strsrch string search data * @param textoffset offset in the collation element text. the returned value * will be the truncated end offset of the match or the new start * search offset. * @param status output error status if any * @return TRUE if the match is valid, FALSE otherwise */ static inline UBool checkNextExactMatch(UStringSearch *strsrch, int32_t *textoffset, UErrorCode *status) { UCollationElements *coleiter = strsrch->textIter; int32_t start = getColElemIterOffset(coleiter, FALSE); if (!checkNextExactContractionMatch(strsrch, &start, textoffset, status)) { return FALSE; } // this totally matches, however we need to check if it is repeating if (!isBreakUnit(strsrch, start, *textoffset) || checkRepeatedMatch(strsrch, start, *textoffset) || hasAccentsBeforeMatch(strsrch, start, *textoffset) || !checkIdentical(strsrch, start, *textoffset) || hasAccentsAfterMatch(strsrch, start, *textoffset)) { (*textoffset) ++; *textoffset = getNextUStringSearchBaseOffset(strsrch, *textoffset); return FALSE; } //Add breakiterator boundary check for primary strength search. if (!strsrch->search->breakIter && strsrch->strength == UCOL_PRIMARY) { checkBreakBoundary(strsrch, &start, textoffset); } // totally match, we will get rid of the ending ignorables. strsrch->search->matchedIndex = start; strsrch->search->matchedLength = *textoffset - start; return TRUE; } /** * Getting the previous base character offset, or the current offset if the * current character is a base character * @param text string * @param textoffset one offset after the current character * @return the offset of the next character after the base character or the first * composed character with accents */ static inline int32_t getPreviousBaseOffset(const UChar *text, int32_t textoffset) { if (textoffset > 0) { for (;;) { int32_t result = textoffset; U16_BACK_1(text, 0, textoffset); int32_t temp = textoffset; uint16_t fcd = getFCD(text, &temp, result); if ((fcd >> SECOND_LAST_BYTE_SHIFT_) == 0) { if (fcd & LAST_BYTE_MASK_) { return textoffset; } return result; } if (textoffset == 0) { return 0; } } } return textoffset; } /** * Getting the indexes of the accents that are not blocked in the argument * accent array * @param accents array of accents in nfd terminated by a 0. * @param accentsindex array of indexes of the accents that are not blocked */ static inline int getUnblockedAccentIndex(UChar *accents, int32_t *accentsindex) { int32_t index = 0; int32_t length = u_strlen(accents); UChar32 codepoint = 0; int cclass = 0; int result = 0; int32_t temp; while (index < length) { temp = index; U16_NEXT(accents, index, length, codepoint); if (u_getCombiningClass(codepoint) != cclass) { cclass = u_getCombiningClass(codepoint); accentsindex[result] = temp; result ++; } } accentsindex[result] = length; return result; } /** * Appends 3 UChar arrays to a destination array. * Creates a new array if we run out of space. The caller will have to * manually deallocate the newly allocated array. * Internal method, status assumed to be success, caller has to check status * before calling this method. destination not to be NULL and has at least * size destinationlength. * @param destination target array * @param destinationlength target array size, returning the appended length * @param source1 null-terminated first array * @param source2 second array * @param source2length length of seond array * @param source3 null-terminated third array * @param status error status if any * @return new destination array, destination if there was no new allocation */ static inline UChar * addToUCharArray( UChar *destination, int32_t *destinationlength, const UChar *source1, const UChar *source2, int32_t source2length, const UChar *source3, UErrorCode *status) { int32_t source1length = source1 ? u_strlen(source1) : 0; int32_t source3length = source3 ? u_strlen(source3) : 0; if (*destinationlength < source1length + source2length + source3length + 1) { destination = (UChar *)allocateMemory( (source1length + source2length + source3length + 1) * sizeof(UChar), status); // if error allocating memory, status will be // U_MEMORY_ALLOCATION_ERROR if (U_FAILURE(*status)) { *destinationlength = 0; return NULL; } } if (source1length != 0) { uprv_memcpy(destination, source1, sizeof(UChar) * source1length); } if (source2length != 0) { uprv_memcpy(destination + source1length, source2, sizeof(UChar) * source2length); } if (source3length != 0) { uprv_memcpy(destination + source1length + source2length, source3, sizeof(UChar) * source3length); } *destinationlength = source1length + source2length + source3length; return destination; } /** * Running through a collation element iterator to see if the contents matches * pattern in string search data * @param strsrch string search data * @param coleiter collation element iterator * @return TRUE if a match if found, FALSE otherwise */ static inline UBool checkCollationMatch(const UStringSearch *strsrch, UCollationElements *coleiter) { int patternceindex = strsrch->pattern.cesLength; int32_t *patternce = strsrch->pattern.ces; UErrorCode status = U_ZERO_ERROR; while (patternceindex > 0) { int32_t ce = getCE(strsrch, ucol_next(coleiter, &status)); if (ce == UCOL_IGNORABLE) { continue; } if (U_FAILURE(status) || ce != *patternce) { return FALSE; } patternce ++; patternceindex --; } return TRUE; } /** * Rearranges the front accents to try matching. * Prefix accents in the text will be grouped according to their combining * class and the groups will be mixed and matched to try find the perfect * match with the pattern. * So for instance looking for "\u0301" in "\u030A\u0301\u0325" * step 1: split "\u030A\u0301" into 6 other type of potential accent substrings * "\u030A", "\u0301", "\u0325", "\u030A\u0301", "\u030A\u0325", * "\u0301\u0325". * step 2: check if any of the generated substrings matches the pattern. * Internal method, status is assumed to be success, caller has to check status * before calling this method. * @param strsrch string search match * @param start first offset of the accents to start searching * @param end start of the last accent set * @param status output error status if any * @return USEARCH_DONE if a match is not found, otherwise return the starting * offset of the match. Note this start includes all preceding accents. */ static int32_t doNextCanonicalPrefixMatch(UStringSearch *strsrch, int32_t start, int32_t end, UErrorCode *status) { const UChar *text = strsrch->search->text; int32_t textlength = strsrch->search->textLength; int32_t tempstart = start; if ((getFCD(text, &tempstart, textlength) & LAST_BYTE_MASK_) == 0) { // die... failed at a base character return USEARCH_DONE; } int32_t offset = getNextBaseOffset(text, tempstart, textlength); start = getPreviousBaseOffset(text, tempstart); UChar accents[INITIAL_ARRAY_SIZE_]; // normalizing the offensive string unorm_normalize(text + start, offset - start, UNORM_NFD, 0, accents, INITIAL_ARRAY_SIZE_, status); if (U_FAILURE(*status)) { return USEARCH_DONE; } int32_t accentsindex[INITIAL_ARRAY_SIZE_]; int32_t accentsize = getUnblockedAccentIndex(accents, accentsindex); int32_t count = (2 << (accentsize - 1)) - 1; UChar buffer[INITIAL_ARRAY_SIZE_]; UCollationElements *coleiter = strsrch->utilIter; while (U_SUCCESS(*status) && count > 0) { UChar *rearrange = strsrch->canonicalPrefixAccents; // copy the base characters for (int k = 0; k < accentsindex[0]; k ++) { *rearrange ++ = accents[k]; } // forming all possible canonical rearrangement by dropping // sets of accents for (int i = 0; i <= accentsize - 1; i ++) { int32_t mask = 1 << (accentsize - i - 1); if (count & mask) { for (int j = accentsindex[i]; j < accentsindex[i + 1]; j ++) { *rearrange ++ = accents[j]; } } } *rearrange = 0; int32_t matchsize = INITIAL_ARRAY_SIZE_; UChar *match = addToUCharArray(buffer, &matchsize, strsrch->canonicalPrefixAccents, strsrch->search->text + offset, end - offset, strsrch->canonicalSuffixAccents, status); // if status is a failure, ucol_setText does nothing. // run the collator iterator through this match ucol_setText(coleiter, match, matchsize, status); if (U_SUCCESS(*status)) { if (checkCollationMatch(strsrch, coleiter)) { if (match != buffer) { uprv_free(match); } return start; } } count --; } return USEARCH_DONE; } /** * Gets the offset to the safe point in text before textoffset. * ie. not the middle of a contraction, swappable characters or supplementary * characters. * @param collator collation sata * @param text string to work with * @param textoffset offset in string * @param textlength length of text string * @return offset to the previous safe character */ static inline uint32_t getPreviousSafeOffset(const UCollator *collator, const UChar *text, int32_t textoffset) { int32_t result = textoffset; // first contraction character while (result != 0 && ucol_unsafeCP(text[result - 1], collator)) { result --; } if (result != 0) { // the first contraction character is consider unsafe here result --; } return result; } /** * Cleaning up after we passed the safe zone * @param strsrch string search data * @param safetext safe text array * @param safebuffer safe text buffer * @param coleiter collation element iterator for safe text */ static inline void cleanUpSafeText(const UStringSearch *strsrch, UChar *safetext, UChar *safebuffer) { if (safetext != safebuffer && safetext != strsrch->canonicalSuffixAccents) { uprv_free(safetext); } } /** * Take the rearranged end accents and tries matching. If match failed at * a seperate preceding set of accents (seperated from the rearranged on by * at least a base character) then we rearrange the preceding accents and * tries matching again. * We allow skipping of the ends of the accent set if the ces do not match. * However if the failure is found before the accent set, it fails. * Internal method, status assumed to be success, caller has to check status * before calling this method. * @param strsrch string search data * @param textoffset of the start of the rearranged accent * @param status output error status if any * @return USEARCH_DONE if a match is not found, otherwise return the starting * offset of the match. Note this start includes all preceding accents. */ static int32_t doNextCanonicalSuffixMatch(UStringSearch *strsrch, int32_t textoffset, UErrorCode *status) { const UChar *text = strsrch->search->text; const UCollator *collator = strsrch->collator; int32_t safelength = 0; UChar *safetext; int32_t safetextlength; UChar safebuffer[INITIAL_ARRAY_SIZE_]; UCollationElements *coleiter = strsrch->utilIter; int32_t safeoffset = textoffset; if (textoffset != 0 && ucol_unsafeCP(strsrch->canonicalSuffixAccents[0], collator)) { safeoffset = getPreviousSafeOffset(collator, text, textoffset); safelength = textoffset - safeoffset; safetextlength = INITIAL_ARRAY_SIZE_; safetext = addToUCharArray(safebuffer, &safetextlength, NULL, text + safeoffset, safelength, strsrch->canonicalSuffixAccents, status); } else { safetextlength = u_strlen(strsrch->canonicalSuffixAccents); safetext = strsrch->canonicalSuffixAccents; } // if status is a failure, ucol_setText does nothing ucol_setText(coleiter, safetext, safetextlength, status); // status checked in loop below int32_t *ce = strsrch->pattern.ces; int32_t celength = strsrch->pattern.cesLength; int ceindex = celength - 1; UBool isSafe = TRUE; // indication flag for position in safe zone while (ceindex >= 0) { int32_t textce = ucol_previous(coleiter, status); if (U_FAILURE(*status)) { if (isSafe) { cleanUpSafeText(strsrch, safetext, safebuffer); } return USEARCH_DONE; } if (textce == UCOL_NULLORDER) { // check if we have passed the safe buffer if (coleiter == strsrch->textIter) { cleanUpSafeText(strsrch, safetext, safebuffer); return USEARCH_DONE; } cleanUpSafeText(strsrch, safetext, safebuffer); safetext = safebuffer; coleiter = strsrch->textIter; setColEIterOffset(coleiter, safeoffset); // status checked at the start of the loop isSafe = FALSE; continue; } textce = getCE(strsrch, textce); if (textce != UCOL_IGNORABLE && textce != ce[ceindex]) { // do the beginning stuff int32_t failedoffset = getColElemIterOffset(coleiter, FALSE); if (isSafe && failedoffset >= safelength) { // alas... no hope. failed at rearranged accent set cleanUpSafeText(strsrch, safetext, safebuffer); return USEARCH_DONE; } else { if (isSafe) { failedoffset += safeoffset; cleanUpSafeText(strsrch, safetext, safebuffer); } // try rearranging the front accents int32_t result = doNextCanonicalPrefixMatch(strsrch, failedoffset, textoffset, status); if (result != USEARCH_DONE) { // if status is a failure, ucol_setOffset does nothing setColEIterOffset(strsrch->textIter, result); } if (U_FAILURE(*status)) { return USEARCH_DONE; } return result; } } if (textce == ce[ceindex]) { ceindex --; } } // set offset here if (isSafe) { int32_t result = getColElemIterOffset(coleiter, FALSE); // sets the text iterator here with the correct expansion and offset int32_t leftoverces = getExpansionPrefix(coleiter); cleanUpSafeText(strsrch, safetext, safebuffer); if (result >= safelength) { result = textoffset; } else { result += safeoffset; } setColEIterOffset(strsrch->textIter, result); strsrch->textIter->iteratordata_.toReturn = setExpansionPrefix(strsrch->textIter, leftoverces); return result; } return ucol_getOffset(coleiter); } /** * Trying out the substring and sees if it can be a canonical match. * This will try normalizing the end accents and arranging them into canonical * equivalents and check their corresponding ces with the pattern ce. * Suffix accents in the text will be grouped according to their combining * class and the groups will be mixed and matched to try find the perfect * match with the pattern. * So for instance looking for "\u0301" in "\u030A\u0301\u0325" * step 1: split "\u030A\u0301" into 6 other type of potential accent substrings * "\u030A", "\u0301", "\u0325", "\u030A\u0301", "\u030A\u0325", * "\u0301\u0325". * step 2: check if any of the generated substrings matches the pattern. * Internal method, status assumed to be success, caller has to check status * before calling this method. * @param strsrch string search data * @param textoffset end offset in the collation element text that ends with * the accents to be rearranged * @param status error status if any * @return TRUE if the match is valid, FALSE otherwise */ static UBool doNextCanonicalMatch(UStringSearch *strsrch, int32_t textoffset, UErrorCode *status) { const UChar *text = strsrch->search->text; int32_t temp = textoffset; U16_BACK_1(text, 0, temp); if ((getFCD(text, &temp, textoffset) & LAST_BYTE_MASK_) == 0) { UCollationElements *coleiter = strsrch->textIter; int32_t offset = getColElemIterOffset(coleiter, FALSE); if (strsrch->pattern.hasPrefixAccents) { offset = doNextCanonicalPrefixMatch(strsrch, offset, textoffset, status); if (U_SUCCESS(*status) && offset != USEARCH_DONE) { setColEIterOffset(coleiter, offset); return TRUE; } } return FALSE; } if (!strsrch->pattern.hasSuffixAccents) { return FALSE; } UChar accents[INITIAL_ARRAY_SIZE_]; // offset to the last base character in substring to search int32_t baseoffset = getPreviousBaseOffset(text, textoffset); // normalizing the offensive string unorm_normalize(text + baseoffset, textoffset - baseoffset, UNORM_NFD, 0, accents, INITIAL_ARRAY_SIZE_, status); // status checked in loop below int32_t accentsindex[INITIAL_ARRAY_SIZE_]; int32_t size = getUnblockedAccentIndex(accents, accentsindex); // 2 power n - 1 plus the full set of accents int32_t count = (2 << (size - 1)) - 1; while (U_SUCCESS(*status) && count > 0) { UChar *rearrange = strsrch->canonicalSuffixAccents; // copy the base characters for (int k = 0; k < accentsindex[0]; k ++) { *rearrange ++ = accents[k]; } // forming all possible canonical rearrangement by dropping // sets of accents for (int i = 0; i <= size - 1; i ++) { int32_t mask = 1 << (size - i - 1); if (count & mask) { for (int j = accentsindex[i]; j < accentsindex[i + 1]; j ++) { *rearrange ++ = accents[j]; } } } *rearrange = 0; int32_t offset = doNextCanonicalSuffixMatch(strsrch, baseoffset, status); if (offset != USEARCH_DONE) { return TRUE; // match found } count --; } return FALSE; } /** * Gets the previous base character offset depending on the string search * pattern data * @param strsrch string search data * @param textoffset current offset, current character * @return the offset of the next character after this base character or itself * if it is a composed character with accents */ static inline int32_t getPreviousUStringSearchBaseOffset(UStringSearch *strsrch, int32_t textoffset) { if (strsrch->pattern.hasPrefixAccents && textoffset > 0) { const UChar *text = strsrch->search->text; int32_t offset = textoffset; if (getFCD(text, &offset, strsrch->search->textLength) >> SECOND_LAST_BYTE_SHIFT_) { return getPreviousBaseOffset(text, textoffset); } } return textoffset; } /** * Checks match for contraction. * If the match ends with a partial contraction we fail. * If the match starts too far off (because of backwards iteration) we try to * chip off the extra characters * Internal method, status assumed to be success, caller has to check status * before calling this method. * @param strsrch string search data * @param start offset of potential match, to be modified if necessary * @param end offset of potential match, to be modified if necessary * @param status output error status if any * @return TRUE if match passes the contraction test, FALSE otherwise */ static UBool checkNextCanonicalContractionMatch(UStringSearch *strsrch, int32_t *start, int32_t *end, UErrorCode *status) { UCollationElements *coleiter = strsrch->textIter; int32_t textlength = strsrch->search->textLength; int32_t temp = *start; const UCollator *collator = strsrch->collator; const UChar *text = strsrch->search->text; // This part checks if either ends of the match contains potential // contraction. If so we'll have to iterate through them if ((*end < textlength && ucol_unsafeCP(text[*end], collator)) || (*start + 1 < textlength && ucol_unsafeCP(text[*start + 1], collator))) { int32_t expansion = getExpansionPrefix(coleiter); UBool expandflag = expansion > 0; setColEIterOffset(coleiter, *start); while (expansion > 0) { // getting rid of the redundant ce, caused by setOffset. // since backward contraction/expansion may have extra ces if we // are in the normalization buffer, hasAccentsBeforeMatch would // have taken care of it. // E.g. the character \u01FA will have an expansion of 3, but if // we are only looking for acute and ring \u030A and \u0301, we'll // have to skip the first ce in the expansion buffer. ucol_next(coleiter, status); if (U_FAILURE(*status)) { return FALSE; } if (ucol_getOffset(coleiter) != temp) { *start = temp; temp = ucol_getOffset(coleiter); } expansion --; } int32_t *patternce = strsrch->pattern.ces; int32_t patterncelength = strsrch->pattern.cesLength; int32_t count = 0; int32_t textlength = strsrch->search->textLength; while (count < patterncelength) { int32_t ce = getCE(strsrch, ucol_next(coleiter, status)); // status checked below, note that if status is a failure // ucol_next returns UCOL_NULLORDER if (ce == UCOL_IGNORABLE) { continue; } if (expandflag && count == 0 && ucol_getOffset(coleiter) != temp) { *start = temp; temp = ucol_getOffset(coleiter); } if (count == 0 && ce != patternce[0]) { // accents may have extra starting ces, this occurs when a // pure accent pattern is matched without rearrangement // text \u0325\u0300 and looking for \u0300 int32_t expected = patternce[0]; if (getFCD(text, start, textlength) & LAST_BYTE_MASK_) { ce = getCE(strsrch, ucol_next(coleiter, status)); while (U_SUCCESS(*status) && ce != expected && ce != UCOL_NULLORDER && ucol_getOffset(coleiter) <= *end) { ce = getCE(strsrch, ucol_next(coleiter, status)); } } } if (U_FAILURE(*status) || ce != patternce[count]) { (*end) ++; *end = getNextUStringSearchBaseOffset(strsrch, *end); return FALSE; } count ++; } } return TRUE; } /** * Checks and sets the match information if found. * Checks * <ul> * <li> the potential match does not repeat the previous match * <li> boundaries are correct * <li> potential match does not end in the middle of a contraction * <li> identical matches * <\ul> * Otherwise the offset will be shifted to the next character. * Internal method, status assumed to be success, caller has to check the * status before calling this method. * @param strsrch string search data * @param textoffset offset in the collation element text. the returned value * will be the truncated end offset of the match or the new start * search offset. * @param status output error status if any * @return TRUE if the match is valid, FALSE otherwise */ static inline UBool checkNextCanonicalMatch(UStringSearch *strsrch, int32_t *textoffset, UErrorCode *status) { // to ensure that the start and ends are not composite characters UCollationElements *coleiter = strsrch->textIter; // if we have a canonical accent match if ((strsrch->pattern.hasSuffixAccents && strsrch->canonicalSuffixAccents[0]) || (strsrch->pattern.hasPrefixAccents && strsrch->canonicalPrefixAccents[0])) { strsrch->search->matchedIndex = getPreviousUStringSearchBaseOffset( strsrch, ucol_getOffset(coleiter)); strsrch->search->matchedLength = *textoffset - strsrch->search->matchedIndex; return TRUE; } int32_t start = getColElemIterOffset(coleiter, FALSE); if (!checkNextCanonicalContractionMatch(strsrch, &start, textoffset, status) || U_FAILURE(*status)) { return FALSE; } start = getPreviousUStringSearchBaseOffset(strsrch, start); // this totally matches, however we need to check if it is repeating if (checkRepeatedMatch(strsrch, start, *textoffset) || !isBreakUnit(strsrch, start, *textoffset) || !checkIdentical(strsrch, start, *textoffset)) { (*textoffset) ++; *textoffset = getNextBaseOffset(strsrch->search->text, *textoffset, strsrch->search->textLength); return FALSE; } strsrch->search->matchedIndex = start; strsrch->search->matchedLength = *textoffset - start; return TRUE; } /** * Shifting the collation element iterator position forward to prepare for * a preceding match. If the first character is a unsafe character, we'll only * shift by 1 to capture contractions, normalization etc. * Internal method, status assumed to be success, caller has to check status * before calling this method. * @param text strsrch string search data * @param textoffset start text position to do search * @param ce the text ce which failed the match. * @param patternceindex index of the ce within the pattern ce buffer which * failed the match * @return final offset */ static inline int32_t reverseShift(UStringSearch *strsrch, int32_t textoffset, int32_t ce, int32_t patternceindex) { if (strsrch->search->isOverlap) { if (textoffset != strsrch->search->textLength) { textoffset --; } else { textoffset -= strsrch->pattern.defaultShiftSize; } } else { if (ce != UCOL_NULLORDER) { int32_t shift = strsrch->pattern.backShift[hashFromCE32(ce)]; // this is to adjust for characters in the middle of the substring // for matching that failed. int32_t adjust = patternceindex; if (adjust > 1 && shift > adjust) { shift -= adjust - 1; } textoffset -= shift; } else { textoffset -= strsrch->pattern.defaultShiftSize; } } textoffset = getPreviousUStringSearchBaseOffset(strsrch, textoffset); return textoffset; } /** * Checks match for contraction. * If the match starts with a partial contraction we fail. * Internal method, status assumed to be success, caller has to check status * before calling this method. * @param strsrch string search data * @param start offset of potential match, to be modified if necessary * @param end offset of potential match, to be modified if necessary * @param status output error status if any * @return TRUE if match passes the contraction test, FALSE otherwise */ static UBool checkPreviousExactContractionMatch(UStringSearch *strsrch, int32_t *start, int32_t *end, UErrorCode *status) { UCollationElements *coleiter = strsrch->textIter; int32_t textlength = strsrch->search->textLength; int32_t temp = *end; const UCollator *collator = strsrch->collator; const UChar *text = strsrch->search->text; // This part checks if either if the start of the match contains potential // contraction. If so we'll have to iterate through them // Since we used ucol_next while previously looking for the potential // match, this guarantees that our end will not be a partial contraction, // or a partial supplementary character. if (*start < textlength && ucol_unsafeCP(text[*start], collator)) { int32_t expansion = getExpansionSuffix(coleiter); UBool expandflag = expansion > 0; setColEIterOffset(coleiter, *end); while (U_SUCCESS(*status) && expansion > 0) { // getting rid of the redundant ce // since forward contraction/expansion may have extra ces // if we are in the normalization buffer, hasAccentsBeforeMatch // would have taken care of it. // E.g. the character \u01FA will have an expansion of 3, but if // we are only looking for A ring A\u030A, we'll have to skip the // last ce in the expansion buffer ucol_previous(coleiter, status); if (U_FAILURE(*status)) { return FALSE; } if (ucol_getOffset(coleiter) != temp) { *end = temp; temp = ucol_getOffset(coleiter); } expansion --; } int32_t *patternce = strsrch->pattern.ces; int32_t patterncelength = strsrch->pattern.cesLength; int32_t count = patterncelength; while (count > 0) { int32_t ce = getCE(strsrch, ucol_previous(coleiter, status)); // status checked below, note that if status is a failure // ucol_previous returns UCOL_NULLORDER if (ce == UCOL_IGNORABLE) { continue; } if (expandflag && count == 0 && getColElemIterOffset(coleiter, FALSE) != temp) { *end = temp; temp = ucol_getOffset(coleiter); } if (U_FAILURE(*status) || ce != patternce[count - 1]) { (*start) --; *start = getPreviousBaseOffset(text, *start); return FALSE; } count --; } } return TRUE; } /** * Checks and sets the match information if found. * Checks * <ul> * <li> the current match does not repeat the last match * <li> boundaries are correct * <li> exact matches has no extra accents * <li> identical matches * <\ul> * Otherwise the offset will be shifted to the preceding character. * Internal method, status assumed to be success, caller has to check status * before calling this method. * @param strsrch string search data * @param collator * @param coleiter collation element iterator * @param text string * @param textoffset offset in the collation element text. the returned value * will be the truncated start offset of the match or the new start * search offset. * @param status output error status if any * @return TRUE if the match is valid, FALSE otherwise */ static inline UBool checkPreviousExactMatch(UStringSearch *strsrch, int32_t *textoffset, UErrorCode *status) { // to ensure that the start and ends are not composite characters int32_t end = ucol_getOffset(strsrch->textIter); if (!checkPreviousExactContractionMatch(strsrch, textoffset, &end, status) || U_FAILURE(*status)) { return FALSE; } // this totally matches, however we need to check if it is repeating // the old match if (checkRepeatedMatch(strsrch, *textoffset, end) || !isBreakUnit(strsrch, *textoffset, end) || hasAccentsBeforeMatch(strsrch, *textoffset, end) || !checkIdentical(strsrch, *textoffset, end) || hasAccentsAfterMatch(strsrch, *textoffset, end)) { (*textoffset) --; *textoffset = getPreviousBaseOffset(strsrch->search->text, *textoffset); return FALSE; } //Add breakiterator boundary check for primary strength search. if (!strsrch->search->breakIter && strsrch->strength == UCOL_PRIMARY) { checkBreakBoundary(strsrch, textoffset, &end); } strsrch->search->matchedIndex = *textoffset; strsrch->search->matchedLength = end - *textoffset; return TRUE; } /** * Rearranges the end accents to try matching. * Suffix accents in the text will be grouped according to their combining * class and the groups will be mixed and matched to try find the perfect * match with the pattern. * So for instance looking for "\u0301" in "\u030A\u0301\u0325" * step 1: split "\u030A\u0301" into 6 other type of potential accent substrings * "\u030A", "\u0301", "\u0325", "\u030A\u0301", "\u030A\u0325", * "\u0301\u0325". * step 2: check if any of the generated substrings matches the pattern. * Internal method, status assumed to be success, user has to check status * before calling this method. * @param strsrch string search match * @param start offset of the first base character * @param end start of the last accent set * @param status only error status if any * @return USEARCH_DONE if a match is not found, otherwise return the ending * offset of the match. Note this start includes all following accents. */ static int32_t doPreviousCanonicalSuffixMatch(UStringSearch *strsrch, int32_t start, int32_t end, UErrorCode *status) { const UChar *text = strsrch->search->text; int32_t tempend = end; U16_BACK_1(text, 0, tempend); if (!(getFCD(text, &tempend, strsrch->search->textLength) & LAST_BYTE_MASK_)) { // die... failed at a base character return USEARCH_DONE; } end = getNextBaseOffset(text, end, strsrch->search->textLength); if (U_SUCCESS(*status)) { UChar accents[INITIAL_ARRAY_SIZE_]; int32_t offset = getPreviousBaseOffset(text, end); // normalizing the offensive string unorm_normalize(text + offset, end - offset, UNORM_NFD, 0, accents, INITIAL_ARRAY_SIZE_, status); int32_t accentsindex[INITIAL_ARRAY_SIZE_]; int32_t accentsize = getUnblockedAccentIndex(accents, accentsindex); int32_t count = (2 << (accentsize - 1)) - 1; UChar buffer[INITIAL_ARRAY_SIZE_]; UCollationElements *coleiter = strsrch->utilIter; while (U_SUCCESS(*status) && count > 0) { UChar *rearrange = strsrch->canonicalSuffixAccents; // copy the base characters for (int k = 0; k < accentsindex[0]; k ++) { *rearrange ++ = accents[k]; } // forming all possible canonical rearrangement by dropping // sets of accents for (int i = 0; i <= accentsize - 1; i ++) { int32_t mask = 1 << (accentsize - i - 1); if (count & mask) { for (int j = accentsindex[i]; j < accentsindex[i + 1]; j ++) { *rearrange ++ = accents[j]; } } } *rearrange = 0; int32_t matchsize = INITIAL_ARRAY_SIZE_; UChar *match = addToUCharArray(buffer, &matchsize, strsrch->canonicalPrefixAccents, strsrch->search->text + start, offset - start, strsrch->canonicalSuffixAccents, status); // run the collator iterator through this match // if status is a failure ucol_setText does nothing ucol_setText(coleiter, match, matchsize, status); if (U_SUCCESS(*status)) { if (checkCollationMatch(strsrch, coleiter)) { if (match != buffer) { uprv_free(match); } return end; } } count --; } } return USEARCH_DONE; } /** * Take the rearranged start accents and tries matching. If match failed at * a seperate following set of accents (seperated from the rearranged on by * at least a base character) then we rearrange the preceding accents and * tries matching again. * We allow skipping of the ends of the accent set if the ces do not match. * However if the failure is found before the accent set, it fails. * Internal method, status assumed to be success, caller has to check status * before calling this method. * @param strsrch string search data * @param textoffset of the ends of the rearranged accent * @param status output error status if any * @return USEARCH_DONE if a match is not found, otherwise return the ending * offset of the match. Note this start includes all following accents. */ static int32_t doPreviousCanonicalPrefixMatch(UStringSearch *strsrch, int32_t textoffset, UErrorCode *status) { const UChar *text = strsrch->search->text; const UCollator *collator = strsrch->collator; int32_t safelength = 0; UChar *safetext; int32_t safetextlength; UChar safebuffer[INITIAL_ARRAY_SIZE_]; int32_t safeoffset = textoffset; if (textoffset && ucol_unsafeCP(strsrch->canonicalPrefixAccents[ u_strlen(strsrch->canonicalPrefixAccents) - 1 ], collator)) { safeoffset = getNextSafeOffset(collator, text, textoffset, strsrch->search->textLength); safelength = safeoffset - textoffset; safetextlength = INITIAL_ARRAY_SIZE_; safetext = addToUCharArray(safebuffer, &safetextlength, strsrch->canonicalPrefixAccents, text + textoffset, safelength, NULL, status); } else { safetextlength = u_strlen(strsrch->canonicalPrefixAccents); safetext = strsrch->canonicalPrefixAccents; } UCollationElements *coleiter = strsrch->utilIter; // if status is a failure, ucol_setText does nothing ucol_setText(coleiter, safetext, safetextlength, status); // status checked in loop below int32_t *ce = strsrch->pattern.ces; int32_t celength = strsrch->pattern.cesLength; int ceindex = 0; UBool isSafe = TRUE; // safe zone indication flag for position int32_t prefixlength = u_strlen(strsrch->canonicalPrefixAccents); while (ceindex < celength) { int32_t textce = ucol_next(coleiter, status); if (U_FAILURE(*status)) { if (isSafe) { cleanUpSafeText(strsrch, safetext, safebuffer); } return USEARCH_DONE; } if (textce == UCOL_NULLORDER) { // check if we have passed the safe buffer if (coleiter == strsrch->textIter) { cleanUpSafeText(strsrch, safetext, safebuffer); return USEARCH_DONE; } cleanUpSafeText(strsrch, safetext, safebuffer); safetext = safebuffer; coleiter = strsrch->textIter; setColEIterOffset(coleiter, safeoffset); // status checked at the start of the loop isSafe = FALSE; continue; } textce = getCE(strsrch, textce); if (textce != UCOL_IGNORABLE && textce != ce[ceindex]) { // do the beginning stuff int32_t failedoffset = ucol_getOffset(coleiter); if (isSafe && failedoffset <= prefixlength) { // alas... no hope. failed at rearranged accent set cleanUpSafeText(strsrch, safetext, safebuffer); return USEARCH_DONE; } else { if (isSafe) { failedoffset = safeoffset - failedoffset; cleanUpSafeText(strsrch, safetext, safebuffer); } // try rearranging the end accents int32_t result = doPreviousCanonicalSuffixMatch(strsrch, textoffset, failedoffset, status); if (result != USEARCH_DONE) { // if status is a failure, ucol_setOffset does nothing setColEIterOffset(strsrch->textIter, result); } if (U_FAILURE(*status)) { return USEARCH_DONE; } return result; } } if (textce == ce[ceindex]) { ceindex ++; } } // set offset here if (isSafe) { int32_t result = ucol_getOffset(coleiter); // sets the text iterator here with the correct expansion and offset int32_t leftoverces = getExpansionSuffix(coleiter); cleanUpSafeText(strsrch, safetext, safebuffer); if (result <= prefixlength) { result = textoffset; } else { result = textoffset + (safeoffset - result); } setColEIterOffset(strsrch->textIter, result); setExpansionSuffix(strsrch->textIter, leftoverces); return result; } return ucol_getOffset(coleiter); } /** * Trying out the substring and sees if it can be a canonical match. * This will try normalizing the starting accents and arranging them into * canonical equivalents and check their corresponding ces with the pattern ce. * Prefix accents in the text will be grouped according to their combining * class and the groups will be mixed and matched to try find the perfect * match with the pattern. * So for instance looking for "\u0301" in "\u030A\u0301\u0325" * step 1: split "\u030A\u0301" into 6 other type of potential accent substrings * "\u030A", "\u0301", "\u0325", "\u030A\u0301", "\u030A\u0325", * "\u0301\u0325". * step 2: check if any of the generated substrings matches the pattern. * Internal method, status assumed to be success, caller has to check status * before calling this method. * @param strsrch string search data * @param textoffset start offset in the collation element text that starts * with the accents to be rearranged * @param status output error status if any * @return TRUE if the match is valid, FALSE otherwise */ static UBool doPreviousCanonicalMatch(UStringSearch *strsrch, int32_t textoffset, UErrorCode *status) { const UChar *text = strsrch->search->text; int32_t temp = textoffset; int32_t textlength = strsrch->search->textLength; if ((getFCD(text, &temp, textlength) >> SECOND_LAST_BYTE_SHIFT_) == 0) { UCollationElements *coleiter = strsrch->textIter; int32_t offset = ucol_getOffset(coleiter); if (strsrch->pattern.hasSuffixAccents) { offset = doPreviousCanonicalSuffixMatch(strsrch, textoffset, offset, status); if (U_SUCCESS(*status) && offset != USEARCH_DONE) { setColEIterOffset(coleiter, offset); return TRUE; } } return FALSE; } if (!strsrch->pattern.hasPrefixAccents) { return FALSE; } UChar accents[INITIAL_ARRAY_SIZE_]; // offset to the last base character in substring to search int32_t baseoffset = getNextBaseOffset(text, textoffset, textlength); // normalizing the offensive string unorm_normalize(text + textoffset, baseoffset - textoffset, UNORM_NFD, 0, accents, INITIAL_ARRAY_SIZE_, status); // status checked in loop int32_t accentsindex[INITIAL_ARRAY_SIZE_]; int32_t size = getUnblockedAccentIndex(accents, accentsindex); // 2 power n - 1 plus the full set of accents int32_t count = (2 << (size - 1)) - 1; while (U_SUCCESS(*status) && count > 0) { UChar *rearrange = strsrch->canonicalPrefixAccents; // copy the base characters for (int k = 0; k < accentsindex[0]; k ++) { *rearrange ++ = accents[k]; } // forming all possible canonical rearrangement by dropping // sets of accents for (int i = 0; i <= size - 1; i ++) { int32_t mask = 1 << (size - i - 1); if (count & mask) { for (int j = accentsindex[i]; j < accentsindex[i + 1]; j ++) { *rearrange ++ = accents[j]; } } } *rearrange = 0; int32_t offset = doPreviousCanonicalPrefixMatch(strsrch, baseoffset, status); if (offset != USEARCH_DONE) { return TRUE; // match found } count --; } return FALSE; } /** * Checks match for contraction. * If the match starts with a partial contraction we fail. * Internal method, status assumed to be success, caller has to check status * before calling this method. * @param strsrch string search data * @param start offset of potential match, to be modified if necessary * @param end offset of potential match, to be modified if necessary * @param status only error status if any * @return TRUE if match passes the contraction test, FALSE otherwise */ static UBool checkPreviousCanonicalContractionMatch(UStringSearch *strsrch, int32_t *start, int32_t *end, UErrorCode *status) { UCollationElements *coleiter = strsrch->textIter; int32_t textlength = strsrch->search->textLength; int32_t temp = *end; const UCollator *collator = strsrch->collator; const UChar *text = strsrch->search->text; // This part checks if either if the start of the match contains potential // contraction. If so we'll have to iterate through them // Since we used ucol_next while previously looking for the potential // match, this guarantees that our end will not be a partial contraction, // or a partial supplementary character. if (*start < textlength && ucol_unsafeCP(text[*start], collator)) { int32_t expansion = getExpansionSuffix(coleiter); UBool expandflag = expansion > 0; setColEIterOffset(coleiter, *end); while (expansion > 0) { // getting rid of the redundant ce // since forward contraction/expansion may have extra ces // if we are in the normalization buffer, hasAccentsBeforeMatch // would have taken care of it. // E.g. the character \u01FA will have an expansion of 3, but if // we are only looking for A ring A\u030A, we'll have to skip the // last ce in the expansion buffer ucol_previous(coleiter, status); if (U_FAILURE(*status)) { return FALSE; } if (ucol_getOffset(coleiter) != temp) { *end = temp; temp = ucol_getOffset(coleiter); } expansion --; } int32_t *patternce = strsrch->pattern.ces; int32_t patterncelength = strsrch->pattern.cesLength; int32_t count = patterncelength; while (count > 0) { int32_t ce = getCE(strsrch, ucol_previous(coleiter, status)); // status checked below, note that if status is a failure // ucol_previous returns UCOL_NULLORDER if (ce == UCOL_IGNORABLE) { continue; } if (expandflag && count == 0 && getColElemIterOffset(coleiter, FALSE) != temp) { *end = temp; temp = ucol_getOffset(coleiter); } if (count == patterncelength && ce != patternce[patterncelength - 1]) { // accents may have extra starting ces, this occurs when a // pure accent pattern is matched without rearrangement int32_t expected = patternce[patterncelength - 1]; U16_BACK_1(text, 0, *end); if (getFCD(text, end, textlength) & LAST_BYTE_MASK_) { ce = getCE(strsrch, ucol_previous(coleiter, status)); while (U_SUCCESS(*status) && ce != expected && ce != UCOL_NULLORDER && ucol_getOffset(coleiter) <= *start) { ce = getCE(strsrch, ucol_previous(coleiter, status)); } } } if (U_FAILURE(*status) || ce != patternce[count - 1]) { (*start) --; *start = getPreviousBaseOffset(text, *start); return FALSE; } count --; } } return TRUE; } /** * Checks and sets the match information if found. * Checks * <ul> * <li> the potential match does not repeat the previous match * <li> boundaries are correct * <li> potential match does not end in the middle of a contraction * <li> identical matches * <\ul> * Otherwise the offset will be shifted to the next character. * Internal method, status assumed to be success, caller has to check status * before calling this method. * @param strsrch string search data * @param textoffset offset in the collation element text. the returned value * will be the truncated start offset of the match or the new start * search offset. * @param status only error status if any * @return TRUE if the match is valid, FALSE otherwise */ static inline UBool checkPreviousCanonicalMatch(UStringSearch *strsrch, int32_t *textoffset, UErrorCode *status) { // to ensure that the start and ends are not composite characters UCollationElements *coleiter = strsrch->textIter; // if we have a canonical accent match if ((strsrch->pattern.hasSuffixAccents && strsrch->canonicalSuffixAccents[0]) || (strsrch->pattern.hasPrefixAccents && strsrch->canonicalPrefixAccents[0])) { strsrch->search->matchedIndex = *textoffset; strsrch->search->matchedLength = getNextUStringSearchBaseOffset(strsrch, getColElemIterOffset(coleiter, FALSE)) - *textoffset; return TRUE; } int32_t end = ucol_getOffset(coleiter); if (!checkPreviousCanonicalContractionMatch(strsrch, textoffset, &end, status) || U_FAILURE(*status)) { return FALSE; } end = getNextUStringSearchBaseOffset(strsrch, end); // this totally matches, however we need to check if it is repeating if (checkRepeatedMatch(strsrch, *textoffset, end) || !isBreakUnit(strsrch, *textoffset, end) || !checkIdentical(strsrch, *textoffset, end)) { (*textoffset) --; *textoffset = getPreviousBaseOffset(strsrch->search->text, *textoffset); return FALSE; } strsrch->search->matchedIndex = *textoffset; strsrch->search->matchedLength = end - *textoffset; return TRUE; } #endif // #if BOYER_MOORE // constructors and destructor ------------------------------------------- U_CAPI UStringSearch * U_EXPORT2 usearch_open(const UChar *pattern, int32_t patternlength, const UChar *text, int32_t textlength, const char *locale, UBreakIterator *breakiter, UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } #if UCONFIG_NO_BREAK_ITERATION if (breakiter != NULL) { *status = U_UNSUPPORTED_ERROR; return NULL; } #endif if (locale) { // ucol_open internally checks for status UCollator *collator = ucol_open(locale, status); // pattern, text checks are done in usearch_openFromCollator UStringSearch *result = usearch_openFromCollator(pattern, patternlength, text, textlength, collator, breakiter, status); if (result == NULL || U_FAILURE(*status)) { if (collator) { ucol_close(collator); } return NULL; } else { result->ownCollator = TRUE; } return result; } *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } U_CAPI UStringSearch * U_EXPORT2 usearch_openFromCollator( const UChar *pattern, int32_t patternlength, const UChar *text, int32_t textlength, const UCollator *collator, UBreakIterator *breakiter, UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } #if UCONFIG_NO_BREAK_ITERATION if (breakiter != NULL) { *status = U_UNSUPPORTED_ERROR; return NULL; } #endif if (pattern == NULL || text == NULL || collator == NULL) { *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } // string search does not really work when numeric collation is turned on if(ucol_getAttribute(collator, UCOL_NUMERIC_COLLATION, status) == UCOL_ON) { *status = U_UNSUPPORTED_ERROR; return NULL; } if (U_SUCCESS(*status)) { initializeFCD(status); if (U_FAILURE(*status)) { return NULL; } UStringSearch *result; if (textlength == -1) { textlength = u_strlen(text); } if (patternlength == -1) { patternlength = u_strlen(pattern); } if (textlength <= 0 || patternlength <= 0) { *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } result = (UStringSearch *)uprv_malloc(sizeof(UStringSearch)); if (result == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } result->collator = collator; result->strength = ucol_getStrength(collator); result->ceMask = getMask(result->strength); result->toShift = ucol_getAttribute(collator, UCOL_ALTERNATE_HANDLING, status) == UCOL_SHIFTED; result->variableTop = ucol_getVariableTop(collator, status); result->nfd = Normalizer2::getNFDInstance(*status); if (U_FAILURE(*status)) { uprv_free(result); return NULL; } result->search = (USearch *)uprv_malloc(sizeof(USearch)); if (result->search == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; uprv_free(result); return NULL; } result->search->text = text; result->search->textLength = textlength; result->pattern.text = pattern; result->pattern.textLength = patternlength; result->pattern.ces = NULL; result->pattern.pces = NULL; result->search->breakIter = breakiter; #if !UCONFIG_NO_BREAK_ITERATION result->search->internalBreakIter = ubrk_open(UBRK_CHARACTER, ucol_getLocaleByType(result->collator, ULOC_VALID_LOCALE, status), text, textlength, status); if (breakiter) { ubrk_setText(breakiter, text, textlength, status); } #endif result->ownCollator = FALSE; result->search->matchedLength = 0; result->search->matchedIndex = USEARCH_DONE; result->utilIter = NULL; result->textIter = ucol_openElements(collator, text, textlength, status); result->textProcessedIter = NULL; if (U_FAILURE(*status)) { usearch_close(result); return NULL; } result->search->isOverlap = FALSE; result->search->isCanonicalMatch = FALSE; result->search->elementComparisonType = 0; result->search->isForwardSearching = TRUE; result->search->reset = TRUE; initialize(result, status); if (U_FAILURE(*status)) { usearch_close(result); return NULL; } return result; } return NULL; } U_CAPI void U_EXPORT2 usearch_close(UStringSearch *strsrch) { if (strsrch) { if (strsrch->pattern.ces != strsrch->pattern.cesBuffer && strsrch->pattern.ces) { uprv_free(strsrch->pattern.ces); } if (strsrch->pattern.pces != NULL && strsrch->pattern.pces != strsrch->pattern.pcesBuffer) { uprv_free(strsrch->pattern.pces); } delete strsrch->textProcessedIter; ucol_closeElements(strsrch->textIter); ucol_closeElements(strsrch->utilIter); if (strsrch->ownCollator && strsrch->collator) { ucol_close((UCollator *)strsrch->collator); } #if !UCONFIG_NO_BREAK_ITERATION if (strsrch->search->internalBreakIter) { ubrk_close(strsrch->search->internalBreakIter); } #endif uprv_free(strsrch->search); uprv_free(strsrch); } } namespace { UBool initTextProcessedIter(UStringSearch *strsrch, UErrorCode *status) { if (U_FAILURE(*status)) { return FALSE; } if (strsrch->textProcessedIter == NULL) { strsrch->textProcessedIter = new icu::UCollationPCE(strsrch->textIter); if (strsrch->textProcessedIter == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return FALSE; } } else { strsrch->textProcessedIter->init(strsrch->textIter); } return TRUE; } } // set and get methods -------------------------------------------------- U_CAPI void U_EXPORT2 usearch_setOffset(UStringSearch *strsrch, int32_t position, UErrorCode *status) { if (U_SUCCESS(*status) && strsrch) { if (isOutOfBounds(strsrch->search->textLength, position)) { *status = U_INDEX_OUTOFBOUNDS_ERROR; } else { setColEIterOffset(strsrch->textIter, position); } strsrch->search->matchedIndex = USEARCH_DONE; strsrch->search->matchedLength = 0; strsrch->search->reset = FALSE; } } U_CAPI int32_t U_EXPORT2 usearch_getOffset(const UStringSearch *strsrch) { if (strsrch) { int32_t result = ucol_getOffset(strsrch->textIter); if (isOutOfBounds(strsrch->search->textLength, result)) { return USEARCH_DONE; } return result; } return USEARCH_DONE; } U_CAPI void U_EXPORT2 usearch_setAttribute(UStringSearch *strsrch, USearchAttribute attribute, USearchAttributeValue value, UErrorCode *status) { if (U_SUCCESS(*status) && strsrch) { switch (attribute) { case USEARCH_OVERLAP : strsrch->search->isOverlap = (value == USEARCH_ON ? TRUE : FALSE); break; case USEARCH_CANONICAL_MATCH : strsrch->search->isCanonicalMatch = (value == USEARCH_ON ? TRUE : FALSE); break; case USEARCH_ELEMENT_COMPARISON : if (value == USEARCH_PATTERN_BASE_WEIGHT_IS_WILDCARD || value == USEARCH_ANY_BASE_WEIGHT_IS_WILDCARD) { strsrch->search->elementComparisonType = (int16_t)value; } else { strsrch->search->elementComparisonType = 0; } break; case USEARCH_ATTRIBUTE_COUNT : default: *status = U_ILLEGAL_ARGUMENT_ERROR; } } if (value == USEARCH_ATTRIBUTE_VALUE_COUNT) { *status = U_ILLEGAL_ARGUMENT_ERROR; } } U_CAPI USearchAttributeValue U_EXPORT2 usearch_getAttribute( const UStringSearch *strsrch, USearchAttribute attribute) { if (strsrch) { switch (attribute) { case USEARCH_OVERLAP : return (strsrch->search->isOverlap == TRUE ? USEARCH_ON : USEARCH_OFF); case USEARCH_CANONICAL_MATCH : return (strsrch->search->isCanonicalMatch == TRUE ? USEARCH_ON : USEARCH_OFF); case USEARCH_ELEMENT_COMPARISON : { int16_t value = strsrch->search->elementComparisonType; if (value == USEARCH_PATTERN_BASE_WEIGHT_IS_WILDCARD || value == USEARCH_ANY_BASE_WEIGHT_IS_WILDCARD) { return (USearchAttributeValue)value; } else { return USEARCH_STANDARD_ELEMENT_COMPARISON; } } case USEARCH_ATTRIBUTE_COUNT : return USEARCH_DEFAULT; } } return USEARCH_DEFAULT; } U_CAPI int32_t U_EXPORT2 usearch_getMatchedStart( const UStringSearch *strsrch) { if (strsrch == NULL) { return USEARCH_DONE; } return strsrch->search->matchedIndex; } U_CAPI int32_t U_EXPORT2 usearch_getMatchedText(const UStringSearch *strsrch, UChar *result, int32_t resultCapacity, UErrorCode *status) { if (U_FAILURE(*status)) { return USEARCH_DONE; } if (strsrch == NULL || resultCapacity < 0 || (resultCapacity > 0 && result == NULL)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return USEARCH_DONE; } int32_t copylength = strsrch->search->matchedLength; int32_t copyindex = strsrch->search->matchedIndex; if (copyindex == USEARCH_DONE) { u_terminateUChars(result, resultCapacity, 0, status); return USEARCH_DONE; } if (resultCapacity < copylength) { copylength = resultCapacity; } if (copylength > 0) { uprv_memcpy(result, strsrch->search->text + copyindex, copylength * sizeof(UChar)); } return u_terminateUChars(result, resultCapacity, strsrch->search->matchedLength, status); } U_CAPI int32_t U_EXPORT2 usearch_getMatchedLength( const UStringSearch *strsrch) { if (strsrch) { return strsrch->search->matchedLength; } return USEARCH_DONE; } #if !UCONFIG_NO_BREAK_ITERATION U_CAPI void U_EXPORT2 usearch_setBreakIterator(UStringSearch *strsrch, UBreakIterator *breakiter, UErrorCode *status) { if (U_SUCCESS(*status) && strsrch) { strsrch->search->breakIter = breakiter; if (breakiter) { ubrk_setText(breakiter, strsrch->search->text, strsrch->search->textLength, status); } } } U_CAPI const UBreakIterator* U_EXPORT2 usearch_getBreakIterator(const UStringSearch *strsrch) { if (strsrch) { return strsrch->search->breakIter; } return NULL; } #endif U_CAPI void U_EXPORT2 usearch_setText( UStringSearch *strsrch, const UChar *text, int32_t textlength, UErrorCode *status) { if (U_SUCCESS(*status)) { if (strsrch == NULL || text == NULL || textlength < -1 || textlength == 0) { *status = U_ILLEGAL_ARGUMENT_ERROR; } else { if (textlength == -1) { textlength = u_strlen(text); } strsrch->search->text = text; strsrch->search->textLength = textlength; ucol_setText(strsrch->textIter, text, textlength, status); strsrch->search->matchedIndex = USEARCH_DONE; strsrch->search->matchedLength = 0; strsrch->search->reset = TRUE; #if !UCONFIG_NO_BREAK_ITERATION if (strsrch->search->breakIter != NULL) { ubrk_setText(strsrch->search->breakIter, text, textlength, status); } ubrk_setText(strsrch->search->internalBreakIter, text, textlength, status); #endif } } } U_CAPI const UChar * U_EXPORT2 usearch_getText(const UStringSearch *strsrch, int32_t *length) { if (strsrch) { *length = strsrch->search->textLength; return strsrch->search->text; } return NULL; } U_CAPI void U_EXPORT2 usearch_setCollator( UStringSearch *strsrch, const UCollator *collator, UErrorCode *status) { if (U_SUCCESS(*status)) { if (collator == NULL) { *status = U_ILLEGAL_ARGUMENT_ERROR; return; } if (strsrch) { delete strsrch->textProcessedIter; strsrch->textProcessedIter = NULL; ucol_closeElements(strsrch->textIter); ucol_closeElements(strsrch->utilIter); strsrch->textIter = strsrch->utilIter = NULL; if (strsrch->ownCollator && (strsrch->collator != collator)) { ucol_close((UCollator *)strsrch->collator); strsrch->ownCollator = FALSE; } strsrch->collator = collator; strsrch->strength = ucol_getStrength(collator); strsrch->ceMask = getMask(strsrch->strength); #if !UCONFIG_NO_BREAK_ITERATION ubrk_close(strsrch->search->internalBreakIter); strsrch->search->internalBreakIter = ubrk_open(UBRK_CHARACTER, ucol_getLocaleByType(collator, ULOC_VALID_LOCALE, status), strsrch->search->text, strsrch->search->textLength, status); #endif // if status is a failure, ucol_getAttribute returns UCOL_DEFAULT strsrch->toShift = ucol_getAttribute(collator, UCOL_ALTERNATE_HANDLING, status) == UCOL_SHIFTED; // if status is a failure, ucol_getVariableTop returns 0 strsrch->variableTop = ucol_getVariableTop(collator, status); strsrch->textIter = ucol_openElements(collator, strsrch->search->text, strsrch->search->textLength, status); strsrch->utilIter = ucol_openElements( collator, strsrch->pattern.text, strsrch->pattern.textLength, status); // initialize() _after_ setting the iterators for the new collator. initialize(strsrch, status); } // **** are these calls needed? // **** we call uprv_init_pce in initializePatternPCETable // **** and the CEIBuffer constructor... #if 0 uprv_init_pce(strsrch->textIter); uprv_init_pce(strsrch->utilIter); #endif } } U_CAPI UCollator * U_EXPORT2 usearch_getCollator(const UStringSearch *strsrch) { if (strsrch) { return (UCollator *)strsrch->collator; } return NULL; } U_CAPI void U_EXPORT2 usearch_setPattern( UStringSearch *strsrch, const UChar *pattern, int32_t patternlength, UErrorCode *status) { if (U_SUCCESS(*status)) { if (strsrch == NULL || pattern == NULL) { *status = U_ILLEGAL_ARGUMENT_ERROR; } else { if (patternlength == -1) { patternlength = u_strlen(pattern); } if (patternlength == 0) { *status = U_ILLEGAL_ARGUMENT_ERROR; return; } strsrch->pattern.text = pattern; strsrch->pattern.textLength = patternlength; initialize(strsrch, status); } } } U_CAPI const UChar* U_EXPORT2 usearch_getPattern(const UStringSearch *strsrch, int32_t *length) { if (strsrch) { *length = strsrch->pattern.textLength; return strsrch->pattern.text; } return NULL; } // miscellanous methods -------------------------------------------------- U_CAPI int32_t U_EXPORT2 usearch_first(UStringSearch *strsrch, UErrorCode *status) { if (strsrch && U_SUCCESS(*status)) { strsrch->search->isForwardSearching = TRUE; usearch_setOffset(strsrch, 0, status); if (U_SUCCESS(*status)) { return usearch_next(strsrch, status); } } return USEARCH_DONE; } U_CAPI int32_t U_EXPORT2 usearch_following(UStringSearch *strsrch, int32_t position, UErrorCode *status) { if (strsrch && U_SUCCESS(*status)) { strsrch->search->isForwardSearching = TRUE; // position checked in usearch_setOffset usearch_setOffset(strsrch, position, status); if (U_SUCCESS(*status)) { return usearch_next(strsrch, status); } } return USEARCH_DONE; } U_CAPI int32_t U_EXPORT2 usearch_last(UStringSearch *strsrch, UErrorCode *status) { if (strsrch && U_SUCCESS(*status)) { strsrch->search->isForwardSearching = FALSE; usearch_setOffset(strsrch, strsrch->search->textLength, status); if (U_SUCCESS(*status)) { return usearch_previous(strsrch, status); } } return USEARCH_DONE; } U_CAPI int32_t U_EXPORT2 usearch_preceding(UStringSearch *strsrch, int32_t position, UErrorCode *status) { if (strsrch && U_SUCCESS(*status)) { strsrch->search->isForwardSearching = FALSE; // position checked in usearch_setOffset usearch_setOffset(strsrch, position, status); if (U_SUCCESS(*status)) { return usearch_previous(strsrch, status); } } return USEARCH_DONE; } /** * If a direction switch is required, we'll count the number of ces till the * beginning of the collation element iterator and iterate forwards that * number of times. This is so that we get to the correct point within the * string to continue the search in. Imagine when we are in the middle of the * normalization buffer when the change in direction is request. arrrgghh.... * After searching the offset within the collation element iterator will be * shifted to the start of the match. If a match is not found, the offset would * have been set to the end of the text string in the collation element * iterator. * Okay, here's my take on normalization buffer. The only time when there can * be 2 matches within the same normalization is when the pattern is consists * of all accents. But since the offset returned is from the text string, we * should not confuse the caller by returning the second match within the * same normalization buffer. If we do, the 2 results will have the same match * offsets, and that'll be confusing. I'll return the next match that doesn't * fall within the same normalization buffer. Note this does not affect the * results of matches spanning the text and the normalization buffer. * The position to start searching is taken from the collation element * iterator. Callers of this API would have to set the offset in the collation * element iterator before using this method. */ U_CAPI int32_t U_EXPORT2 usearch_next(UStringSearch *strsrch, UErrorCode *status) { if (U_SUCCESS(*status) && strsrch) { // note offset is either equivalent to the start of the previous match // or is set by the user int32_t offset = usearch_getOffset(strsrch); USearch *search = strsrch->search; search->reset = FALSE; int32_t textlength = search->textLength; if (search->isForwardSearching) { #if BOYER_MOORE if (offset == textlength || (!search->isOverlap && (offset + strsrch->pattern.defaultShiftSize > textlength || (search->matchedIndex != USEARCH_DONE && offset + search->matchedLength >= textlength)))) { // not enough characters to match setMatchNotFound(strsrch); return USEARCH_DONE; } #else if (offset == textlength || (! search->isOverlap && (search->matchedIndex != USEARCH_DONE && offset + search->matchedLength > textlength))) { // not enough characters to match setMatchNotFound(strsrch); return USEARCH_DONE; } #endif } else { // switching direction. // if matchedIndex == USEARCH_DONE, it means that either a // setOffset has been called or that previous ran off the text // string. the iterator would have been set to offset 0 if a // match is not found. search->isForwardSearching = TRUE; if (search->matchedIndex != USEARCH_DONE) { // there's no need to set the collation element iterator // the next call to next will set the offset. return search->matchedIndex; } } if (U_SUCCESS(*status)) { if (strsrch->pattern.cesLength == 0) { if (search->matchedIndex == USEARCH_DONE) { search->matchedIndex = offset; } else { // moves by codepoints U16_FWD_1(search->text, search->matchedIndex, textlength); } search->matchedLength = 0; setColEIterOffset(strsrch->textIter, search->matchedIndex); // status checked below if (search->matchedIndex == textlength) { search->matchedIndex = USEARCH_DONE; } } else { if (search->matchedLength > 0) { // if matchlength is 0 we are at the start of the iteration if (search->isOverlap) { ucol_setOffset(strsrch->textIter, offset + 1, status); } else { ucol_setOffset(strsrch->textIter, offset + search->matchedLength, status); } } else { // for boundary check purposes. this will ensure that the // next match will not preceed the current offset // note search->matchedIndex will always be set to something // in the code search->matchedIndex = offset - 1; } if (search->isCanonicalMatch) { // can't use exact here since extra accents are allowed. usearch_handleNextCanonical(strsrch, status); } else { usearch_handleNextExact(strsrch, status); } } if (U_FAILURE(*status)) { return USEARCH_DONE; } #if !BOYER_MOORE if (search->matchedIndex == USEARCH_DONE) { ucol_setOffset(strsrch->textIter, search->textLength, status); } else { ucol_setOffset(strsrch->textIter, search->matchedIndex, status); } #endif return search->matchedIndex; } } return USEARCH_DONE; } U_CAPI int32_t U_EXPORT2 usearch_previous(UStringSearch *strsrch, UErrorCode *status) { if (U_SUCCESS(*status) && strsrch) { int32_t offset; USearch *search = strsrch->search; if (search->reset) { offset = search->textLength; search->isForwardSearching = FALSE; search->reset = FALSE; setColEIterOffset(strsrch->textIter, offset); } else { offset = usearch_getOffset(strsrch); } int32_t matchedindex = search->matchedIndex; if (search->isForwardSearching == TRUE) { // switching direction. // if matchedIndex == USEARCH_DONE, it means that either a // setOffset has been called or that next ran off the text // string. the iterator would have been set to offset textLength if // a match is not found. search->isForwardSearching = FALSE; if (matchedindex != USEARCH_DONE) { return matchedindex; } } else { #if BOYER_MOORE if (offset == 0 || matchedindex == 0 || (!search->isOverlap && (offset < strsrch->pattern.defaultShiftSize || (matchedindex != USEARCH_DONE && matchedindex < strsrch->pattern.defaultShiftSize)))) { // not enough characters to match setMatchNotFound(strsrch); return USEARCH_DONE; } #else // Could check pattern length, but the // linear search will do the right thing if (offset == 0 || matchedindex == 0) { setMatchNotFound(strsrch); return USEARCH_DONE; } #endif } if (U_SUCCESS(*status)) { if (strsrch->pattern.cesLength == 0) { search->matchedIndex = (matchedindex == USEARCH_DONE ? offset : matchedindex); if (search->matchedIndex == 0) { setMatchNotFound(strsrch); // status checked below } else { // move by codepoints U16_BACK_1(search->text, 0, search->matchedIndex); setColEIterOffset(strsrch->textIter, search->matchedIndex); // status checked below search->matchedLength = 0; } } else { if (strsrch->search->isCanonicalMatch) { // can't use exact here since extra accents are allowed. usearch_handlePreviousCanonical(strsrch, status); // status checked below } else { usearch_handlePreviousExact(strsrch, status); // status checked below } } if (U_FAILURE(*status)) { return USEARCH_DONE; } return search->matchedIndex; } } return USEARCH_DONE; } U_CAPI void U_EXPORT2 usearch_reset(UStringSearch *strsrch) { /* reset is setting the attributes that are already in string search, hence all attributes in the collator should be retrieved without any problems */ if (strsrch) { UErrorCode status = U_ZERO_ERROR; UBool sameCollAttribute = TRUE; uint32_t ceMask; UBool shift; uint32_t varTop; // **** hack to deal w/ how processed CEs encode quaternary **** UCollationStrength newStrength = ucol_getStrength(strsrch->collator); if ((strsrch->strength < UCOL_QUATERNARY && newStrength >= UCOL_QUATERNARY) || (strsrch->strength >= UCOL_QUATERNARY && newStrength < UCOL_QUATERNARY)) { sameCollAttribute = FALSE; } strsrch->strength = ucol_getStrength(strsrch->collator); ceMask = getMask(strsrch->strength); if (strsrch->ceMask != ceMask) { strsrch->ceMask = ceMask; sameCollAttribute = FALSE; } // if status is a failure, ucol_getAttribute returns UCOL_DEFAULT shift = ucol_getAttribute(strsrch->collator, UCOL_ALTERNATE_HANDLING, &status) == UCOL_SHIFTED; if (strsrch->toShift != shift) { strsrch->toShift = shift; sameCollAttribute = FALSE; } // if status is a failure, ucol_getVariableTop returns 0 varTop = ucol_getVariableTop(strsrch->collator, &status); if (strsrch->variableTop != varTop) { strsrch->variableTop = varTop; sameCollAttribute = FALSE; } if (!sameCollAttribute) { initialize(strsrch, &status); } ucol_setText(strsrch->textIter, strsrch->search->text, strsrch->search->textLength, &status); strsrch->search->matchedLength = 0; strsrch->search->matchedIndex = USEARCH_DONE; strsrch->search->isOverlap = FALSE; strsrch->search->isCanonicalMatch = FALSE; strsrch->search->elementComparisonType = 0; strsrch->search->isForwardSearching = TRUE; strsrch->search->reset = TRUE; } } // // CEI Collation Element + source text index. // These structs are kept in the circular buffer. // struct CEI { int64_t ce; int32_t lowIndex; int32_t highIndex; }; U_NAMESPACE_BEGIN namespace { // // CEIBuffer A circular buffer of CEs-with-index from the text being searched. // #define DEFAULT_CEBUFFER_SIZE 96 #define CEBUFFER_EXTRA 32 // Some typical max values to make buffer size more reasonable for asymmetric search. // #8694 is for a better long-term solution to allocation of this buffer. #define MAX_TARGET_IGNORABLES_PER_PAT_JAMO_L 8 #define MAX_TARGET_IGNORABLES_PER_PAT_OTHER 3 #define MIGHT_BE_JAMO_L(c) ((c >= 0x1100 && c <= 0x115E) || (c >= 0x3131 && c <= 0x314E) || (c >= 0x3165 && c <= 0x3186)) struct CEIBuffer { CEI defBuf[DEFAULT_CEBUFFER_SIZE]; CEI *buf; int32_t bufSize; int32_t firstIx; int32_t limitIx; UCollationElements *ceIter; UStringSearch *strSearch; CEIBuffer(UStringSearch *ss, UErrorCode *status); ~CEIBuffer(); const CEI *get(int32_t index); const CEI *getPrevious(int32_t index); }; CEIBuffer::CEIBuffer(UStringSearch *ss, UErrorCode *status) { buf = defBuf; strSearch = ss; bufSize = ss->pattern.pcesLength + CEBUFFER_EXTRA; if (ss->search->elementComparisonType != 0) { const UChar * patText = ss->pattern.text; if (patText) { const UChar * patTextLimit = patText + ss->pattern.textLength; while ( patText < patTextLimit ) { UChar c = *patText++; if (MIGHT_BE_JAMO_L(c)) { bufSize += MAX_TARGET_IGNORABLES_PER_PAT_JAMO_L; } else { // No check for surrogates, we might allocate slightly more buffer than necessary. bufSize += MAX_TARGET_IGNORABLES_PER_PAT_OTHER; } } } } ceIter = ss->textIter; firstIx = 0; limitIx = 0; if (!initTextProcessedIter(ss, status)) { return; } if (bufSize>DEFAULT_CEBUFFER_SIZE) { buf = (CEI *)uprv_malloc(bufSize * sizeof(CEI)); if (buf == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; } } } // TODO: add a reset or init function so that allocated // buffers can be retained & reused. CEIBuffer::~CEIBuffer() { if (buf != defBuf) { uprv_free(buf); } } // Get the CE with the specified index. // Index must be in the range // n-history_size < index < n+1 // where n is the largest index to have been fetched by some previous call to this function. // The CE value will be UCOL__PROCESSED_NULLORDER at end of input. // const CEI *CEIBuffer::get(int32_t index) { int i = index % bufSize; if (index>=firstIx && index<limitIx) { // The request was for an entry already in our buffer. // Just return it. return &buf[i]; } // Caller is requesting a new, never accessed before, CE. // Verify that it is the next one in sequence, which is all // that is allowed. if (index != limitIx) { U_ASSERT(FALSE); return NULL; } // Manage the circular CE buffer indexing limitIx++; if (limitIx - firstIx >= bufSize) { // The buffer is full, knock out the lowest-indexed entry. firstIx++; } UErrorCode status = U_ZERO_ERROR; buf[i].ce = strSearch->textProcessedIter->nextProcessed(&buf[i].lowIndex, &buf[i].highIndex, &status); return &buf[i]; } // Get the CE with the specified index. // Index must be in the range // n-history_size < index < n+1 // where n is the largest index to have been fetched by some previous call to this function. // The CE value will be UCOL__PROCESSED_NULLORDER at end of input. // const CEI *CEIBuffer::getPrevious(int32_t index) { int i = index % bufSize; if (index>=firstIx && index<limitIx) { // The request was for an entry already in our buffer. // Just return it. return &buf[i]; } // Caller is requesting a new, never accessed before, CE. // Verify that it is the next one in sequence, which is all // that is allowed. if (index != limitIx) { U_ASSERT(FALSE); return NULL; } // Manage the circular CE buffer indexing limitIx++; if (limitIx - firstIx >= bufSize) { // The buffer is full, knock out the lowest-indexed entry. firstIx++; } UErrorCode status = U_ZERO_ERROR; buf[i].ce = strSearch->textProcessedIter->previousProcessed(&buf[i].lowIndex, &buf[i].highIndex, &status); return &buf[i]; } } U_NAMESPACE_END // #define USEARCH_DEBUG #ifdef USEARCH_DEBUG #include <stdio.h> #include <stdlib.h> #endif /* * Find the next break boundary after startIndex. If the UStringSearch object * has an external break iterator, use that. Otherwise use the internal character * break iterator. */ static int32_t nextBoundaryAfter(UStringSearch *strsrch, int32_t startIndex) { #if 0 const UChar *text = strsrch->search->text; int32_t textLen = strsrch->search->textLength; U_ASSERT(startIndex>=0); U_ASSERT(startIndex<=textLen); if (startIndex >= textLen) { return startIndex; } UChar32 c; int32_t i = startIndex; U16_NEXT(text, i, textLen, c); // If we are on a control character, stop without looking for combining marks. // Control characters do not combine. int32_t gcProperty = u_getIntPropertyValue(c, UCHAR_GRAPHEME_CLUSTER_BREAK); if (gcProperty==U_GCB_CONTROL || gcProperty==U_GCB_LF || gcProperty==U_GCB_CR) { return i; } // The initial character was not a control, and can thus accept trailing // combining characters. Advance over however many of them there are. int32_t indexOfLastCharChecked; for (;;) { indexOfLastCharChecked = i; if (i>=textLen) { break; } U16_NEXT(text, i, textLen, c); gcProperty = u_getIntPropertyValue(c, UCHAR_GRAPHEME_CLUSTER_BREAK); if (gcProperty != U_GCB_EXTEND && gcProperty != U_GCB_SPACING_MARK) { break; } } return indexOfLastCharChecked; #elif !UCONFIG_NO_BREAK_ITERATION UBreakIterator *breakiterator = strsrch->search->breakIter; if (breakiterator == NULL) { breakiterator = strsrch->search->internalBreakIter; } if (breakiterator != NULL) { return ubrk_following(breakiterator, startIndex); } return startIndex; #else // **** or should we use the original code? **** return startIndex; #endif } /* * Returns TRUE if index is on a break boundary. If the UStringSearch * has an external break iterator, test using that, otherwise test * using the internal character break iterator. */ static UBool isBreakBoundary(UStringSearch *strsrch, int32_t index) { #if 0 const UChar *text = strsrch->search->text; int32_t textLen = strsrch->search->textLength; U_ASSERT(index>=0); U_ASSERT(index<=textLen); if (index>=textLen || index<=0) { return TRUE; } // If the character at the current index is not a GRAPHEME_EXTEND // then we can not be within a combining sequence. UChar32 c; U16_GET(text, 0, index, textLen, c); int32_t gcProperty = u_getIntPropertyValue(c, UCHAR_GRAPHEME_CLUSTER_BREAK); if (gcProperty != U_GCB_EXTEND && gcProperty != U_GCB_SPACING_MARK) { return TRUE; } // We are at a combining mark. If the preceding character is anything // except a CONTROL, CR or LF, we are in a combining sequence. U16_PREV(text, 0, index, c); gcProperty = u_getIntPropertyValue(c, UCHAR_GRAPHEME_CLUSTER_BREAK); UBool combining = !(gcProperty==U_GCB_CONTROL || gcProperty==U_GCB_LF || gcProperty==U_GCB_CR); return !combining; #elif !UCONFIG_NO_BREAK_ITERATION UBreakIterator *breakiterator = strsrch->search->breakIter; if (breakiterator == NULL) { breakiterator = strsrch->search->internalBreakIter; } return (breakiterator != NULL && ubrk_isBoundary(breakiterator, index)); #else // **** or use the original code? **** return TRUE; #endif } #if 0 static UBool onBreakBoundaries(const UStringSearch *strsrch, int32_t start, int32_t end) { #if !UCONFIG_NO_BREAK_ITERATION UBreakIterator *breakiterator = strsrch->search->breakIter; if (breakiterator != NULL) { int32_t startindex = ubrk_first(breakiterator); int32_t endindex = ubrk_last(breakiterator); // out-of-range indexes are never boundary positions if (start < startindex || start > endindex || end < startindex || end > endindex) { return FALSE; } return ubrk_isBoundary(breakiterator, start) && ubrk_isBoundary(breakiterator, end); } #endif return TRUE; } #endif typedef enum { U_CE_MATCH = -1, U_CE_NO_MATCH = 0, U_CE_SKIP_TARG, U_CE_SKIP_PATN } UCompareCEsResult; #define U_CE_LEVEL2_BASE 0x00000005 #define U_CE_LEVEL3_BASE 0x00050000 static UCompareCEsResult compareCE64s(int64_t targCE, int64_t patCE, int16_t compareType) { if (targCE == patCE) { return U_CE_MATCH; } if (compareType == 0) { return U_CE_NO_MATCH; } int64_t targCEshifted = targCE >> 32; int64_t patCEshifted = patCE >> 32; int64_t mask; mask = 0xFFFF0000; int32_t targLev1 = (int32_t)(targCEshifted & mask); int32_t patLev1 = (int32_t)(patCEshifted & mask); if ( targLev1 != patLev1 ) { if ( targLev1 == 0 ) { return U_CE_SKIP_TARG; } if ( patLev1 == 0 && compareType == USEARCH_ANY_BASE_WEIGHT_IS_WILDCARD ) { return U_CE_SKIP_PATN; } return U_CE_NO_MATCH; } mask = 0x0000FFFF; int32_t targLev2 = (int32_t)(targCEshifted & mask); int32_t patLev2 = (int32_t)(patCEshifted & mask); if ( targLev2 != patLev2 ) { if ( targLev2 == 0 ) { return U_CE_SKIP_TARG; } if ( patLev2 == 0 && compareType == USEARCH_ANY_BASE_WEIGHT_IS_WILDCARD ) { return U_CE_SKIP_PATN; } return (patLev2 == U_CE_LEVEL2_BASE || (compareType == USEARCH_ANY_BASE_WEIGHT_IS_WILDCARD && targLev2 == U_CE_LEVEL2_BASE) )? U_CE_MATCH: U_CE_NO_MATCH; } mask = 0xFFFF0000; int32_t targLev3 = (int32_t)(targCE & mask); int32_t patLev3 = (int32_t)(patCE & mask); if ( targLev3 != patLev3 ) { return (patLev3 == U_CE_LEVEL3_BASE || (compareType == USEARCH_ANY_BASE_WEIGHT_IS_WILDCARD && targLev3 == U_CE_LEVEL3_BASE) )? U_CE_MATCH: U_CE_NO_MATCH; } return U_CE_MATCH; } #if BOYER_MOORE // TODO: #if BOYER_MOORE, need 32-bit version of compareCE64s #endif namespace { UChar32 codePointAt(const USearch &search, int32_t index) { if (index < search.textLength) { UChar32 c; U16_NEXT(search.text, index, search.textLength, c); return c; } return U_SENTINEL; } UChar32 codePointBefore(const USearch &search, int32_t index) { if (0 < index) { UChar32 c; U16_PREV(search.text, 0, index, c); return c; } return U_SENTINEL; } } // namespace U_CAPI UBool U_EXPORT2 usearch_search(UStringSearch *strsrch, int32_t startIdx, int32_t *matchStart, int32_t *matchLimit, UErrorCode *status) { if (U_FAILURE(*status)) { return FALSE; } // TODO: reject search patterns beginning with a combining char. #ifdef USEARCH_DEBUG if (getenv("USEARCH_DEBUG") != NULL) { printf("Pattern CEs\n"); for (int ii=0; ii<strsrch->pattern.cesLength; ii++) { printf(" %8x", strsrch->pattern.ces[ii]); } printf("\n"); } #endif // Input parameter sanity check. // TODO: should input indicies clip to the text length // in the same way that UText does. if(strsrch->pattern.cesLength == 0 || startIdx < 0 || startIdx > strsrch->search->textLength || strsrch->pattern.ces == NULL) { *status = U_ILLEGAL_ARGUMENT_ERROR; return FALSE; } if (strsrch->pattern.pces == NULL) { initializePatternPCETable(strsrch, status); } ucol_setOffset(strsrch->textIter, startIdx, status); CEIBuffer ceb(strsrch, status); int32_t targetIx = 0; const CEI *targetCEI = NULL; int32_t patIx; UBool found; int32_t mStart = -1; int32_t mLimit = -1; int32_t minLimit; int32_t maxLimit; // Outer loop moves over match starting positions in the // target CE space. // Here we see the target as a sequence of collation elements, resulting from the following: // 1. Target characters were decomposed, and (if appropriate) other compressions and expansions are applied // (for example, digraphs such as IJ may be broken into two characters). // 2. An int64_t CE weight is determined for each resulting unit (high 16 bits are primary strength, next // 16 bits are secondary, next 16 (the high 16 bits of the low 32-bit half) are tertiary. Any of these // fields that are for strengths below that of the collator are set to 0. If this makes the int64_t // CE weight 0 (as for a combining diacritic with secondary weight when the collator strentgh is primary), // then the CE is deleted, so the following code sees only CEs that are relevant. // For each CE, the lowIndex and highIndex correspond to where this CE begins and ends in the original text. // If lowIndex==highIndex, either the CE resulted from an expansion/decomposition of one of the original text // characters, or the CE marks the limit of the target text (in which case the CE weight is UCOL_PROCESSED_NULLORDER). // for(targetIx=0; ; targetIx++) { found = TRUE; // Inner loop checks for a match beginning at each // position from the outer loop. int32_t targetIxOffset = 0; int64_t patCE = 0; // For targetIx > 0, this ceb.get gets a CE that is as far back in the ring buffer // (compared to the last CE fetched for the previous targetIx value) as we need to go // for this targetIx value, so if it is non-NULL then other ceb.get calls should be OK. const CEI *firstCEI = ceb.get(targetIx); if (firstCEI == NULL) { *status = U_INTERNAL_PROGRAM_ERROR; found = FALSE; break; } for (patIx=0; patIx<strsrch->pattern.pcesLength; patIx++) { patCE = strsrch->pattern.pces[patIx]; targetCEI = ceb.get(targetIx+patIx+targetIxOffset); // Compare CE from target string with CE from the pattern. // Note that the target CE will be UCOL_PROCESSED_NULLORDER if we reach the end of input, // which will fail the compare, below. UCompareCEsResult ceMatch = compareCE64s(targetCEI->ce, patCE, strsrch->search->elementComparisonType); if ( ceMatch == U_CE_NO_MATCH ) { found = FALSE; break; } else if ( ceMatch > U_CE_NO_MATCH ) { if ( ceMatch == U_CE_SKIP_TARG ) { // redo with same patCE, next targCE patIx--; targetIxOffset++; } else { // ceMatch == U_CE_SKIP_PATN // redo with same targCE, next patCE targetIxOffset--; } } } targetIxOffset += strsrch->pattern.pcesLength; // this is now the offset in target CE space to end of the match so far if (!found && ((targetCEI == NULL) || (targetCEI->ce != UCOL_PROCESSED_NULLORDER))) { // No match at this targetIx. Try again at the next. continue; } if (!found) { // No match at all, we have run off the end of the target text. break; } // We have found a match in CE space. // Now determine the bounds in string index space. // There still is a chance of match failure if the CE range not correspond to // an acceptable character range. // const CEI *lastCEI = ceb.get(targetIx + targetIxOffset - 1); mStart = firstCEI->lowIndex; minLimit = lastCEI->lowIndex; // Look at the CE following the match. If it is UCOL_NULLORDER the match // extended to the end of input, and the match is good. // Look at the high and low indices of the CE following the match. If // they are the same it means one of two things: // 1. The match extended to the last CE from the target text, which is OK, or // 2. The last CE that was part of the match is in an expansion that extends // to the first CE after the match. In this case, we reject the match. const CEI *nextCEI = 0; if (strsrch->search->elementComparisonType == 0) { nextCEI = ceb.get(targetIx + targetIxOffset); maxLimit = nextCEI->lowIndex; if (nextCEI->lowIndex == nextCEI->highIndex && nextCEI->ce != UCOL_PROCESSED_NULLORDER) { found = FALSE; } } else { for ( ; ; ++targetIxOffset ) { nextCEI = ceb.get(targetIx + targetIxOffset); maxLimit = nextCEI->lowIndex; // If we are at the end of the target too, match succeeds if ( nextCEI->ce == UCOL_PROCESSED_NULLORDER ) { break; } // As long as the next CE has primary weight of 0, // it is part of the last target element matched by the pattern; // make sure it can be part of a match with the last patCE if ( (((nextCEI->ce) >> 32) & 0xFFFF0000UL) == 0 ) { UCompareCEsResult ceMatch = compareCE64s(nextCEI->ce, patCE, strsrch->search->elementComparisonType); if ( ceMatch == U_CE_NO_MATCH || ceMatch == U_CE_SKIP_PATN ) { found = FALSE; break; } // If lowIndex == highIndex, this target CE is part of an expansion of the last matched // target element, but it has non-zero primary weight => match fails } else if ( nextCEI->lowIndex == nextCEI->highIndex ) { found = false; break; // Else the target CE is not part of an expansion of the last matched element, match succeeds } else { break; } } } // Check for the start of the match being within a combining sequence. // This can happen if the pattern itself begins with a combining char, and // the match found combining marks in the target text that were attached // to something else. // This type of match should be rejected for not completely consuming a // combining sequence. if (!isBreakBoundary(strsrch, mStart)) { found = FALSE; } // Check for the start of the match being within an Collation Element Expansion, // meaning that the first char of the match is only partially matched. // With exapnsions, the first CE will report the index of the source // character, and all subsequent (expansions) CEs will report the source index of the // _following_ character. int32_t secondIx = firstCEI->highIndex; if (mStart == secondIx) { found = FALSE; } // Allow matches to end in the middle of a grapheme cluster if the following // conditions are met; this is needed to make prefix search work properly in // Indic, see #11750 // * the default breakIter is being used // * the next collation element after this combining sequence // - has non-zero primary weight // - corresponds to a separate character following the one at end of the current match // (the second of these conditions, and perhaps both, may be redundant given the // subsequent check for normalization boundary; however they are likely much faster // tests in any case) // * the match limit is a normalization boundary UBool allowMidclusterMatch = FALSE; if (strsrch->search->text != NULL && strsrch->search->textLength > maxLimit) { allowMidclusterMatch = strsrch->search->breakIter == NULL && nextCEI != NULL && (((nextCEI->ce) >> 32) & 0xFFFF0000UL) != 0 && maxLimit >= lastCEI->highIndex && nextCEI->highIndex > maxLimit && (strsrch->nfd->hasBoundaryBefore(codePointAt(*strsrch->search, maxLimit)) || strsrch->nfd->hasBoundaryAfter(codePointBefore(*strsrch->search, maxLimit))); } // If those conditions are met, then: // * do NOT advance the candidate match limit (mLimit) to a break boundary; however // the match limit may be backed off to a previous break boundary. This handles // cases in which mLimit includes target characters that are ignorable with current // settings (such as space) and which extend beyond the pattern match. // * do NOT require that end of the combining sequence not extend beyond the match in CE space // * do NOT require that match limit be on a breakIter boundary // Advance the match end position to the first acceptable match boundary. // This advances the index over any combining charcters. mLimit = maxLimit; if (minLimit < maxLimit) { // When the last CE's low index is same with its high index, the CE is likely // a part of expansion. In this case, the index is located just after the // character corresponding to the CEs compared above. If the index is right // at the break boundary, move the position to the next boundary will result // incorrect match length when there are ignorable characters exist between // the position and the next character produces CE(s). See ticket#8482. if (minLimit == lastCEI->highIndex && isBreakBoundary(strsrch, minLimit)) { mLimit = minLimit; } else { int32_t nba = nextBoundaryAfter(strsrch, minLimit); // Note that we can have nba < maxLimit && nba >= minLImit, in which // case we want to set mLimit to nba regardless of allowMidclusterMatch // (i.e. we back off mLimit to the previous breakIterator boundary). if (nba >= lastCEI->highIndex && (!allowMidclusterMatch || nba < maxLimit)) { mLimit = nba; } } } #ifdef USEARCH_DEBUG if (getenv("USEARCH_DEBUG") != NULL) { printf("minLimit, maxLimit, mLimit = %d, %d, %d\n", minLimit, maxLimit, mLimit); } #endif if (!allowMidclusterMatch) { // If advancing to the end of a combining sequence in character indexing space // advanced us beyond the end of the match in CE space, reject this match. if (mLimit > maxLimit) { found = FALSE; } if (!isBreakBoundary(strsrch, mLimit)) { found = FALSE; } } if (! checkIdentical(strsrch, mStart, mLimit)) { found = FALSE; } if (found) { break; } } #ifdef USEARCH_DEBUG if (getenv("USEARCH_DEBUG") != NULL) { printf("Target CEs [%d .. %d]\n", ceb.firstIx, ceb.limitIx); int32_t lastToPrint = ceb.limitIx+2; for (int ii=ceb.firstIx; ii<lastToPrint; ii++) { printf("%8x@%d ", ceb.get(ii)->ce, ceb.get(ii)->srcIndex); } printf("\n%s\n", found? "match found" : "no match"); } #endif // All Done. Store back the match bounds to the caller. // if (found==FALSE) { mLimit = -1; mStart = -1; } if (matchStart != NULL) { *matchStart= mStart; } if (matchLimit != NULL) { *matchLimit = mLimit; } return found; } U_CAPI UBool U_EXPORT2 usearch_searchBackwards(UStringSearch *strsrch, int32_t startIdx, int32_t *matchStart, int32_t *matchLimit, UErrorCode *status) { if (U_FAILURE(*status)) { return FALSE; } // TODO: reject search patterns beginning with a combining char. #ifdef USEARCH_DEBUG if (getenv("USEARCH_DEBUG") != NULL) { printf("Pattern CEs\n"); for (int ii=0; ii<strsrch->pattern.cesLength; ii++) { printf(" %8x", strsrch->pattern.ces[ii]); } printf("\n"); } #endif // Input parameter sanity check. // TODO: should input indicies clip to the text length // in the same way that UText does. if(strsrch->pattern.cesLength == 0 || startIdx < 0 || startIdx > strsrch->search->textLength || strsrch->pattern.ces == NULL) { *status = U_ILLEGAL_ARGUMENT_ERROR; return FALSE; } if (strsrch->pattern.pces == NULL) { initializePatternPCETable(strsrch, status); } CEIBuffer ceb(strsrch, status); int32_t targetIx = 0; /* * Pre-load the buffer with the CE's for the grapheme * after our starting position so that we're sure that * we can look at the CE following the match when we * check the match boundaries. * * This will also pre-fetch the first CE that we'll * consider for the match. */ if (startIdx < strsrch->search->textLength) { UBreakIterator *bi = strsrch->search->internalBreakIter; int32_t next = ubrk_following(bi, startIdx); ucol_setOffset(strsrch->textIter, next, status); for (targetIx = 0; ; targetIx += 1) { if (ceb.getPrevious(targetIx)->lowIndex < startIdx) { break; } } } else { ucol_setOffset(strsrch->textIter, startIdx, status); } const CEI *targetCEI = NULL; int32_t patIx; UBool found; int32_t limitIx = targetIx; int32_t mStart = -1; int32_t mLimit = -1; int32_t minLimit; int32_t maxLimit; // Outer loop moves over match starting positions in the // target CE space. // Here, targetIx values increase toward the beginning of the base text (i.e. we get the text CEs in reverse order). // But patIx is 0 at the beginning of the pattern and increases toward the end. // So this loop performs a comparison starting with the end of pattern, and prcessd toward the beginning of the pattern // and the beginning of the base text. for(targetIx = limitIx; ; targetIx += 1) { found = TRUE; // For targetIx > limitIx, this ceb.getPrevious gets a CE that is as far back in the ring buffer // (compared to the last CE fetched for the previous targetIx value) as we need to go // for this targetIx value, so if it is non-NULL then other ceb.getPrevious calls should be OK. const CEI *lastCEI = ceb.getPrevious(targetIx); if (lastCEI == NULL) { *status = U_INTERNAL_PROGRAM_ERROR; found = FALSE; break; } // Inner loop checks for a match beginning at each // position from the outer loop. int32_t targetIxOffset = 0; for (patIx = strsrch->pattern.pcesLength - 1; patIx >= 0; patIx -= 1) { int64_t patCE = strsrch->pattern.pces[patIx]; targetCEI = ceb.getPrevious(targetIx + strsrch->pattern.pcesLength - 1 - patIx + targetIxOffset); // Compare CE from target string with CE from the pattern. // Note that the target CE will be UCOL_NULLORDER if we reach the end of input, // which will fail the compare, below. UCompareCEsResult ceMatch = compareCE64s(targetCEI->ce, patCE, strsrch->search->elementComparisonType); if ( ceMatch == U_CE_NO_MATCH ) { found = FALSE; break; } else if ( ceMatch > U_CE_NO_MATCH ) { if ( ceMatch == U_CE_SKIP_TARG ) { // redo with same patCE, next targCE patIx++; targetIxOffset++; } else { // ceMatch == U_CE_SKIP_PATN // redo with same targCE, next patCE targetIxOffset--; } } } if (!found && ((targetCEI == NULL) || (targetCEI->ce != UCOL_PROCESSED_NULLORDER))) { // No match at this targetIx. Try again at the next. continue; } if (!found) { // No match at all, we have run off the end of the target text. break; } // We have found a match in CE space. // Now determine the bounds in string index space. // There still is a chance of match failure if the CE range not correspond to // an acceptable character range. // const CEI *firstCEI = ceb.getPrevious(targetIx + strsrch->pattern.pcesLength - 1 + targetIxOffset); mStart = firstCEI->lowIndex; // Check for the start of the match being within a combining sequence. // This can happen if the pattern itself begins with a combining char, and // the match found combining marks in the target text that were attached // to something else. // This type of match should be rejected for not completely consuming a // combining sequence. if (!isBreakBoundary(strsrch, mStart)) { found = FALSE; } // Look at the high index of the first CE in the match. If it's the same as the // low index, the first CE in the match is in the middle of an expansion. if (mStart == firstCEI->highIndex) { found = FALSE; } minLimit = lastCEI->lowIndex; if (targetIx > 0) { // Look at the CE following the match. If it is UCOL_NULLORDER the match // extended to the end of input, and the match is good. // Look at the high and low indices of the CE following the match. If // they are the same it means one of two things: // 1. The match extended to the last CE from the target text, which is OK, or // 2. The last CE that was part of the match is in an expansion that extends // to the first CE after the match. In this case, we reject the match. const CEI *nextCEI = ceb.getPrevious(targetIx - 1); if (nextCEI->lowIndex == nextCEI->highIndex && nextCEI->ce != UCOL_PROCESSED_NULLORDER) { found = FALSE; } mLimit = maxLimit = nextCEI->lowIndex; // Allow matches to end in the middle of a grapheme cluster if the following // conditions are met; this is needed to make prefix search work properly in // Indic, see #11750 // * the default breakIter is being used // * the next collation element after this combining sequence // - has non-zero primary weight // - corresponds to a separate character following the one at end of the current match // (the second of these conditions, and perhaps both, may be redundant given the // subsequent check for normalization boundary; however they are likely much faster // tests in any case) // * the match limit is a normalization boundary UBool allowMidclusterMatch = FALSE; if (strsrch->search->text != NULL && strsrch->search->textLength > maxLimit) { allowMidclusterMatch = strsrch->search->breakIter == NULL && nextCEI != NULL && (((nextCEI->ce) >> 32) & 0xFFFF0000UL) != 0 && maxLimit >= lastCEI->highIndex && nextCEI->highIndex > maxLimit && (strsrch->nfd->hasBoundaryBefore(codePointAt(*strsrch->search, maxLimit)) || strsrch->nfd->hasBoundaryAfter(codePointBefore(*strsrch->search, maxLimit))); } // If those conditions are met, then: // * do NOT advance the candidate match limit (mLimit) to a break boundary; however // the match limit may be backed off to a previous break boundary. This handles // cases in which mLimit includes target characters that are ignorable with current // settings (such as space) and which extend beyond the pattern match. // * do NOT require that end of the combining sequence not extend beyond the match in CE space // * do NOT require that match limit be on a breakIter boundary // Advance the match end position to the first acceptable match boundary. // This advances the index over any combining characters. if (minLimit < maxLimit) { int32_t nba = nextBoundaryAfter(strsrch, minLimit); // Note that we can have nba < maxLimit && nba >= minLImit, in which // case we want to set mLimit to nba regardless of allowMidclusterMatch // (i.e. we back off mLimit to the previous breakIterator boundary). if (nba >= lastCEI->highIndex && (!allowMidclusterMatch || nba < maxLimit)) { mLimit = nba; } } if (!allowMidclusterMatch) { // If advancing to the end of a combining sequence in character indexing space // advanced us beyond the end of the match in CE space, reject this match. if (mLimit > maxLimit) { found = FALSE; } // Make sure the end of the match is on a break boundary if (!isBreakBoundary(strsrch, mLimit)) { found = FALSE; } } } else { // No non-ignorable CEs after this point. // The maximum position is detected by boundary after // the last non-ignorable CE. Combining sequence // across the start index will be truncated. int32_t nba = nextBoundaryAfter(strsrch, minLimit); mLimit = maxLimit = (nba > 0) && (startIdx > nba) ? nba : startIdx; } #ifdef USEARCH_DEBUG if (getenv("USEARCH_DEBUG") != NULL) { printf("minLimit, maxLimit, mLimit = %d, %d, %d\n", minLimit, maxLimit, mLimit); } #endif if (! checkIdentical(strsrch, mStart, mLimit)) { found = FALSE; } if (found) { break; } } #ifdef USEARCH_DEBUG if (getenv("USEARCH_DEBUG") != NULL) { printf("Target CEs [%d .. %d]\n", ceb.firstIx, ceb.limitIx); int32_t lastToPrint = ceb.limitIx+2; for (int ii=ceb.firstIx; ii<lastToPrint; ii++) { printf("%8x@%d ", ceb.get(ii)->ce, ceb.get(ii)->srcIndex); } printf("\n%s\n", found? "match found" : "no match"); } #endif // All Done. Store back the match bounds to the caller. // if (found==FALSE) { mLimit = -1; mStart = -1; } if (matchStart != NULL) { *matchStart= mStart; } if (matchLimit != NULL) { *matchLimit = mLimit; } return found; } // internal use methods declared in usrchimp.h ----------------------------- UBool usearch_handleNextExact(UStringSearch *strsrch, UErrorCode *status) { if (U_FAILURE(*status)) { setMatchNotFound(strsrch); return FALSE; } #if BOYER_MOORE UCollationElements *coleiter = strsrch->textIter; int32_t textlength = strsrch->search->textLength; int32_t *patternce = strsrch->pattern.ces; int32_t patterncelength = strsrch->pattern.cesLength; int32_t textoffset = ucol_getOffset(coleiter); // status used in setting coleiter offset, since offset is checked in // shiftForward before setting the coleiter offset, status never // a failure textoffset = shiftForward(strsrch, textoffset, UCOL_NULLORDER, patterncelength); while (textoffset <= textlength) { uint32_t patternceindex = patterncelength - 1; int32_t targetce; UBool found = FALSE; int32_t lastce = UCOL_NULLORDER; setColEIterOffset(coleiter, textoffset); for (;;) { // finding the last pattern ce match, imagine composite characters // for example: search for pattern A in text \u00C0 // we'll have to skip \u0300 the grave first before we get to A targetce = ucol_previous(coleiter, status); if (U_FAILURE(*status) || targetce == UCOL_NULLORDER) { found = FALSE; break; } targetce = getCE(strsrch, targetce); if (targetce == UCOL_IGNORABLE && inNormBuf(coleiter)) { // this is for the text \u0315\u0300 that requires // normalization and pattern \u0300, where \u0315 is ignorable continue; } if (lastce == UCOL_NULLORDER || lastce == UCOL_IGNORABLE) { lastce = targetce; } // TODO: #if BOYER_MOORE, replace with code using 32-bit version of compareCE64s if (targetce == patternce[patternceindex]) { // the first ce can be a contraction found = TRUE; break; } if (!hasExpansion(coleiter)) { found = FALSE; break; } } //targetce = lastce; while (found && patternceindex > 0) { lastce = targetce; targetce = ucol_previous(coleiter, status); if (U_FAILURE(*status) || targetce == UCOL_NULLORDER) { found = FALSE; break; } targetce = getCE(strsrch, targetce); if (targetce == UCOL_IGNORABLE) { continue; } patternceindex --; // TODO: #if BOYER_MOORE, replace with code using 32-bit version of compareCE64s found = found && targetce == patternce[patternceindex]; } targetce = lastce; if (!found) { if (U_FAILURE(*status)) { break; } textoffset = shiftForward(strsrch, textoffset, lastce, patternceindex); // status checked at loop. patternceindex = patterncelength; continue; } if (checkNextExactMatch(strsrch, &textoffset, status)) { // status checked in ucol_setOffset setColEIterOffset(coleiter, strsrch->search->matchedIndex); return TRUE; } } setMatchNotFound(strsrch); return FALSE; #else int32_t textOffset = ucol_getOffset(strsrch->textIter); int32_t start = -1; int32_t end = -1; if (usearch_search(strsrch, textOffset, &start, &end, status)) { strsrch->search->matchedIndex = start; strsrch->search->matchedLength = end - start; return TRUE; } else { setMatchNotFound(strsrch); return FALSE; } #endif } UBool usearch_handleNextCanonical(UStringSearch *strsrch, UErrorCode *status) { if (U_FAILURE(*status)) { setMatchNotFound(strsrch); return FALSE; } #if BOYER_MOORE UCollationElements *coleiter = strsrch->textIter; int32_t textlength = strsrch->search->textLength; int32_t *patternce = strsrch->pattern.ces; int32_t patterncelength = strsrch->pattern.cesLength; int32_t textoffset = ucol_getOffset(coleiter); UBool hasPatternAccents = strsrch->pattern.hasSuffixAccents || strsrch->pattern.hasPrefixAccents; textoffset = shiftForward(strsrch, textoffset, UCOL_NULLORDER, patterncelength); strsrch->canonicalPrefixAccents[0] = 0; strsrch->canonicalSuffixAccents[0] = 0; while (textoffset <= textlength) { int32_t patternceindex = patterncelength - 1; int32_t targetce; UBool found = FALSE; int32_t lastce = UCOL_NULLORDER; setColEIterOffset(coleiter, textoffset); for (;;) { // finding the last pattern ce match, imagine composite characters // for example: search for pattern A in text \u00C0 // we'll have to skip \u0300 the grave first before we get to A targetce = ucol_previous(coleiter, status); if (U_FAILURE(*status) || targetce == UCOL_NULLORDER) { found = FALSE; break; } targetce = getCE(strsrch, targetce); if (lastce == UCOL_NULLORDER || lastce == UCOL_IGNORABLE) { lastce = targetce; } // TODO: #if BOYER_MOORE, replace with code using 32-bit version of compareCE64s if (targetce == patternce[patternceindex]) { // the first ce can be a contraction found = TRUE; break; } if (!hasExpansion(coleiter)) { found = FALSE; break; } } while (found && patternceindex > 0) { targetce = ucol_previous(coleiter, status); if (U_FAILURE(*status) || targetce == UCOL_NULLORDER) { found = FALSE; break; } targetce = getCE(strsrch, targetce); if (targetce == UCOL_IGNORABLE) { continue; } patternceindex --; // TODO: #if BOYER_MOORE, replace with code using 32-bit version of compareCE64s found = found && targetce == patternce[patternceindex]; } // initializing the rearranged accent array if (hasPatternAccents && !found) { strsrch->canonicalPrefixAccents[0] = 0; strsrch->canonicalSuffixAccents[0] = 0; if (U_FAILURE(*status)) { break; } found = doNextCanonicalMatch(strsrch, textoffset, status); } if (!found) { if (U_FAILURE(*status)) { break; } textoffset = shiftForward(strsrch, textoffset, lastce, patternceindex); // status checked at loop patternceindex = patterncelength; continue; } if (checkNextCanonicalMatch(strsrch, &textoffset, status)) { setColEIterOffset(coleiter, strsrch->search->matchedIndex); return TRUE; } } setMatchNotFound(strsrch); return FALSE; #else int32_t textOffset = ucol_getOffset(strsrch->textIter); int32_t start = -1; int32_t end = -1; if (usearch_search(strsrch, textOffset, &start, &end, status)) { strsrch->search->matchedIndex = start; strsrch->search->matchedLength = end - start; return TRUE; } else { setMatchNotFound(strsrch); return FALSE; } #endif } UBool usearch_handlePreviousExact(UStringSearch *strsrch, UErrorCode *status) { if (U_FAILURE(*status)) { setMatchNotFound(strsrch); return FALSE; } #if BOYER_MOORE UCollationElements *coleiter = strsrch->textIter; int32_t *patternce = strsrch->pattern.ces; int32_t patterncelength = strsrch->pattern.cesLength; int32_t textoffset = ucol_getOffset(coleiter); // shifting it check for setting offset // if setOffset is called previously or there was no previous match, we // leave the offset as it is. if (strsrch->search->matchedIndex != USEARCH_DONE) { textoffset = strsrch->search->matchedIndex; } textoffset = reverseShift(strsrch, textoffset, UCOL_NULLORDER, patterncelength); while (textoffset >= 0) { int32_t patternceindex = 1; int32_t targetce; UBool found = FALSE; int32_t firstce = UCOL_NULLORDER; // if status is a failure, ucol_setOffset does nothing setColEIterOffset(coleiter, textoffset); for (;;) { // finding the first pattern ce match, imagine composite // characters. for example: search for pattern \u0300 in text // \u00C0, we'll have to skip A first before we get to // \u0300 the grave accent targetce = ucol_next(coleiter, status); if (U_FAILURE(*status) || targetce == UCOL_NULLORDER) { found = FALSE; break; } targetce = getCE(strsrch, targetce); if (firstce == UCOL_NULLORDER || firstce == UCOL_IGNORABLE) { firstce = targetce; } if (targetce == UCOL_IGNORABLE && strsrch->strength != UCOL_PRIMARY) { continue; } // TODO: #if BOYER_MOORE, replace with code using 32-bit version of compareCE64s if (targetce == patternce[0]) { found = TRUE; break; } if (!hasExpansion(coleiter)) { // checking for accents in composite character found = FALSE; break; } } //targetce = firstce; while (found && (patternceindex < patterncelength)) { firstce = targetce; targetce = ucol_next(coleiter, status); if (U_FAILURE(*status) || targetce == UCOL_NULLORDER) { found = FALSE; break; } targetce = getCE(strsrch, targetce); if (targetce == UCOL_IGNORABLE) { continue; } // TODO: #if BOYER_MOORE, replace with code using 32-bit version of compareCE64s found = found && targetce == patternce[patternceindex]; patternceindex ++; } targetce = firstce; if (!found) { if (U_FAILURE(*status)) { break; } textoffset = reverseShift(strsrch, textoffset, targetce, patternceindex); patternceindex = 0; continue; } if (checkPreviousExactMatch(strsrch, &textoffset, status)) { setColEIterOffset(coleiter, textoffset); return TRUE; } } setMatchNotFound(strsrch); return FALSE; #else int32_t textOffset; if (strsrch->search->isOverlap) { if (strsrch->search->matchedIndex != USEARCH_DONE) { textOffset = strsrch->search->matchedIndex + strsrch->search->matchedLength - 1; } else { // move the start position at the end of possible match initializePatternPCETable(strsrch, status); if (!initTextProcessedIter(strsrch, status)) { setMatchNotFound(strsrch); return FALSE; } for (int32_t nPCEs = 0; nPCEs < strsrch->pattern.pcesLength - 1; nPCEs++) { int64_t pce = strsrch->textProcessedIter->nextProcessed(NULL, NULL, status); if (pce == UCOL_PROCESSED_NULLORDER) { // at the end of the text break; } } if (U_FAILURE(*status)) { setMatchNotFound(strsrch); return FALSE; } textOffset = ucol_getOffset(strsrch->textIter); } } else { textOffset = ucol_getOffset(strsrch->textIter); } int32_t start = -1; int32_t end = -1; if (usearch_searchBackwards(strsrch, textOffset, &start, &end, status)) { strsrch->search->matchedIndex = start; strsrch->search->matchedLength = end - start; return TRUE; } else { setMatchNotFound(strsrch); return FALSE; } #endif } UBool usearch_handlePreviousCanonical(UStringSearch *strsrch, UErrorCode *status) { if (U_FAILURE(*status)) { setMatchNotFound(strsrch); return FALSE; } #if BOYER_MOORE UCollationElements *coleiter = strsrch->textIter; int32_t *patternce = strsrch->pattern.ces; int32_t patterncelength = strsrch->pattern.cesLength; int32_t textoffset = ucol_getOffset(coleiter); UBool hasPatternAccents = strsrch->pattern.hasSuffixAccents || strsrch->pattern.hasPrefixAccents; // shifting it check for setting offset // if setOffset is called previously or there was no previous match, we // leave the offset as it is. if (strsrch->search->matchedIndex != USEARCH_DONE) { textoffset = strsrch->search->matchedIndex; } textoffset = reverseShift(strsrch, textoffset, UCOL_NULLORDER, patterncelength); strsrch->canonicalPrefixAccents[0] = 0; strsrch->canonicalSuffixAccents[0] = 0; while (textoffset >= 0) { int32_t patternceindex = 1; int32_t targetce; UBool found = FALSE; int32_t firstce = UCOL_NULLORDER; setColEIterOffset(coleiter, textoffset); for (;;) { // finding the first pattern ce match, imagine composite // characters. for example: search for pattern \u0300 in text // \u00C0, we'll have to skip A first before we get to // \u0300 the grave accent targetce = ucol_next(coleiter, status); if (U_FAILURE(*status) || targetce == UCOL_NULLORDER) { found = FALSE; break; } targetce = getCE(strsrch, targetce); if (firstce == UCOL_NULLORDER || firstce == UCOL_IGNORABLE) { firstce = targetce; } // TODO: #if BOYER_MOORE, replace with code using 32-bit version of compareCE64s if (targetce == patternce[0]) { // the first ce can be a contraction found = TRUE; break; } if (!hasExpansion(coleiter)) { // checking for accents in composite character found = FALSE; break; } } targetce = firstce; while (found && patternceindex < patterncelength) { targetce = ucol_next(coleiter, status); if (U_FAILURE(*status) || targetce == UCOL_NULLORDER) { found = FALSE; break; } targetce = getCE(strsrch, targetce); if (targetce == UCOL_IGNORABLE) { continue; } // TODO: #if BOYER_MOORE, replace with code using 32-bit version of compareCE64s found = found && targetce == patternce[patternceindex]; patternceindex ++; } // initializing the rearranged accent array if (hasPatternAccents && !found) { strsrch->canonicalPrefixAccents[0] = 0; strsrch->canonicalSuffixAccents[0] = 0; if (U_FAILURE(*status)) { break; } found = doPreviousCanonicalMatch(strsrch, textoffset, status); } if (!found) { if (U_FAILURE(*status)) { break; } textoffset = reverseShift(strsrch, textoffset, targetce, patternceindex); patternceindex = 0; continue; } if (checkPreviousCanonicalMatch(strsrch, &textoffset, status)) { setColEIterOffset(coleiter, textoffset); return TRUE; } } setMatchNotFound(strsrch); return FALSE; #else int32_t textOffset; if (strsrch->search->isOverlap) { if (strsrch->search->matchedIndex != USEARCH_DONE) { textOffset = strsrch->search->matchedIndex + strsrch->search->matchedLength - 1; } else { // move the start position at the end of possible match initializePatternPCETable(strsrch, status); if (!initTextProcessedIter(strsrch, status)) { setMatchNotFound(strsrch); return FALSE; } for (int32_t nPCEs = 0; nPCEs < strsrch->pattern.pcesLength - 1; nPCEs++) { int64_t pce = strsrch->textProcessedIter->nextProcessed(NULL, NULL, status); if (pce == UCOL_PROCESSED_NULLORDER) { // at the end of the text break; } } if (U_FAILURE(*status)) { setMatchNotFound(strsrch); return FALSE; } textOffset = ucol_getOffset(strsrch->textIter); } } else { textOffset = ucol_getOffset(strsrch->textIter); } int32_t start = -1; int32_t end = -1; if (usearch_searchBackwards(strsrch, textOffset, &start, &end, status)) { strsrch->search->matchedIndex = start; strsrch->search->matchedLength = end - start; return TRUE; } else { setMatchNotFound(strsrch); return FALSE; } #endif } #endif /* #if !UCONFIG_NO_COLLATION */