/* ******************************************************************************* * Copyright (C) 1996-2015, International Business Machines * Corporation and others. All Rights Reserved. ******************************************************************************* * rulebasedcollator.cpp * * (replaced the former tblcoll.cpp) * * created on: 2012feb14 with new and old collation code * created by: Markus W. Scherer */ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "unicode/coll.h" #include "unicode/coleitr.h" #include "unicode/localpointer.h" #include "unicode/locid.h" #include "unicode/sortkey.h" #include "unicode/tblcoll.h" #include "unicode/ucol.h" #include "unicode/uiter.h" #include "unicode/uloc.h" #include "unicode/uniset.h" #include "unicode/unistr.h" #include "unicode/usetiter.h" #include "unicode/utf8.h" #include "unicode/uversion.h" #include "bocsu.h" #include "charstr.h" #include "cmemory.h" #include "collation.h" #include "collationcompare.h" #include "collationdata.h" #include "collationdatareader.h" #include "collationfastlatin.h" #include "collationiterator.h" #include "collationkeys.h" #include "collationroot.h" #include "collationsets.h" #include "collationsettings.h" #include "collationtailoring.h" #include "cstring.h" #include "uassert.h" #include "ucol_imp.h" #include "uhash.h" #include "uitercollationiterator.h" #include "ustr_imp.h" #include "utf16collationiterator.h" #include "utf8collationiterator.h" #include "uvectr64.h" U_NAMESPACE_BEGIN namespace { class FixedSortKeyByteSink : public SortKeyByteSink { public: FixedSortKeyByteSink(char *dest, int32_t destCapacity) : SortKeyByteSink(dest, destCapacity) {} virtual ~FixedSortKeyByteSink(); private: virtual void AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length); virtual UBool Resize(int32_t appendCapacity, int32_t length); }; FixedSortKeyByteSink::~FixedSortKeyByteSink() {} void FixedSortKeyByteSink::AppendBeyondCapacity(const char *bytes, int32_t /*n*/, int32_t length) { // buffer_ != NULL && bytes != NULL && n > 0 && appended_ > capacity_ // Fill the buffer completely. int32_t available = capacity_ - length; if (available > 0) { uprv_memcpy(buffer_ + length, bytes, available); } } UBool FixedSortKeyByteSink::Resize(int32_t /*appendCapacity*/, int32_t /*length*/) { return FALSE; } } // namespace // Not in an anonymous namespace, so that it can be a friend of CollationKey. class CollationKeyByteSink : public SortKeyByteSink { public: CollationKeyByteSink(CollationKey &key) : SortKeyByteSink(reinterpret_cast<char *>(key.getBytes()), key.getCapacity()), key_(key) {} virtual ~CollationKeyByteSink(); private: virtual void AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length); virtual UBool Resize(int32_t appendCapacity, int32_t length); CollationKey &key_; }; CollationKeyByteSink::~CollationKeyByteSink() {} void CollationKeyByteSink::AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length) { // buffer_ != NULL && bytes != NULL && n > 0 && appended_ > capacity_ if (Resize(n, length)) { uprv_memcpy(buffer_ + length, bytes, n); } } UBool CollationKeyByteSink::Resize(int32_t appendCapacity, int32_t length) { if (buffer_ == NULL) { return FALSE; // allocation failed before already } int32_t newCapacity = 2 * capacity_; int32_t altCapacity = length + 2 * appendCapacity; if (newCapacity < altCapacity) { newCapacity = altCapacity; } if (newCapacity < 200) { newCapacity = 200; } uint8_t *newBuffer = key_.reallocate(newCapacity, length); if (newBuffer == NULL) { SetNotOk(); return FALSE; } buffer_ = reinterpret_cast<char *>(newBuffer); capacity_ = newCapacity; return TRUE; } RuleBasedCollator::RuleBasedCollator(const RuleBasedCollator &other) : Collator(other), data(other.data), settings(other.settings), tailoring(other.tailoring), cacheEntry(other.cacheEntry), validLocale(other.validLocale), explicitlySetAttributes(other.explicitlySetAttributes), actualLocaleIsSameAsValid(other.actualLocaleIsSameAsValid) { settings->addRef(); cacheEntry->addRef(); } RuleBasedCollator::RuleBasedCollator(const uint8_t *bin, int32_t length, const RuleBasedCollator *base, UErrorCode &errorCode) : data(NULL), settings(NULL), tailoring(NULL), cacheEntry(NULL), validLocale(""), explicitlySetAttributes(0), actualLocaleIsSameAsValid(FALSE) { if(U_FAILURE(errorCode)) { return; } if(bin == NULL || length == 0 || base == NULL) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return; } const CollationTailoring *root = CollationRoot::getRoot(errorCode); if(U_FAILURE(errorCode)) { return; } if(base->tailoring != root) { errorCode = U_UNSUPPORTED_ERROR; return; } LocalPointer<CollationTailoring> t(new CollationTailoring(base->tailoring->settings)); if(t.isNull() || t->isBogus()) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } CollationDataReader::read(base->tailoring, bin, length, *t, errorCode); if(U_FAILURE(errorCode)) { return; } t->actualLocale.setToBogus(); adoptTailoring(t.orphan(), errorCode); } RuleBasedCollator::RuleBasedCollator(const CollationCacheEntry *entry) : data(entry->tailoring->data), settings(entry->tailoring->settings), tailoring(entry->tailoring), cacheEntry(entry), validLocale(entry->validLocale), explicitlySetAttributes(0), actualLocaleIsSameAsValid(FALSE) { settings->addRef(); cacheEntry->addRef(); } RuleBasedCollator::~RuleBasedCollator() { SharedObject::clearPtr(settings); SharedObject::clearPtr(cacheEntry); } void RuleBasedCollator::adoptTailoring(CollationTailoring *t, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { t->deleteIfZeroRefCount(); return; } U_ASSERT(settings == NULL && data == NULL && tailoring == NULL && cacheEntry == NULL); cacheEntry = new CollationCacheEntry(t->actualLocale, t); if(cacheEntry == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; t->deleteIfZeroRefCount(); return; } data = t->data; settings = t->settings; settings->addRef(); tailoring = t; cacheEntry->addRef(); validLocale = t->actualLocale; actualLocaleIsSameAsValid = FALSE; } Collator * RuleBasedCollator::clone() const { return new RuleBasedCollator(*this); } RuleBasedCollator &RuleBasedCollator::operator=(const RuleBasedCollator &other) { if(this == &other) { return *this; } SharedObject::copyPtr(other.settings, settings); tailoring = other.tailoring; SharedObject::copyPtr(other.cacheEntry, cacheEntry); data = tailoring->data; validLocale = other.validLocale; explicitlySetAttributes = other.explicitlySetAttributes; actualLocaleIsSameAsValid = other.actualLocaleIsSameAsValid; return *this; } UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedCollator) UBool RuleBasedCollator::operator==(const Collator& other) const { if(this == &other) { return TRUE; } if(!Collator::operator==(other)) { return FALSE; } const RuleBasedCollator &o = static_cast<const RuleBasedCollator &>(other); if(*settings != *o.settings) { return FALSE; } if(data == o.data) { return TRUE; } UBool thisIsRoot = data->base == NULL; UBool otherIsRoot = o.data->base == NULL; U_ASSERT(!thisIsRoot || !otherIsRoot); // otherwise their data pointers should be == if(thisIsRoot != otherIsRoot) { return FALSE; } if((thisIsRoot || !tailoring->rules.isEmpty()) && (otherIsRoot || !o.tailoring->rules.isEmpty())) { // Shortcut: If both collators have valid rule strings, then compare those. if(tailoring->rules == o.tailoring->rules) { return TRUE; } } // Different rule strings can result in the same or equivalent tailoring. // The rule strings are optional in ICU resource bundles, although included by default. // cloneBinary() drops the rule string. UErrorCode errorCode = U_ZERO_ERROR; LocalPointer<UnicodeSet> thisTailored(getTailoredSet(errorCode)); LocalPointer<UnicodeSet> otherTailored(o.getTailoredSet(errorCode)); if(U_FAILURE(errorCode)) { return FALSE; } if(*thisTailored != *otherTailored) { return FALSE; } // For completeness, we should compare all of the mappings; // or we should create a list of strings, sort it with one collator, // and check if both collators compare adjacent strings the same // (order & strength, down to quaternary); or similar. // Testing equality of collators seems unusual. return TRUE; } int32_t RuleBasedCollator::hashCode() const { int32_t h = settings->hashCode(); if(data->base == NULL) { return h; } // root collator // Do not rely on the rule string, see comments in operator==(). UErrorCode errorCode = U_ZERO_ERROR; LocalPointer<UnicodeSet> set(getTailoredSet(errorCode)); if(U_FAILURE(errorCode)) { return 0; } UnicodeSetIterator iter(*set); while(iter.next() && !iter.isString()) { h ^= data->getCE32(iter.getCodepoint()); } return h; } void RuleBasedCollator::setLocales(const Locale &requested, const Locale &valid, const Locale &actual) { if(actual == tailoring->actualLocale) { actualLocaleIsSameAsValid = FALSE; } else { U_ASSERT(actual == valid); actualLocaleIsSameAsValid = TRUE; } // Do not modify tailoring.actualLocale: // We cannot be sure that that would be thread-safe. validLocale = valid; (void)requested; // Ignore, see also ticket #10477. } Locale RuleBasedCollator::getLocale(ULocDataLocaleType type, UErrorCode& errorCode) const { if(U_FAILURE(errorCode)) { return Locale::getRoot(); } switch(type) { case ULOC_ACTUAL_LOCALE: return actualLocaleIsSameAsValid ? validLocale : tailoring->actualLocale; case ULOC_VALID_LOCALE: return validLocale; case ULOC_REQUESTED_LOCALE: default: errorCode = U_ILLEGAL_ARGUMENT_ERROR; return Locale::getRoot(); } } const char * RuleBasedCollator::internalGetLocaleID(ULocDataLocaleType type, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return NULL; } const Locale *result; switch(type) { case ULOC_ACTUAL_LOCALE: result = actualLocaleIsSameAsValid ? &validLocale : &tailoring->actualLocale; break; case ULOC_VALID_LOCALE: result = &validLocale; break; case ULOC_REQUESTED_LOCALE: default: errorCode = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } if(result->isBogus()) { return NULL; } const char *id = result->getName(); return id[0] == 0 ? "root" : id; } const UnicodeString& RuleBasedCollator::getRules() const { return tailoring->rules; } void RuleBasedCollator::getRules(UColRuleOption delta, UnicodeString &buffer) const { if(delta == UCOL_TAILORING_ONLY) { buffer = tailoring->rules; return; } // UCOL_FULL_RULES buffer.remove(); CollationLoader::appendRootRules(buffer); buffer.append(tailoring->rules).getTerminatedBuffer(); } void RuleBasedCollator::getVersion(UVersionInfo version) const { uprv_memcpy(version, tailoring->version, U_MAX_VERSION_LENGTH); version[0] += (UCOL_RUNTIME_VERSION << 4) + (UCOL_RUNTIME_VERSION >> 4); } UnicodeSet * RuleBasedCollator::getTailoredSet(UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return NULL; } UnicodeSet *tailored = new UnicodeSet(); if(tailored == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return NULL; } if(data->base != NULL) { TailoredSet(tailored).forData(data, errorCode); if(U_FAILURE(errorCode)) { delete tailored; return NULL; } } return tailored; } void RuleBasedCollator::internalGetContractionsAndExpansions( UnicodeSet *contractions, UnicodeSet *expansions, UBool addPrefixes, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return; } if(contractions != NULL) { contractions->clear(); } if(expansions != NULL) { expansions->clear(); } ContractionsAndExpansions(contractions, expansions, NULL, addPrefixes).forData(data, errorCode); } void RuleBasedCollator::internalAddContractions(UChar32 c, UnicodeSet &set, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return; } ContractionsAndExpansions(&set, NULL, NULL, FALSE).forCodePoint(data, c, errorCode); } const CollationSettings & RuleBasedCollator::getDefaultSettings() const { return *tailoring->settings; } UColAttributeValue RuleBasedCollator::getAttribute(UColAttribute attr, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return UCOL_DEFAULT; } int32_t option; switch(attr) { case UCOL_FRENCH_COLLATION: option = CollationSettings::BACKWARD_SECONDARY; break; case UCOL_ALTERNATE_HANDLING: return settings->getAlternateHandling(); case UCOL_CASE_FIRST: return settings->getCaseFirst(); case UCOL_CASE_LEVEL: option = CollationSettings::CASE_LEVEL; break; case UCOL_NORMALIZATION_MODE: option = CollationSettings::CHECK_FCD; break; case UCOL_STRENGTH: return (UColAttributeValue)settings->getStrength(); case UCOL_HIRAGANA_QUATERNARY_MODE: // Deprecated attribute, unsettable. return UCOL_OFF; case UCOL_NUMERIC_COLLATION: option = CollationSettings::NUMERIC; break; default: errorCode = U_ILLEGAL_ARGUMENT_ERROR; return UCOL_DEFAULT; } return ((settings->options & option) == 0) ? UCOL_OFF : UCOL_ON; } void RuleBasedCollator::setAttribute(UColAttribute attr, UColAttributeValue value, UErrorCode &errorCode) { UColAttributeValue oldValue = getAttribute(attr, errorCode); if(U_FAILURE(errorCode)) { return; } if(value == oldValue) { setAttributeExplicitly(attr); return; } const CollationSettings &defaultSettings = getDefaultSettings(); if(settings == &defaultSettings) { if(value == UCOL_DEFAULT) { setAttributeDefault(attr); return; } } CollationSettings *ownedSettings = SharedObject::copyOnWrite(settings); if(ownedSettings == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } switch(attr) { case UCOL_FRENCH_COLLATION: ownedSettings->setFlag(CollationSettings::BACKWARD_SECONDARY, value, defaultSettings.options, errorCode); break; case UCOL_ALTERNATE_HANDLING: ownedSettings->setAlternateHandling(value, defaultSettings.options, errorCode); break; case UCOL_CASE_FIRST: ownedSettings->setCaseFirst(value, defaultSettings.options, errorCode); break; case UCOL_CASE_LEVEL: ownedSettings->setFlag(CollationSettings::CASE_LEVEL, value, defaultSettings.options, errorCode); break; case UCOL_NORMALIZATION_MODE: ownedSettings->setFlag(CollationSettings::CHECK_FCD, value, defaultSettings.options, errorCode); break; case UCOL_STRENGTH: ownedSettings->setStrength(value, defaultSettings.options, errorCode); break; case UCOL_HIRAGANA_QUATERNARY_MODE: // Deprecated attribute. Check for valid values but do not change anything. if(value != UCOL_OFF && value != UCOL_ON && value != UCOL_DEFAULT) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; } break; case UCOL_NUMERIC_COLLATION: ownedSettings->setFlag(CollationSettings::NUMERIC, value, defaultSettings.options, errorCode); break; default: errorCode = U_ILLEGAL_ARGUMENT_ERROR; break; } if(U_FAILURE(errorCode)) { return; } setFastLatinOptions(*ownedSettings); if(value == UCOL_DEFAULT) { setAttributeDefault(attr); } else { setAttributeExplicitly(attr); } } Collator & RuleBasedCollator::setMaxVariable(UColReorderCode group, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return *this; } // Convert the reorder code into a MaxVariable number, or UCOL_DEFAULT=-1. int32_t value; if(group == UCOL_REORDER_CODE_DEFAULT) { value = UCOL_DEFAULT; } else if(UCOL_REORDER_CODE_FIRST <= group && group <= UCOL_REORDER_CODE_CURRENCY) { value = group - UCOL_REORDER_CODE_FIRST; } else { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return *this; } CollationSettings::MaxVariable oldValue = settings->getMaxVariable(); if(value == oldValue) { setAttributeExplicitly(ATTR_VARIABLE_TOP); return *this; } const CollationSettings &defaultSettings = getDefaultSettings(); if(settings == &defaultSettings) { if(value == UCOL_DEFAULT) { setAttributeDefault(ATTR_VARIABLE_TOP); return *this; } } CollationSettings *ownedSettings = SharedObject::copyOnWrite(settings); if(ownedSettings == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return *this; } if(group == UCOL_REORDER_CODE_DEFAULT) { group = (UColReorderCode)(UCOL_REORDER_CODE_FIRST + defaultSettings.getMaxVariable()); } uint32_t varTop = data->getLastPrimaryForGroup(group); U_ASSERT(varTop != 0); ownedSettings->setMaxVariable(value, defaultSettings.options, errorCode); if(U_FAILURE(errorCode)) { return *this; } ownedSettings->variableTop = varTop; setFastLatinOptions(*ownedSettings); if(value == UCOL_DEFAULT) { setAttributeDefault(ATTR_VARIABLE_TOP); } else { setAttributeExplicitly(ATTR_VARIABLE_TOP); } return *this; } UColReorderCode RuleBasedCollator::getMaxVariable() const { return (UColReorderCode)(UCOL_REORDER_CODE_FIRST + settings->getMaxVariable()); } uint32_t RuleBasedCollator::getVariableTop(UErrorCode & /*errorCode*/) const { return settings->variableTop; } uint32_t RuleBasedCollator::setVariableTop(const UChar *varTop, int32_t len, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return 0; } if(varTop == NULL && len !=0) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return 0; } if(len < 0) { len = u_strlen(varTop); } if(len == 0) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UBool numeric = settings->isNumeric(); int64_t ce1, ce2; if(settings->dontCheckFCD()) { UTF16CollationIterator ci(data, numeric, varTop, varTop, varTop + len); ce1 = ci.nextCE(errorCode); ce2 = ci.nextCE(errorCode); } else { FCDUTF16CollationIterator ci(data, numeric, varTop, varTop, varTop + len); ce1 = ci.nextCE(errorCode); ce2 = ci.nextCE(errorCode); } if(ce1 == Collation::NO_CE || ce2 != Collation::NO_CE) { errorCode = U_CE_NOT_FOUND_ERROR; return 0; } setVariableTop((uint32_t)(ce1 >> 32), errorCode); return settings->variableTop; } uint32_t RuleBasedCollator::setVariableTop(const UnicodeString &varTop, UErrorCode &errorCode) { return setVariableTop(varTop.getBuffer(), varTop.length(), errorCode); } void RuleBasedCollator::setVariableTop(uint32_t varTop, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } if(varTop != settings->variableTop) { // Pin the variable top to the end of the reordering group which contains it. // Only a few special groups are supported. int32_t group = data->getGroupForPrimary(varTop); if(group < UCOL_REORDER_CODE_FIRST || UCOL_REORDER_CODE_CURRENCY < group) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return; } uint32_t v = data->getLastPrimaryForGroup(group); U_ASSERT(v != 0 && v >= varTop); varTop = v; if(varTop != settings->variableTop) { CollationSettings *ownedSettings = SharedObject::copyOnWrite(settings); if(ownedSettings == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } ownedSettings->setMaxVariable(group - UCOL_REORDER_CODE_FIRST, getDefaultSettings().options, errorCode); if(U_FAILURE(errorCode)) { return; } ownedSettings->variableTop = varTop; setFastLatinOptions(*ownedSettings); } } if(varTop == getDefaultSettings().variableTop) { setAttributeDefault(ATTR_VARIABLE_TOP); } else { setAttributeExplicitly(ATTR_VARIABLE_TOP); } } int32_t RuleBasedCollator::getReorderCodes(int32_t *dest, int32_t capacity, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return 0; } if(capacity < 0 || (dest == NULL && capacity > 0)) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return 0; } int32_t length = settings->reorderCodesLength; if(length == 0) { return 0; } if(length > capacity) { errorCode = U_BUFFER_OVERFLOW_ERROR; return length; } uprv_memcpy(dest, settings->reorderCodes, length * 4); return length; } void RuleBasedCollator::setReorderCodes(const int32_t *reorderCodes, int32_t length, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } if(length < 0 || (reorderCodes == NULL && length > 0)) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return; } if(length == 1 && reorderCodes[0] == UCOL_REORDER_CODE_NONE) { length = 0; } if(length == settings->reorderCodesLength && uprv_memcmp(reorderCodes, settings->reorderCodes, length * 4) == 0) { return; } const CollationSettings &defaultSettings = getDefaultSettings(); if(length == 1 && reorderCodes[0] == UCOL_REORDER_CODE_DEFAULT) { if(settings != &defaultSettings) { CollationSettings *ownedSettings = SharedObject::copyOnWrite(settings); if(ownedSettings == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } ownedSettings->copyReorderingFrom(defaultSettings, errorCode); setFastLatinOptions(*ownedSettings); } return; } CollationSettings *ownedSettings = SharedObject::copyOnWrite(settings); if(ownedSettings == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } ownedSettings->setReordering(*data, reorderCodes, length, errorCode); setFastLatinOptions(*ownedSettings); } void RuleBasedCollator::setFastLatinOptions(CollationSettings &ownedSettings) const { ownedSettings.fastLatinOptions = CollationFastLatin::getOptions( data, ownedSettings, ownedSettings.fastLatinPrimaries, UPRV_LENGTHOF(ownedSettings.fastLatinPrimaries)); } UCollationResult RuleBasedCollator::compare(const UnicodeString &left, const UnicodeString &right, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return UCOL_EQUAL; } return doCompare(left.getBuffer(), left.length(), right.getBuffer(), right.length(), errorCode); } UCollationResult RuleBasedCollator::compare(const UnicodeString &left, const UnicodeString &right, int32_t length, UErrorCode &errorCode) const { if(U_FAILURE(errorCode) || length == 0) { return UCOL_EQUAL; } if(length < 0) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return UCOL_EQUAL; } int32_t leftLength = left.length(); int32_t rightLength = right.length(); if(leftLength > length) { leftLength = length; } if(rightLength > length) { rightLength = length; } return doCompare(left.getBuffer(), leftLength, right.getBuffer(), rightLength, errorCode); } UCollationResult RuleBasedCollator::compare(const UChar *left, int32_t leftLength, const UChar *right, int32_t rightLength, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return UCOL_EQUAL; } if((left == NULL && leftLength != 0) || (right == NULL && rightLength != 0)) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return UCOL_EQUAL; } // Make sure both or neither strings have a known length. // We do not optimize for mixed length/termination. if(leftLength >= 0) { if(rightLength < 0) { rightLength = u_strlen(right); } } else { if(rightLength >= 0) { leftLength = u_strlen(left); } } return doCompare(left, leftLength, right, rightLength, errorCode); } UCollationResult RuleBasedCollator::compareUTF8(const StringPiece &left, const StringPiece &right, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return UCOL_EQUAL; } const uint8_t *leftBytes = reinterpret_cast<const uint8_t *>(left.data()); const uint8_t *rightBytes = reinterpret_cast<const uint8_t *>(right.data()); if((leftBytes == NULL && !left.empty()) || (rightBytes == NULL && !right.empty())) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return UCOL_EQUAL; } return doCompare(leftBytes, left.length(), rightBytes, right.length(), errorCode); } UCollationResult RuleBasedCollator::internalCompareUTF8(const char *left, int32_t leftLength, const char *right, int32_t rightLength, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return UCOL_EQUAL; } if((left == NULL && leftLength != 0) || (right == NULL && rightLength != 0)) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return UCOL_EQUAL; } // Make sure both or neither strings have a known length. // We do not optimize for mixed length/termination. if(leftLength >= 0) { if(rightLength < 0) { rightLength = uprv_strlen(right); } } else { if(rightLength >= 0) { leftLength = uprv_strlen(left); } } return doCompare(reinterpret_cast<const uint8_t *>(left), leftLength, reinterpret_cast<const uint8_t *>(right), rightLength, errorCode); } namespace { /** * Abstract iterator for identical-level string comparisons. * Returns FCD code points and handles temporary switching to NFD. */ class NFDIterator : public UObject { public: NFDIterator() : index(-1), length(0) {} virtual ~NFDIterator() {} /** * Returns the next code point from the internal normalization buffer, * or else the next text code point. * Returns -1 at the end of the text. */ UChar32 nextCodePoint() { if(index >= 0) { if(index == length) { index = -1; } else { UChar32 c; U16_NEXT_UNSAFE(decomp, index, c); return c; } } return nextRawCodePoint(); } /** * @param nfcImpl * @param c the last code point returned by nextCodePoint() or nextDecomposedCodePoint() * @return the first code point in c's decomposition, * or c itself if it was decomposed already or if it does not decompose */ UChar32 nextDecomposedCodePoint(const Normalizer2Impl &nfcImpl, UChar32 c) { if(index >= 0) { return c; } decomp = nfcImpl.getDecomposition(c, buffer, length); if(decomp == NULL) { return c; } index = 0; U16_NEXT_UNSAFE(decomp, index, c); return c; } protected: /** * Returns the next text code point in FCD order. * Returns -1 at the end of the text. */ virtual UChar32 nextRawCodePoint() = 0; private: const UChar *decomp; UChar buffer[4]; int32_t index; int32_t length; }; class UTF16NFDIterator : public NFDIterator { public: UTF16NFDIterator(const UChar *text, const UChar *textLimit) : s(text), limit(textLimit) {} protected: virtual UChar32 nextRawCodePoint() { if(s == limit) { return U_SENTINEL; } UChar32 c = *s++; if(limit == NULL && c == 0) { s = NULL; return U_SENTINEL; } UChar trail; if(U16_IS_LEAD(c) && s != limit && U16_IS_TRAIL(trail = *s)) { ++s; c = U16_GET_SUPPLEMENTARY(c, trail); } return c; } const UChar *s; const UChar *limit; }; class FCDUTF16NFDIterator : public UTF16NFDIterator { public: FCDUTF16NFDIterator(const Normalizer2Impl &nfcImpl, const UChar *text, const UChar *textLimit) : UTF16NFDIterator(NULL, NULL) { UErrorCode errorCode = U_ZERO_ERROR; const UChar *spanLimit = nfcImpl.makeFCD(text, textLimit, NULL, errorCode); if(U_FAILURE(errorCode)) { return; } if(spanLimit == textLimit || (textLimit == NULL && *spanLimit == 0)) { s = text; limit = spanLimit; } else { str.setTo(text, (int32_t)(spanLimit - text)); { ReorderingBuffer buffer(nfcImpl, str); if(buffer.init(str.length(), errorCode)) { nfcImpl.makeFCD(spanLimit, textLimit, &buffer, errorCode); } } if(U_SUCCESS(errorCode)) { s = str.getBuffer(); limit = s + str.length(); } } } private: UnicodeString str; }; class UTF8NFDIterator : public NFDIterator { public: UTF8NFDIterator(const uint8_t *text, int32_t textLength) : s(text), pos(0), length(textLength) {} protected: virtual UChar32 nextRawCodePoint() { if(pos == length || (s[pos] == 0 && length < 0)) { return U_SENTINEL; } UChar32 c; U8_NEXT_OR_FFFD(s, pos, length, c); return c; } const uint8_t *s; int32_t pos; int32_t length; }; class FCDUTF8NFDIterator : public NFDIterator { public: FCDUTF8NFDIterator(const CollationData *data, const uint8_t *text, int32_t textLength) : u8ci(data, FALSE, text, 0, textLength) {} protected: virtual UChar32 nextRawCodePoint() { UErrorCode errorCode = U_ZERO_ERROR; return u8ci.nextCodePoint(errorCode); } private: FCDUTF8CollationIterator u8ci; }; class UIterNFDIterator : public NFDIterator { public: UIterNFDIterator(UCharIterator &it) : iter(it) {} protected: virtual UChar32 nextRawCodePoint() { return uiter_next32(&iter); } private: UCharIterator &iter; }; class FCDUIterNFDIterator : public NFDIterator { public: FCDUIterNFDIterator(const CollationData *data, UCharIterator &it, int32_t startIndex) : uici(data, FALSE, it, startIndex) {} protected: virtual UChar32 nextRawCodePoint() { UErrorCode errorCode = U_ZERO_ERROR; return uici.nextCodePoint(errorCode); } private: FCDUIterCollationIterator uici; }; UCollationResult compareNFDIter(const Normalizer2Impl &nfcImpl, NFDIterator &left, NFDIterator &right) { for(;;) { // Fetch the next FCD code point from each string. UChar32 leftCp = left.nextCodePoint(); UChar32 rightCp = right.nextCodePoint(); if(leftCp == rightCp) { if(leftCp < 0) { break; } continue; } // If they are different, then decompose each and compare again. if(leftCp < 0) { leftCp = -2; // end of string } else if(leftCp == 0xfffe) { leftCp = -1; // U+FFFE: merge separator } else { leftCp = left.nextDecomposedCodePoint(nfcImpl, leftCp); } if(rightCp < 0) { rightCp = -2; // end of string } else if(rightCp == 0xfffe) { rightCp = -1; // U+FFFE: merge separator } else { rightCp = right.nextDecomposedCodePoint(nfcImpl, rightCp); } if(leftCp < rightCp) { return UCOL_LESS; } if(leftCp > rightCp) { return UCOL_GREATER; } } return UCOL_EQUAL; } } // namespace UCollationResult RuleBasedCollator::doCompare(const UChar *left, int32_t leftLength, const UChar *right, int32_t rightLength, UErrorCode &errorCode) const { // U_FAILURE(errorCode) checked by caller. if(left == right && leftLength == rightLength) { return UCOL_EQUAL; } // Identical-prefix test. const UChar *leftLimit; const UChar *rightLimit; int32_t equalPrefixLength = 0; if(leftLength < 0) { leftLimit = NULL; rightLimit = NULL; UChar c; while((c = left[equalPrefixLength]) == right[equalPrefixLength]) { if(c == 0) { return UCOL_EQUAL; } ++equalPrefixLength; } } else { leftLimit = left + leftLength; rightLimit = right + rightLength; for(;;) { if(equalPrefixLength == leftLength) { if(equalPrefixLength == rightLength) { return UCOL_EQUAL; } break; } else if(equalPrefixLength == rightLength || left[equalPrefixLength] != right[equalPrefixLength]) { break; } ++equalPrefixLength; } } UBool numeric = settings->isNumeric(); if(equalPrefixLength > 0) { if((equalPrefixLength != leftLength && data->isUnsafeBackward(left[equalPrefixLength], numeric)) || (equalPrefixLength != rightLength && data->isUnsafeBackward(right[equalPrefixLength], numeric))) { // Identical prefix: Back up to the start of a contraction or reordering sequence. while(--equalPrefixLength > 0 && data->isUnsafeBackward(left[equalPrefixLength], numeric)) {} } // Notes: // - A longer string can compare equal to a prefix of it if only ignorables follow. // - With a backward level, a longer string can compare less-than a prefix of it. // Pass the actual start of each string into the CollationIterators, // plus the equalPrefixLength position, // so that prefix matches back into the equal prefix work. } int32_t result; int32_t fastLatinOptions = settings->fastLatinOptions; if(fastLatinOptions >= 0 && (equalPrefixLength == leftLength || left[equalPrefixLength] <= CollationFastLatin::LATIN_MAX) && (equalPrefixLength == rightLength || right[equalPrefixLength] <= CollationFastLatin::LATIN_MAX)) { if(leftLength >= 0) { result = CollationFastLatin::compareUTF16(data->fastLatinTable, settings->fastLatinPrimaries, fastLatinOptions, left + equalPrefixLength, leftLength - equalPrefixLength, right + equalPrefixLength, rightLength - equalPrefixLength); } else { result = CollationFastLatin::compareUTF16(data->fastLatinTable, settings->fastLatinPrimaries, fastLatinOptions, left + equalPrefixLength, -1, right + equalPrefixLength, -1); } } else { result = CollationFastLatin::BAIL_OUT_RESULT; } if(result == CollationFastLatin::BAIL_OUT_RESULT) { if(settings->dontCheckFCD()) { UTF16CollationIterator leftIter(data, numeric, left, left + equalPrefixLength, leftLimit); UTF16CollationIterator rightIter(data, numeric, right, right + equalPrefixLength, rightLimit); result = CollationCompare::compareUpToQuaternary(leftIter, rightIter, *settings, errorCode); } else { FCDUTF16CollationIterator leftIter(data, numeric, left, left + equalPrefixLength, leftLimit); FCDUTF16CollationIterator rightIter(data, numeric, right, right + equalPrefixLength, rightLimit); result = CollationCompare::compareUpToQuaternary(leftIter, rightIter, *settings, errorCode); } } if(result != UCOL_EQUAL || settings->getStrength() < UCOL_IDENTICAL || U_FAILURE(errorCode)) { return (UCollationResult)result; } // Note: If NUL-terminated, we could get the actual limits from the iterators now. // That would complicate the iterators a bit, NUL-terminated strings are only a C convenience, // and the benefit seems unlikely to be measurable. // Compare identical level. const Normalizer2Impl &nfcImpl = data->nfcImpl; left += equalPrefixLength; right += equalPrefixLength; if(settings->dontCheckFCD()) { UTF16NFDIterator leftIter(left, leftLimit); UTF16NFDIterator rightIter(right, rightLimit); return compareNFDIter(nfcImpl, leftIter, rightIter); } else { FCDUTF16NFDIterator leftIter(nfcImpl, left, leftLimit); FCDUTF16NFDIterator rightIter(nfcImpl, right, rightLimit); return compareNFDIter(nfcImpl, leftIter, rightIter); } } UCollationResult RuleBasedCollator::doCompare(const uint8_t *left, int32_t leftLength, const uint8_t *right, int32_t rightLength, UErrorCode &errorCode) const { // U_FAILURE(errorCode) checked by caller. if(left == right && leftLength == rightLength) { return UCOL_EQUAL; } // Identical-prefix test. int32_t equalPrefixLength = 0; if(leftLength < 0) { uint8_t c; while((c = left[equalPrefixLength]) == right[equalPrefixLength]) { if(c == 0) { return UCOL_EQUAL; } ++equalPrefixLength; } } else { for(;;) { if(equalPrefixLength == leftLength) { if(equalPrefixLength == rightLength) { return UCOL_EQUAL; } break; } else if(equalPrefixLength == rightLength || left[equalPrefixLength] != right[equalPrefixLength]) { break; } ++equalPrefixLength; } } // Back up to the start of a partially-equal code point. if(equalPrefixLength > 0 && ((equalPrefixLength != leftLength && U8_IS_TRAIL(left[equalPrefixLength])) || (equalPrefixLength != rightLength && U8_IS_TRAIL(right[equalPrefixLength])))) { while(--equalPrefixLength > 0 && U8_IS_TRAIL(left[equalPrefixLength])) {} } UBool numeric = settings->isNumeric(); if(equalPrefixLength > 0) { UBool unsafe = FALSE; if(equalPrefixLength != leftLength) { int32_t i = equalPrefixLength; UChar32 c; U8_NEXT_OR_FFFD(left, i, leftLength, c); unsafe = data->isUnsafeBackward(c, numeric); } if(!unsafe && equalPrefixLength != rightLength) { int32_t i = equalPrefixLength; UChar32 c; U8_NEXT_OR_FFFD(right, i, rightLength, c); unsafe = data->isUnsafeBackward(c, numeric); } if(unsafe) { // Identical prefix: Back up to the start of a contraction or reordering sequence. UChar32 c; do { U8_PREV_OR_FFFD(left, 0, equalPrefixLength, c); } while(equalPrefixLength > 0 && data->isUnsafeBackward(c, numeric)); } // See the notes in the UTF-16 version. // Pass the actual start of each string into the CollationIterators, // plus the equalPrefixLength position, // so that prefix matches back into the equal prefix work. } int32_t result; int32_t fastLatinOptions = settings->fastLatinOptions; if(fastLatinOptions >= 0 && (equalPrefixLength == leftLength || left[equalPrefixLength] <= CollationFastLatin::LATIN_MAX_UTF8_LEAD) && (equalPrefixLength == rightLength || right[equalPrefixLength] <= CollationFastLatin::LATIN_MAX_UTF8_LEAD)) { if(leftLength >= 0) { result = CollationFastLatin::compareUTF8(data->fastLatinTable, settings->fastLatinPrimaries, fastLatinOptions, left + equalPrefixLength, leftLength - equalPrefixLength, right + equalPrefixLength, rightLength - equalPrefixLength); } else { result = CollationFastLatin::compareUTF8(data->fastLatinTable, settings->fastLatinPrimaries, fastLatinOptions, left + equalPrefixLength, -1, right + equalPrefixLength, -1); } } else { result = CollationFastLatin::BAIL_OUT_RESULT; } if(result == CollationFastLatin::BAIL_OUT_RESULT) { if(settings->dontCheckFCD()) { UTF8CollationIterator leftIter(data, numeric, left, equalPrefixLength, leftLength); UTF8CollationIterator rightIter(data, numeric, right, equalPrefixLength, rightLength); result = CollationCompare::compareUpToQuaternary(leftIter, rightIter, *settings, errorCode); } else { FCDUTF8CollationIterator leftIter(data, numeric, left, equalPrefixLength, leftLength); FCDUTF8CollationIterator rightIter(data, numeric, right, equalPrefixLength, rightLength); result = CollationCompare::compareUpToQuaternary(leftIter, rightIter, *settings, errorCode); } } if(result != UCOL_EQUAL || settings->getStrength() < UCOL_IDENTICAL || U_FAILURE(errorCode)) { return (UCollationResult)result; } // Note: If NUL-terminated, we could get the actual limits from the iterators now. // That would complicate the iterators a bit, NUL-terminated strings are only a C convenience, // and the benefit seems unlikely to be measurable. // Compare identical level. const Normalizer2Impl &nfcImpl = data->nfcImpl; left += equalPrefixLength; right += equalPrefixLength; if(leftLength > 0) { leftLength -= equalPrefixLength; rightLength -= equalPrefixLength; } if(settings->dontCheckFCD()) { UTF8NFDIterator leftIter(left, leftLength); UTF8NFDIterator rightIter(right, rightLength); return compareNFDIter(nfcImpl, leftIter, rightIter); } else { FCDUTF8NFDIterator leftIter(data, left, leftLength); FCDUTF8NFDIterator rightIter(data, right, rightLength); return compareNFDIter(nfcImpl, leftIter, rightIter); } } UCollationResult RuleBasedCollator::compare(UCharIterator &left, UCharIterator &right, UErrorCode &errorCode) const { if(U_FAILURE(errorCode) || &left == &right) { return UCOL_EQUAL; } UBool numeric = settings->isNumeric(); // Identical-prefix test. int32_t equalPrefixLength = 0; { UChar32 leftUnit; UChar32 rightUnit; while((leftUnit = left.next(&left)) == (rightUnit = right.next(&right))) { if(leftUnit < 0) { return UCOL_EQUAL; } ++equalPrefixLength; } // Back out the code units that differed, for the real collation comparison. if(leftUnit >= 0) { left.previous(&left); } if(rightUnit >= 0) { right.previous(&right); } if(equalPrefixLength > 0) { if((leftUnit >= 0 && data->isUnsafeBackward(leftUnit, numeric)) || (rightUnit >= 0 && data->isUnsafeBackward(rightUnit, numeric))) { // Identical prefix: Back up to the start of a contraction or reordering sequence. do { --equalPrefixLength; leftUnit = left.previous(&left); right.previous(&right); } while(equalPrefixLength > 0 && data->isUnsafeBackward(leftUnit, numeric)); } // See the notes in the UTF-16 version. } } UCollationResult result; if(settings->dontCheckFCD()) { UIterCollationIterator leftIter(data, numeric, left); UIterCollationIterator rightIter(data, numeric, right); result = CollationCompare::compareUpToQuaternary(leftIter, rightIter, *settings, errorCode); } else { FCDUIterCollationIterator leftIter(data, numeric, left, equalPrefixLength); FCDUIterCollationIterator rightIter(data, numeric, right, equalPrefixLength); result = CollationCompare::compareUpToQuaternary(leftIter, rightIter, *settings, errorCode); } if(result != UCOL_EQUAL || settings->getStrength() < UCOL_IDENTICAL || U_FAILURE(errorCode)) { return result; } // Compare identical level. left.move(&left, equalPrefixLength, UITER_ZERO); right.move(&right, equalPrefixLength, UITER_ZERO); const Normalizer2Impl &nfcImpl = data->nfcImpl; if(settings->dontCheckFCD()) { UIterNFDIterator leftIter(left); UIterNFDIterator rightIter(right); return compareNFDIter(nfcImpl, leftIter, rightIter); } else { FCDUIterNFDIterator leftIter(data, left, equalPrefixLength); FCDUIterNFDIterator rightIter(data, right, equalPrefixLength); return compareNFDIter(nfcImpl, leftIter, rightIter); } } CollationKey & RuleBasedCollator::getCollationKey(const UnicodeString &s, CollationKey &key, UErrorCode &errorCode) const { return getCollationKey(s.getBuffer(), s.length(), key, errorCode); } CollationKey & RuleBasedCollator::getCollationKey(const UChar *s, int32_t length, CollationKey& key, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return key.setToBogus(); } if(s == NULL && length != 0) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return key.setToBogus(); } key.reset(); // resets the "bogus" state CollationKeyByteSink sink(key); writeSortKey(s, length, sink, errorCode); if(U_FAILURE(errorCode)) { key.setToBogus(); } else if(key.isBogus()) { errorCode = U_MEMORY_ALLOCATION_ERROR; } else { key.setLength(sink.NumberOfBytesAppended()); } return key; } int32_t RuleBasedCollator::getSortKey(const UnicodeString &s, uint8_t *dest, int32_t capacity) const { return getSortKey(s.getBuffer(), s.length(), dest, capacity); } int32_t RuleBasedCollator::getSortKey(const UChar *s, int32_t length, uint8_t *dest, int32_t capacity) const { if((s == NULL && length != 0) || capacity < 0 || (dest == NULL && capacity > 0)) { return 0; } uint8_t noDest[1] = { 0 }; if(dest == NULL) { // Distinguish pure preflighting from an allocation error. dest = noDest; capacity = 0; } FixedSortKeyByteSink sink(reinterpret_cast<char *>(dest), capacity); UErrorCode errorCode = U_ZERO_ERROR; writeSortKey(s, length, sink, errorCode); return U_SUCCESS(errorCode) ? sink.NumberOfBytesAppended() : 0; } void RuleBasedCollator::writeSortKey(const UChar *s, int32_t length, SortKeyByteSink &sink, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return; } const UChar *limit = (length >= 0) ? s + length : NULL; UBool numeric = settings->isNumeric(); CollationKeys::LevelCallback callback; if(settings->dontCheckFCD()) { UTF16CollationIterator iter(data, numeric, s, s, limit); CollationKeys::writeSortKeyUpToQuaternary(iter, data->compressibleBytes, *settings, sink, Collation::PRIMARY_LEVEL, callback, TRUE, errorCode); } else { FCDUTF16CollationIterator iter(data, numeric, s, s, limit); CollationKeys::writeSortKeyUpToQuaternary(iter, data->compressibleBytes, *settings, sink, Collation::PRIMARY_LEVEL, callback, TRUE, errorCode); } if(settings->getStrength() == UCOL_IDENTICAL) { writeIdenticalLevel(s, limit, sink, errorCode); } static const char terminator = 0; // TERMINATOR_BYTE sink.Append(&terminator, 1); } void RuleBasedCollator::writeIdenticalLevel(const UChar *s, const UChar *limit, SortKeyByteSink &sink, UErrorCode &errorCode) const { // NFD quick check const UChar *nfdQCYesLimit = data->nfcImpl.decompose(s, limit, NULL, errorCode); if(U_FAILURE(errorCode)) { return; } sink.Append(Collation::LEVEL_SEPARATOR_BYTE); UChar32 prev = 0; if(nfdQCYesLimit != s) { prev = u_writeIdenticalLevelRun(prev, s, (int32_t)(nfdQCYesLimit - s), sink); } // Is there non-NFD text? int32_t destLengthEstimate; if(limit != NULL) { if(nfdQCYesLimit == limit) { return; } destLengthEstimate = (int32_t)(limit - nfdQCYesLimit); } else { // s is NUL-terminated if(*nfdQCYesLimit == 0) { return; } destLengthEstimate = -1; } UnicodeString nfd; data->nfcImpl.decompose(nfdQCYesLimit, limit, nfd, destLengthEstimate, errorCode); u_writeIdenticalLevelRun(prev, nfd.getBuffer(), nfd.length(), sink); } namespace { /** * internalNextSortKeyPart() calls CollationKeys::writeSortKeyUpToQuaternary() * with an instance of this callback class. * When another level is about to be written, the callback * records the level and the number of bytes that will be written until * the sink (which is actually a FixedSortKeyByteSink) fills up. * * When internalNextSortKeyPart() is called again, it restarts with the last level * and ignores as many bytes as were written previously for that level. */ class PartLevelCallback : public CollationKeys::LevelCallback { public: PartLevelCallback(const SortKeyByteSink &s) : sink(s), level(Collation::PRIMARY_LEVEL) { levelCapacity = sink.GetRemainingCapacity(); } virtual ~PartLevelCallback() {} virtual UBool needToWrite(Collation::Level l) { if(!sink.Overflowed()) { // Remember a level that will be at least partially written. level = l; levelCapacity = sink.GetRemainingCapacity(); return TRUE; } else { return FALSE; } } Collation::Level getLevel() const { return level; } int32_t getLevelCapacity() const { return levelCapacity; } private: const SortKeyByteSink &sink; Collation::Level level; int32_t levelCapacity; }; } // namespace int32_t RuleBasedCollator::internalNextSortKeyPart(UCharIterator *iter, uint32_t state[2], uint8_t *dest, int32_t count, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return 0; } if(iter == NULL || state == NULL || count < 0 || (count > 0 && dest == NULL)) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return 0; } if(count == 0) { return 0; } FixedSortKeyByteSink sink(reinterpret_cast<char *>(dest), count); sink.IgnoreBytes((int32_t)state[1]); iter->move(iter, 0, UITER_START); Collation::Level level = (Collation::Level)state[0]; if(level <= Collation::QUATERNARY_LEVEL) { UBool numeric = settings->isNumeric(); PartLevelCallback callback(sink); if(settings->dontCheckFCD()) { UIterCollationIterator ci(data, numeric, *iter); CollationKeys::writeSortKeyUpToQuaternary(ci, data->compressibleBytes, *settings, sink, level, callback, FALSE, errorCode); } else { FCDUIterCollationIterator ci(data, numeric, *iter, 0); CollationKeys::writeSortKeyUpToQuaternary(ci, data->compressibleBytes, *settings, sink, level, callback, FALSE, errorCode); } if(U_FAILURE(errorCode)) { return 0; } if(sink.NumberOfBytesAppended() > count) { state[0] = (uint32_t)callback.getLevel(); state[1] = (uint32_t)callback.getLevelCapacity(); return count; } // All of the normal levels are done. if(settings->getStrength() == UCOL_IDENTICAL) { level = Collation::IDENTICAL_LEVEL; iter->move(iter, 0, UITER_START); } // else fall through to setting ZERO_LEVEL } if(level == Collation::IDENTICAL_LEVEL) { int32_t levelCapacity = sink.GetRemainingCapacity(); UnicodeString s; for(;;) { UChar32 c = iter->next(iter); if(c < 0) { break; } s.append((UChar)c); } const UChar *sArray = s.getBuffer(); writeIdenticalLevel(sArray, sArray + s.length(), sink, errorCode); if(U_FAILURE(errorCode)) { return 0; } if(sink.NumberOfBytesAppended() > count) { state[0] = (uint32_t)level; state[1] = (uint32_t)levelCapacity; return count; } } // ZERO_LEVEL: Fill the remainder of dest with 00 bytes. state[0] = (uint32_t)Collation::ZERO_LEVEL; state[1] = 0; int32_t length = sink.NumberOfBytesAppended(); int32_t i = length; while(i < count) { dest[i++] = 0; } return length; } void RuleBasedCollator::internalGetCEs(const UnicodeString &str, UVector64 &ces, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return; } const UChar *s = str.getBuffer(); const UChar *limit = s + str.length(); UBool numeric = settings->isNumeric(); if(settings->dontCheckFCD()) { UTF16CollationIterator iter(data, numeric, s, s, limit); int64_t ce; while((ce = iter.nextCE(errorCode)) != Collation::NO_CE) { ces.addElement(ce, errorCode); } } else { FCDUTF16CollationIterator iter(data, numeric, s, s, limit); int64_t ce; while((ce = iter.nextCE(errorCode)) != Collation::NO_CE) { ces.addElement(ce, errorCode); } } } namespace { void appendSubtag(CharString &s, char letter, const char *subtag, int32_t length, UErrorCode &errorCode) { if(U_FAILURE(errorCode) || length == 0) { return; } if(!s.isEmpty()) { s.append('_', errorCode); } s.append(letter, errorCode); for(int32_t i = 0; i < length; ++i) { s.append(uprv_toupper(subtag[i]), errorCode); } } void appendAttribute(CharString &s, char letter, UColAttributeValue value, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } if(!s.isEmpty()) { s.append('_', errorCode); } static const char *valueChars = "1234...........IXO..SN..LU......"; s.append(letter, errorCode); s.append(valueChars[value], errorCode); } } // namespace int32_t RuleBasedCollator::internalGetShortDefinitionString(const char *locale, char *buffer, int32_t capacity, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return 0; } if(buffer == NULL ? capacity != 0 : capacity < 0) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return 0; } if(locale == NULL) { locale = internalGetLocaleID(ULOC_VALID_LOCALE, errorCode); } char resultLocale[ULOC_FULLNAME_CAPACITY + 1]; int32_t length = ucol_getFunctionalEquivalent(resultLocale, ULOC_FULLNAME_CAPACITY, "collation", locale, NULL, &errorCode); if(U_FAILURE(errorCode)) { return 0; } if(length == 0) { uprv_strcpy(resultLocale, "root"); } else { resultLocale[length] = 0; } // Append items in alphabetic order of their short definition letters. CharString result; char subtag[ULOC_KEYWORD_AND_VALUES_CAPACITY]; if(attributeHasBeenSetExplicitly(UCOL_ALTERNATE_HANDLING)) { appendAttribute(result, 'A', getAttribute(UCOL_ALTERNATE_HANDLING, errorCode), errorCode); } // ATTR_VARIABLE_TOP not supported because 'B' was broken. // See ICU tickets #10372 and #10386. if(attributeHasBeenSetExplicitly(UCOL_CASE_FIRST)) { appendAttribute(result, 'C', getAttribute(UCOL_CASE_FIRST, errorCode), errorCode); } if(attributeHasBeenSetExplicitly(UCOL_NUMERIC_COLLATION)) { appendAttribute(result, 'D', getAttribute(UCOL_NUMERIC_COLLATION, errorCode), errorCode); } if(attributeHasBeenSetExplicitly(UCOL_CASE_LEVEL)) { appendAttribute(result, 'E', getAttribute(UCOL_CASE_LEVEL, errorCode), errorCode); } if(attributeHasBeenSetExplicitly(UCOL_FRENCH_COLLATION)) { appendAttribute(result, 'F', getAttribute(UCOL_FRENCH_COLLATION, errorCode), errorCode); } // Note: UCOL_HIRAGANA_QUATERNARY_MODE is deprecated and never changes away from default. length = uloc_getKeywordValue(resultLocale, "collation", subtag, UPRV_LENGTHOF(subtag), &errorCode); appendSubtag(result, 'K', subtag, length, errorCode); length = uloc_getLanguage(resultLocale, subtag, UPRV_LENGTHOF(subtag), &errorCode); appendSubtag(result, 'L', subtag, length, errorCode); if(attributeHasBeenSetExplicitly(UCOL_NORMALIZATION_MODE)) { appendAttribute(result, 'N', getAttribute(UCOL_NORMALIZATION_MODE, errorCode), errorCode); } length = uloc_getCountry(resultLocale, subtag, UPRV_LENGTHOF(subtag), &errorCode); appendSubtag(result, 'R', subtag, length, errorCode); if(attributeHasBeenSetExplicitly(UCOL_STRENGTH)) { appendAttribute(result, 'S', getAttribute(UCOL_STRENGTH, errorCode), errorCode); } length = uloc_getVariant(resultLocale, subtag, UPRV_LENGTHOF(subtag), &errorCode); appendSubtag(result, 'V', subtag, length, errorCode); length = uloc_getScript(resultLocale, subtag, UPRV_LENGTHOF(subtag), &errorCode); appendSubtag(result, 'Z', subtag, length, errorCode); if(U_FAILURE(errorCode)) { return 0; } if(result.length() <= capacity) { uprv_memcpy(buffer, result.data(), result.length()); } return u_terminateChars(buffer, capacity, result.length(), &errorCode); } UBool RuleBasedCollator::isUnsafe(UChar32 c) const { return data->isUnsafeBackward(c, settings->isNumeric()); } void RuleBasedCollator::computeMaxExpansions(const CollationTailoring *t, UErrorCode &errorCode) { t->maxExpansions = CollationElementIterator::computeMaxExpansions(t->data, errorCode); } UBool RuleBasedCollator::initMaxExpansions(UErrorCode &errorCode) const { umtx_initOnce(tailoring->maxExpansionsInitOnce, computeMaxExpansions, tailoring, errorCode); return U_SUCCESS(errorCode); } CollationElementIterator * RuleBasedCollator::createCollationElementIterator(const UnicodeString& source) const { UErrorCode errorCode = U_ZERO_ERROR; if(!initMaxExpansions(errorCode)) { return NULL; } CollationElementIterator *cei = new CollationElementIterator(source, this, errorCode); if(U_FAILURE(errorCode)) { delete cei; return NULL; } return cei; } CollationElementIterator * RuleBasedCollator::createCollationElementIterator(const CharacterIterator& source) const { UErrorCode errorCode = U_ZERO_ERROR; if(!initMaxExpansions(errorCode)) { return NULL; } CollationElementIterator *cei = new CollationElementIterator(source, this, errorCode); if(U_FAILURE(errorCode)) { delete cei; return NULL; } return cei; } int32_t RuleBasedCollator::getMaxExpansion(int32_t order) const { UErrorCode errorCode = U_ZERO_ERROR; (void)initMaxExpansions(errorCode); return CollationElementIterator::getMaxExpansion(tailoring->maxExpansions, order); } U_NAMESPACE_END #endif // !UCONFIG_NO_COLLATION