/* ****************************************************************************** * Copyright (C) 1997-2015, International Business Machines * Corporation and others. All Rights Reserved. ****************************************************************************** * file name: nfrs.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * Modification history * Date Name Comments * 10/11/2001 Doug Ported from ICU4J */ #include "nfrs.h" #if U_HAVE_RBNF #include "unicode/uchar.h" #include "nfrule.h" #include "nfrlist.h" #include "patternprops.h" #ifdef RBNF_DEBUG #include "cmemory.h" #endif enum { /** -x */ NEGATIVE_RULE_INDEX = 0, /** x.x */ IMPROPER_FRACTION_RULE_INDEX = 1, /** 0.x */ PROPER_FRACTION_RULE_INDEX = 2, /** x.0 */ MASTER_RULE_INDEX = 3, /** Inf */ INFINITY_RULE_INDEX = 4, /** NaN */ NAN_RULE_INDEX = 5, NON_NUMERICAL_RULE_LENGTH = 6 }; U_NAMESPACE_BEGIN #if 0 // euclid's algorithm works with doubles // note, doubles only get us up to one quadrillion or so, which // isn't as much range as we get with longs. We probably still // want either 64-bit math, or BigInteger. static int64_t util_lcm(int64_t x, int64_t y) { x.abs(); y.abs(); if (x == 0 || y == 0) { return 0; } else { do { if (x < y) { int64_t t = x; x = y; y = t; } x -= y * (x/y); } while (x != 0); return y; } } #else /** * Calculates the least common multiple of x and y. */ static int64_t util_lcm(int64_t x, int64_t y) { // binary gcd algorithm from Knuth, "The Art of Computer Programming," // vol. 2, 1st ed., pp. 298-299 int64_t x1 = x; int64_t y1 = y; int p2 = 0; while ((x1 & 1) == 0 && (y1 & 1) == 0) { ++p2; x1 >>= 1; y1 >>= 1; } int64_t t; if ((x1 & 1) == 1) { t = -y1; } else { t = x1; } while (t != 0) { while ((t & 1) == 0) { t = t >> 1; } if (t > 0) { x1 = t; } else { y1 = -t; } t = x1 - y1; } int64_t gcd = x1 << p2; // x * y == gcd(x, y) * lcm(x, y) return x / gcd * y; } #endif static const UChar gPercent = 0x0025; static const UChar gColon = 0x003a; static const UChar gSemicolon = 0x003b; static const UChar gLineFeed = 0x000a; static const UChar gPercentPercent[] = { 0x25, 0x25, 0 }; /* "%%" */ static const UChar gNoparse[] = { 0x40, 0x6E, 0x6F, 0x70, 0x61, 0x72, 0x73, 0x65, 0 }; /* "@noparse" */ NFRuleSet::NFRuleSet(RuleBasedNumberFormat *_owner, UnicodeString* descriptions, int32_t index, UErrorCode& status) : name() , rules(0) , owner(_owner) , fractionRules() , fIsFractionRuleSet(FALSE) , fIsPublic(FALSE) , fIsParseable(TRUE) { for (int32_t i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) { nonNumericalRules[i] = NULL; } if (U_FAILURE(status)) { return; } UnicodeString& description = descriptions[index]; // !!! make sure index is valid if (description.length() == 0) { // throw new IllegalArgumentException("Empty rule set description"); status = U_PARSE_ERROR; return; } // if the description begins with a rule set name (the rule set // name can be omitted in formatter descriptions that consist // of only one rule set), copy it out into our "name" member // and delete it from the description if (description.charAt(0) == gPercent) { int32_t pos = description.indexOf(gColon); if (pos == -1) { // throw new IllegalArgumentException("Rule set name doesn't end in colon"); status = U_PARSE_ERROR; } else { name.setTo(description, 0, pos); while (pos < description.length() && PatternProps::isWhiteSpace(description.charAt(++pos))) { } description.remove(0, pos); } } else { name.setTo(UNICODE_STRING_SIMPLE("%default")); } if (description.length() == 0) { // throw new IllegalArgumentException("Empty rule set description"); status = U_PARSE_ERROR; } fIsPublic = name.indexOf(gPercentPercent, 2, 0) != 0; if ( name.endsWith(gNoparse,8) ) { fIsParseable = FALSE; name.truncate(name.length()-8); // remove the @noparse from the name } // all of the other members of NFRuleSet are initialized // by parseRules() } void NFRuleSet::parseRules(UnicodeString& description, UErrorCode& status) { // start by creating a Vector whose elements are Strings containing // the descriptions of the rules (one rule per element). The rules // are separated by semicolons (there's no escape facility: ALL // semicolons are rule delimiters) if (U_FAILURE(status)) { return; } // ensure we are starting with an empty rule list rules.deleteAll(); // dlf - the original code kept a separate description array for no reason, // so I got rid of it. The loop was too complex so I simplified it. UnicodeString currentDescription; int32_t oldP = 0; while (oldP < description.length()) { int32_t p = description.indexOf(gSemicolon, oldP); if (p == -1) { p = description.length(); } currentDescription.setTo(description, oldP, p - oldP); NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status); oldP = p + 1; } // for rules that didn't specify a base value, their base values // were initialized to 0. Make another pass through the list and // set all those rules' base values. We also remove any special // rules from the list and put them into their own member variables int64_t defaultBaseValue = 0; // (this isn't a for loop because we might be deleting items from // the vector-- we want to make sure we only increment i when // we _didn't_ delete aything from the vector) int32_t rulesSize = rules.size(); for (int32_t i = 0; i < rulesSize; i++) { NFRule* rule = rules[i]; int64_t baseValue = rule->getBaseValue(); if (baseValue == 0) { // if the rule's base value is 0, fill in a default // base value (this will be 1 plus the preceding // rule's base value for regular rule sets, and the // same as the preceding rule's base value in fraction // rule sets) rule->setBaseValue(defaultBaseValue, status); } else { // if it's a regular rule that already knows its base value, // check to make sure the rules are in order, and update // the default base value for the next rule if (baseValue < defaultBaseValue) { // throw new IllegalArgumentException("Rules are not in order"); status = U_PARSE_ERROR; return; } defaultBaseValue = baseValue; } if (!fIsFractionRuleSet) { ++defaultBaseValue; } } } /** * Set one of the non-numerical rules. * @param rule The rule to set. */ void NFRuleSet::setNonNumericalRule(NFRule *rule) { int64_t baseValue = rule->getBaseValue(); if (baseValue == NFRule::kNegativeNumberRule) { delete nonNumericalRules[NEGATIVE_RULE_INDEX]; nonNumericalRules[NEGATIVE_RULE_INDEX] = rule; } else if (baseValue == NFRule::kImproperFractionRule) { setBestFractionRule(IMPROPER_FRACTION_RULE_INDEX, rule, TRUE); } else if (baseValue == NFRule::kProperFractionRule) { setBestFractionRule(PROPER_FRACTION_RULE_INDEX, rule, TRUE); } else if (baseValue == NFRule::kMasterRule) { setBestFractionRule(MASTER_RULE_INDEX, rule, TRUE); } else if (baseValue == NFRule::kInfinityRule) { delete nonNumericalRules[INFINITY_RULE_INDEX]; nonNumericalRules[INFINITY_RULE_INDEX] = rule; } else if (baseValue == NFRule::kNaNRule) { delete nonNumericalRules[NAN_RULE_INDEX]; nonNumericalRules[NAN_RULE_INDEX] = rule; } } /** * Determine the best fraction rule to use. Rules matching the decimal point from * DecimalFormatSymbols become the main set of rules to use. * @param originalIndex The index into nonNumericalRules * @param newRule The new rule to consider * @param rememberRule Should the new rule be added to fractionRules. */ void NFRuleSet::setBestFractionRule(int32_t originalIndex, NFRule *newRule, UBool rememberRule) { if (rememberRule) { fractionRules.add(newRule); } NFRule *bestResult = nonNumericalRules[originalIndex]; if (bestResult == NULL) { nonNumericalRules[originalIndex] = newRule; } else { // We have more than one. Which one is better? const DecimalFormatSymbols *decimalFormatSymbols = owner->getDecimalFormatSymbols(); if (decimalFormatSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol).charAt(0) == newRule->getDecimalPoint()) { nonNumericalRules[originalIndex] = newRule; } // else leave it alone } } NFRuleSet::~NFRuleSet() { for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { if (i != IMPROPER_FRACTION_RULE_INDEX && i != PROPER_FRACTION_RULE_INDEX && i != MASTER_RULE_INDEX) { delete nonNumericalRules[i]; } // else it will be deleted via NFRuleList fractionRules } } static UBool util_equalRules(const NFRule* rule1, const NFRule* rule2) { if (rule1) { if (rule2) { return *rule1 == *rule2; } } else if (!rule2) { return TRUE; } return FALSE; } UBool NFRuleSet::operator==(const NFRuleSet& rhs) const { if (rules.size() == rhs.rules.size() && fIsFractionRuleSet == rhs.fIsFractionRuleSet && name == rhs.name) { // ...then compare the non-numerical rule lists... for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { if (!util_equalRules(nonNumericalRules[i], rhs.nonNumericalRules[i])) { return FALSE; } } // ...then compare the rule lists... for (uint32_t i = 0; i < rules.size(); ++i) { if (*rules[i] != *rhs.rules[i]) { return FALSE; } } return TRUE; } return FALSE; } void NFRuleSet::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& status) { for (uint32_t i = 0; i < rules.size(); ++i) { rules[i]->setDecimalFormatSymbols(newSymbols, status); } // Switch the fraction rules to mirror the DecimalFormatSymbols. for (int32_t nonNumericalIdx = IMPROPER_FRACTION_RULE_INDEX; nonNumericalIdx <= MASTER_RULE_INDEX; nonNumericalIdx++) { if (nonNumericalRules[nonNumericalIdx]) { for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) { NFRule *fractionRule = fractionRules[fIdx]; if (nonNumericalRules[nonNumericalIdx]->getBaseValue() == fractionRule->getBaseValue()) { setBestFractionRule(nonNumericalIdx, fractionRule, FALSE); } } } } for (uint32_t nnrIdx = 0; nnrIdx < NON_NUMERICAL_RULE_LENGTH; nnrIdx++) { NFRule *rule = nonNumericalRules[nnrIdx]; if (rule) { rule->setDecimalFormatSymbols(newSymbols, status); } } } #define RECURSION_LIMIT 64 void NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const { if (recursionCount >= RECURSION_LIMIT) { // stop recursion status = U_INVALID_STATE_ERROR; return; } const NFRule *rule = findNormalRule(number); if (rule) { // else error, but can't report it rule->doFormat(number, toAppendTo, pos, ++recursionCount, status); } } void NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const { if (recursionCount >= RECURSION_LIMIT) { // stop recursion status = U_INVALID_STATE_ERROR; return; } const NFRule *rule = findDoubleRule(number); if (rule) { // else error, but can't report it rule->doFormat(number, toAppendTo, pos, ++recursionCount, status); } } const NFRule* NFRuleSet::findDoubleRule(double number) const { // if this is a fraction rule set, use findFractionRuleSetRule() if (isFractionRuleSet()) { return findFractionRuleSetRule(number); } if (uprv_isNaN(number)) { const NFRule *rule = nonNumericalRules[NAN_RULE_INDEX]; if (!rule) { rule = owner->getDefaultNaNRule(); } return rule; } // if the number is negative, return the negative number rule // (if there isn't a negative-number rule, we pretend it's a // positive number) if (number < 0) { if (nonNumericalRules[NEGATIVE_RULE_INDEX]) { return nonNumericalRules[NEGATIVE_RULE_INDEX]; } else { number = -number; } } if (uprv_isInfinite(number)) { const NFRule *rule = nonNumericalRules[INFINITY_RULE_INDEX]; if (!rule) { rule = owner->getDefaultInfinityRule(); } return rule; } // if the number isn't an integer, we use one of the fraction rules... if (number != uprv_floor(number)) { // if the number is between 0 and 1, return the proper // fraction rule if (number < 1 && nonNumericalRules[PROPER_FRACTION_RULE_INDEX]) { return nonNumericalRules[PROPER_FRACTION_RULE_INDEX]; } // otherwise, return the improper fraction rule else if (nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]) { return nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]; } } // if there's a master rule, use it to format the number if (nonNumericalRules[MASTER_RULE_INDEX]) { return nonNumericalRules[MASTER_RULE_INDEX]; } // and if we haven't yet returned a rule, use findNormalRule() // to find the applicable rule int64_t r = util64_fromDouble(number + 0.5); return findNormalRule(r); } const NFRule * NFRuleSet::findNormalRule(int64_t number) const { // if this is a fraction rule set, use findFractionRuleSetRule() // to find the rule (we should only go into this clause if the // value is 0) if (fIsFractionRuleSet) { return findFractionRuleSetRule((double)number); } // if the number is negative, return the negative-number rule // (if there isn't one, pretend the number is positive) if (number < 0) { if (nonNumericalRules[NEGATIVE_RULE_INDEX]) { return nonNumericalRules[NEGATIVE_RULE_INDEX]; } else { number = -number; } } // we have to repeat the preceding two checks, even though we // do them in findRule(), because the version of format() that // takes a long bypasses findRule() and goes straight to this // function. This function does skip the fraction rules since // we know the value is an integer (it also skips the master // rule, since it's considered a fraction rule. Skipping the // master rule in this function is also how we avoid infinite // recursion) // {dlf} unfortunately this fails if there are no rules except // special rules. If there are no rules, use the master rule. // binary-search the rule list for the applicable rule // (a rule is used for all values from its base value to // the next rule's base value) int32_t hi = rules.size(); if (hi > 0) { int32_t lo = 0; while (lo < hi) { int32_t mid = (lo + hi) / 2; if (rules[mid]->getBaseValue() == number) { return rules[mid]; } else if (rules[mid]->getBaseValue() > number) { hi = mid; } else { lo = mid + 1; } } if (hi == 0) { // bad rule set, minimum base > 0 return NULL; // want to throw exception here } NFRule *result = rules[hi - 1]; // use shouldRollBack() to see whether we need to invoke the // rollback rule (see shouldRollBack()'s documentation for // an explanation of the rollback rule). If we do, roll back // one rule and return that one instead of the one we'd normally // return if (result->shouldRollBack((double)number)) { if (hi == 1) { // bad rule set, no prior rule to rollback to from this base return NULL; } result = rules[hi - 2]; } return result; } // else use the master rule return nonNumericalRules[MASTER_RULE_INDEX]; } /** * If this rule is a fraction rule set, this function is used by * findRule() to select the most appropriate rule for formatting * the number. Basically, the base value of each rule in the rule * set is treated as the denominator of a fraction. Whichever * denominator can produce the fraction closest in value to the * number passed in is the result. If there's a tie, the earlier * one in the list wins. (If there are two rules in a row with the * same base value, the first one is used when the numerator of the * fraction would be 1, and the second rule is used the rest of the * time. * @param number The number being formatted (which will always be * a number between 0 and 1) * @return The rule to use to format this number */ const NFRule* NFRuleSet::findFractionRuleSetRule(double number) const { // the obvious way to do this (multiply the value being formatted // by each rule's base value until you get an integral result) // doesn't work because of rounding error. This method is more // accurate // find the least common multiple of the rules' base values // and multiply this by the number being formatted. This is // all the precision we need, and we can do all of the rest // of the math using integer arithmetic int64_t leastCommonMultiple = rules[0]->getBaseValue(); int64_t numerator; { for (uint32_t i = 1; i < rules.size(); ++i) { leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue()); } numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5); } // for each rule, do the following... int64_t tempDifference; int64_t difference = util64_fromDouble(uprv_maxMantissa()); int32_t winner = 0; for (uint32_t i = 0; i < rules.size(); ++i) { // "numerator" is the numerator of the fraction if the // denominator is the LCD. The numerator if the rule's // base value is the denominator is "numerator" times the // base value divided bythe LCD. Here we check to see if // that's an integer, and if not, how close it is to being // an integer. tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple; // normalize the result of the above calculation: we want // the numerator's distance from the CLOSEST multiple // of the LCD if (leastCommonMultiple - tempDifference < tempDifference) { tempDifference = leastCommonMultiple - tempDifference; } // if this is as close as we've come, keep track of how close // that is, and the line number of the rule that did it. If // we've scored a direct hit, we don't have to look at any more // rules if (tempDifference < difference) { difference = tempDifference; winner = i; if (difference == 0) { break; } } } // if we have two successive rules that both have the winning base // value, then the first one (the one we found above) is used if // the numerator of the fraction is 1 and the second one is used if // the numerator of the fraction is anything else (this lets us // do things like "one third"/"two thirds" without haveing to define // a whole bunch of extra rule sets) if ((unsigned)(winner + 1) < rules.size() && rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) { double n = ((double)rules[winner]->getBaseValue()) * number; if (n < 0.5 || n >= 2) { ++winner; } } // finally, return the winning rule return rules[winner]; } /** * Parses a string. Matches the string to be parsed against each * of its rules (with a base value less than upperBound) and returns * the value produced by the rule that matched the most charcters * in the source string. * @param text The string to parse * @param parsePosition The initial position is ignored and assumed * to be 0. On exit, this object has been updated to point to the * first character position this rule set didn't consume. * @param upperBound Limits the rules that can be allowed to match. * Only rules whose base values are strictly less than upperBound * are considered. * @return The numerical result of parsing this string. This will * be the matching rule's base value, composed appropriately with * the results of matching any of its substitutions. The object * will be an instance of Long if it's an integral value; otherwise, * it will be an instance of Double. This function always returns * a valid object: If nothing matched the input string at all, * this function returns new Long(0), and the parse position is * left unchanged. */ #ifdef RBNF_DEBUG #include <stdio.h> static void dumpUS(FILE* f, const UnicodeString& us) { int len = us.length(); char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; if (buf != NULL) { us.extract(0, len, buf); buf[len] = 0; fprintf(f, "%s", buf); uprv_free(buf); //delete[] buf; } } #endif UBool NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, Formattable& result) const { // try matching each rule in the rule set against the text being // parsed. Whichever one matches the most characters is the one // that determines the value we return. result.setLong(0); // dump out if there's no text to parse if (text.length() == 0) { return 0; } ParsePosition highWaterMark; ParsePosition workingPos = pos; #ifdef RBNF_DEBUG fprintf(stderr, "<nfrs> %x '", this); dumpUS(stderr, name); fprintf(stderr, "' text '"); dumpUS(stderr, text); fprintf(stderr, "'\n"); fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0); #endif // Try each of the negative rules, fraction rules, infinity rules and NaN rules for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { if (nonNumericalRules[i]) { Formattable tempResult; UBool success = nonNumericalRules[i]->doParse(text, workingPos, 0, upperBound, tempResult); if (success && (workingPos.getIndex() > highWaterMark.getIndex())) { result = tempResult; highWaterMark = workingPos; } workingPos = pos; } } #ifdef RBNF_DEBUG fprintf(stderr, "<nfrs> continue other with text '"); dumpUS(stderr, text); fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); #endif // finally, go through the regular rules one at a time. We start // at the end of the list because we want to try matching the most // sigificant rule first (this helps ensure that we parse // "five thousand three hundred six" as // "(five thousand) (three hundred) (six)" rather than // "((five thousand three) hundred) (six)"). Skip rules whose // base values are higher than the upper bound (again, this helps // limit ambiguity by making sure the rules that match a rule's // are less significant than the rule containing the substitutions)/ { int64_t ub = util64_fromDouble(upperBound); #ifdef RBNF_DEBUG { char ubstr[64]; util64_toa(ub, ubstr, 64); char ubstrhex[64]; util64_toa(ub, ubstrhex, 64, 16); fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex); } #endif for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) { if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) { continue; } Formattable tempResult; UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, tempResult); if (success && workingPos.getIndex() > highWaterMark.getIndex()) { result = tempResult; highWaterMark = workingPos; } workingPos = pos; } } #ifdef RBNF_DEBUG fprintf(stderr, "<nfrs> exit\n"); #endif // finally, update the parse postion we were passed to point to the // first character we didn't use, and return the result that // corresponds to that string of characters pos = highWaterMark; return 1; } void NFRuleSet::appendRules(UnicodeString& result) const { uint32_t i; // the rule set name goes first... result.append(name); result.append(gColon); result.append(gLineFeed); // followed by the regular rules... for (i = 0; i < rules.size(); i++) { rules[i]->_appendRuleText(result); result.append(gLineFeed); } // followed by the special rules (if they exist) for (i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) { NFRule *rule = nonNumericalRules[i]; if (nonNumericalRules[i]) { if (rule->getBaseValue() == NFRule::kImproperFractionRule || rule->getBaseValue() == NFRule::kProperFractionRule || rule->getBaseValue() == NFRule::kMasterRule) { for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) { NFRule *fractionRule = fractionRules[fIdx]; if (fractionRule->getBaseValue() == rule->getBaseValue()) { fractionRule->_appendRuleText(result); result.append(gLineFeed); } } } else { rule->_appendRuleText(result); result.append(gLineFeed); } } } } // utility functions int64_t util64_fromDouble(double d) { int64_t result = 0; if (!uprv_isNaN(d)) { double mant = uprv_maxMantissa(); if (d < -mant) { d = -mant; } else if (d > mant) { d = mant; } UBool neg = d < 0; if (neg) { d = -d; } result = (int64_t)uprv_floor(d); if (neg) { result = -result; } } return result; } int64_t util64_pow(int32_t r, uint32_t e) { if (r == 0) { return 0; } else if (e == 0) { return 1; } else { int64_t n = r; while (--e > 0) { n *= r; } return n; } } static const uint8_t asciiDigits[] = { 0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u, 0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u, 0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu, 0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u, 0x77u, 0x78u, 0x79u, 0x7au, }; static const UChar kUMinus = (UChar)0x002d; #ifdef RBNF_DEBUG static const char kMinus = '-'; static const uint8_t digitInfo[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u, 0x88u, 0x89u, 0, 0, 0, 0, 0, 0, 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, }; int64_t util64_atoi(const char* str, uint32_t radix) { if (radix > 36) { radix = 36; } else if (radix < 2) { radix = 2; } int64_t lradix = radix; int neg = 0; if (*str == kMinus) { ++str; neg = 1; } int64_t result = 0; uint8_t b; while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) { result *= lradix; result += (int32_t)b; } if (neg) { result = -result; } return result; } int64_t util64_utoi(const UChar* str, uint32_t radix) { if (radix > 36) { radix = 36; } else if (radix < 2) { radix = 2; } int64_t lradix = radix; int neg = 0; if (*str == kUMinus) { ++str; neg = 1; } int64_t result = 0; UChar c; uint8_t b; while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) { result *= lradix; result += (int32_t)b; } if (neg) { result = -result; } return result; } uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw) { if (radix > 36) { radix = 36; } else if (radix < 2) { radix = 2; } int64_t base = radix; char* p = buf; if (len && (w < 0) && (radix == 10) && !raw) { w = -w; *p++ = kMinus; --len; } else if (len && (w == 0)) { *p++ = (char)raw ? 0 : asciiDigits[0]; --len; } while (len && w != 0) { int64_t n = w / base; int64_t m = n * base; int32_t d = (int32_t)(w-m); *p++ = raw ? (char)d : asciiDigits[d]; w = n; --len; } if (len) { *p = 0; // null terminate if room for caller convenience } len = p - buf; if (*buf == kMinus) { ++buf; } while (--p > buf) { char c = *p; *p = *buf; *buf = c; ++buf; } return len; } #endif uint32_t util64_tou(int64_t w, UChar* buf, uint32_t len, uint32_t radix, UBool raw) { if (radix > 36) { radix = 36; } else if (radix < 2) { radix = 2; } int64_t base = radix; UChar* p = buf; if (len && (w < 0) && (radix == 10) && !raw) { w = -w; *p++ = kUMinus; --len; } else if (len && (w == 0)) { *p++ = (UChar)raw ? 0 : asciiDigits[0]; --len; } while (len && (w != 0)) { int64_t n = w / base; int64_t m = n * base; int32_t d = (int32_t)(w-m); *p++ = (UChar)(raw ? d : asciiDigits[d]); w = n; --len; } if (len) { *p = 0; // null terminate if room for caller convenience } len = (uint32_t)(p - buf); if (*buf == kUMinus) { ++buf; } while (--p > buf) { UChar c = *p; *p = *buf; *buf = c; ++buf; } return len; } U_NAMESPACE_END /* U_HAVE_RBNF */ #endif