/* ********************************************************************** * Copyright (C) 1997-2015, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * * File DIGITLST.CPP * * Modification History: * * Date Name Description * 03/21/97 clhuang Converted from java. * 03/21/97 clhuang Implemented with new APIs. * 03/27/97 helena Updated to pass the simple test after code review. * 03/31/97 aliu Moved isLONG_MIN to here, and fixed it. * 04/15/97 aliu Changed MAX_COUNT to DBL_DIG. Changed Digit to char. * Reworked representation by replacing fDecimalAt * with fExponent. * 04/16/97 aliu Rewrote set() and getDouble() to use sprintf/atof * to do digit conversion. * 09/09/97 aliu Modified for exponential notation support. * 08/02/98 stephen Added nearest/even rounding * Fixed bug in fitsIntoLong ****************************************************************************** */ #include "digitlst.h" #if !UCONFIG_NO_FORMATTING #include "unicode/putil.h" #include "charstr.h" #include "cmemory.h" #include "cstring.h" #include "mutex.h" #include "putilimp.h" #include "uassert.h" #include "digitinterval.h" #include <stdlib.h> #include <limits.h> #include <string.h> #include <stdio.h> #include <limits> // *************************************************************************** // class DigitList // A wrapper onto decNumber. // Used to be standalone. // *************************************************************************** /** * This is the zero digit. The base for the digits returned by getDigit() * Note that it is the platform invariant digit, and is not Unicode. */ #define kZero '0' /* Only for 32 bit numbers. Ignore the negative sign. */ //static const char LONG_MIN_REP[] = "2147483648"; //static const char I64_MIN_REP[] = "9223372036854775808"; U_NAMESPACE_BEGIN // ------------------------------------- // default constructor DigitList::DigitList() { uprv_decContextDefault(&fContext, DEC_INIT_BASE); fContext.traps = 0; uprv_decContextSetRounding(&fContext, DEC_ROUND_HALF_EVEN); fContext.digits = fStorage.getCapacity(); fDecNumber = fStorage.getAlias(); uprv_decNumberZero(fDecNumber); internalSetDouble(0.0); } // ------------------------------------- DigitList::~DigitList() { } // ------------------------------------- // copy constructor DigitList::DigitList(const DigitList &other) { fDecNumber = fStorage.getAlias(); *this = other; } // ------------------------------------- // assignment operator DigitList& DigitList::operator=(const DigitList& other) { if (this != &other) { uprv_memcpy(&fContext, &other.fContext, sizeof(decContext)); if (other.fStorage.getCapacity() > fStorage.getCapacity()) { fDecNumber = fStorage.resize(other.fStorage.getCapacity()); } // Always reset the fContext.digits, even if fDecNumber was not reallocated, // because above we copied fContext from other.fContext. fContext.digits = fStorage.getCapacity(); uprv_decNumberCopy(fDecNumber, other.fDecNumber); { // fDouble is lazily created and cached. // Avoid potential races with that happening with other.fDouble // while we are doing the assignment. Mutex mutex; if(other.fHave==kDouble) { fUnion.fDouble = other.fUnion.fDouble; } else if(other.fHave==kInt64) { fUnion.fInt64 = other.fUnion.fInt64; } fHave = other.fHave; } } return *this; } // ------------------------------------- // operator == (does not exactly match the old DigitList function) UBool DigitList::operator==(const DigitList& that) const { if (this == &that) { return TRUE; } decNumber n; // Has space for only a none digit value. decContext c; uprv_decContextDefault(&c, DEC_INIT_BASE); c.digits = 1; c.traps = 0; uprv_decNumberCompare(&n, this->fDecNumber, that.fDecNumber, &c); UBool result = decNumberIsZero(&n); return result; } // ------------------------------------- // comparison function. Returns // Not Comparable : -2 // < : -1 // == : 0 // > : +1 int32_t DigitList::compare(const DigitList &other) { decNumber result; int32_t savedDigits = fContext.digits; fContext.digits = 1; uprv_decNumberCompare(&result, this->fDecNumber, other.fDecNumber, &fContext); fContext.digits = savedDigits; if (decNumberIsZero(&result)) { return 0; } else if (decNumberIsSpecial(&result)) { return -2; } else if (result.bits & DECNEG) { return -1; } else { return 1; } } // ------------------------------------- // Reduce - remove trailing zero digits. void DigitList::reduce() { uprv_decNumberReduce(fDecNumber, fDecNumber, &fContext); } // ------------------------------------- // trim - remove trailing fraction zero digits. void DigitList::trim() { uprv_decNumberTrim(fDecNumber); } // ------------------------------------- // Resets the digit list; sets all the digits to zero. void DigitList::clear() { uprv_decNumberZero(fDecNumber); uprv_decContextSetRounding(&fContext, DEC_ROUND_HALF_EVEN); internalSetDouble(0.0); } /** * Formats a int64_t number into a base 10 string representation, and NULL terminates it. * @param number The number to format * @param outputStr The string to output to. Must be at least MAX_DIGITS+2 in length (21), * to hold the longest int64_t value. * @return the number of digits written, not including the sign. */ static int32_t formatBase10(int64_t number, char *outputStr) { // The number is output backwards, starting with the LSD. // Fill the buffer from the far end. After the number is complete, // slide the string contents to the front. const int32_t MAX_IDX = MAX_DIGITS+2; int32_t destIdx = MAX_IDX; outputStr[--destIdx] = 0; int64_t n = number; if (number < 0) { // Negative numbers are slightly larger than a postive outputStr[--destIdx] = (char)(-(n % 10) + kZero); n /= -10; } do { outputStr[--destIdx] = (char)(n % 10 + kZero); n /= 10; } while (n > 0); if (number < 0) { outputStr[--destIdx] = '-'; } // Slide the number to the start of the output str U_ASSERT(destIdx >= 0); int32_t length = MAX_IDX - destIdx; uprv_memmove(outputStr, outputStr+MAX_IDX-length, length); return length; } // ------------------------------------- // // setRoundingMode() // For most modes, the meaning and names are the same between the decNumber library // (which DigitList follows) and the ICU Formatting Rounding Mode values. // The flag constants are different, however. // // Note that ICU's kRoundingUnnecessary is not implemented directly by DigitList. // This mode, inherited from Java, means that numbers that would not format exactly // will return an error when formatting is attempted. void DigitList::setRoundingMode(DecimalFormat::ERoundingMode m) { enum rounding r; switch (m) { case DecimalFormat::kRoundCeiling: r = DEC_ROUND_CEILING; break; case DecimalFormat::kRoundFloor: r = DEC_ROUND_FLOOR; break; case DecimalFormat::kRoundDown: r = DEC_ROUND_DOWN; break; case DecimalFormat::kRoundUp: r = DEC_ROUND_UP; break; case DecimalFormat::kRoundHalfEven: r = DEC_ROUND_HALF_EVEN; break; case DecimalFormat::kRoundHalfDown: r = DEC_ROUND_HALF_DOWN; break; case DecimalFormat::kRoundHalfUp: r = DEC_ROUND_HALF_UP; break; case DecimalFormat::kRoundUnnecessary: r = DEC_ROUND_HALF_EVEN; break; default: // TODO: how to report the problem? // Leave existing mode unchanged. r = uprv_decContextGetRounding(&fContext); } uprv_decContextSetRounding(&fContext, r); } // ------------------------------------- void DigitList::setPositive(UBool s) { if (s) { fDecNumber->bits &= ~DECNEG; } else { fDecNumber->bits |= DECNEG; } internalClear(); } // ------------------------------------- void DigitList::setDecimalAt(int32_t d) { U_ASSERT((fDecNumber->bits & DECSPECIAL) == 0); // Not Infinity or NaN U_ASSERT(d-1>-999999999); U_ASSERT(d-1< 999999999); int32_t adjustedDigits = fDecNumber->digits; if (decNumberIsZero(fDecNumber)) { // Account for difference in how zero is represented between DigitList & decNumber. adjustedDigits = 0; } fDecNumber->exponent = d - adjustedDigits; internalClear(); } int32_t DigitList::getDecimalAt() { U_ASSERT((fDecNumber->bits & DECSPECIAL) == 0); // Not Infinity or NaN if (decNumberIsZero(fDecNumber) || ((fDecNumber->bits & DECSPECIAL) != 0)) { return fDecNumber->exponent; // Exponent should be zero for these cases. } return fDecNumber->exponent + fDecNumber->digits; } void DigitList::setCount(int32_t c) { U_ASSERT(c <= fContext.digits); if (c == 0) { // For a value of zero, DigitList sets all fields to zero, while // decNumber keeps one digit (with that digit being a zero) c = 1; fDecNumber->lsu[0] = 0; } fDecNumber->digits = c; internalClear(); } int32_t DigitList::getCount() const { if (decNumberIsZero(fDecNumber) && fDecNumber->exponent==0) { // The extra test for exponent==0 is needed because parsing sometimes appends // zero digits. It's bogus, decimalFormatter parsing needs to be cleaned up. return 0; } else { return fDecNumber->digits; } } void DigitList::setDigit(int32_t i, char v) { int32_t count = fDecNumber->digits; U_ASSERT(i<count); U_ASSERT(v>='0' && v<='9'); v &= 0x0f; fDecNumber->lsu[count-i-1] = v; internalClear(); } char DigitList::getDigit(int32_t i) { int32_t count = fDecNumber->digits; U_ASSERT(i<count); return fDecNumber->lsu[count-i-1] + '0'; } // copied from DigitList::getDigit() uint8_t DigitList::getDigitValue(int32_t i) { int32_t count = fDecNumber->digits; U_ASSERT(i<count); return fDecNumber->lsu[count-i-1]; } // ------------------------------------- // Appends the digit to the digit list if it's not out of scope. // Ignores the digit, otherwise. // // This function is horribly inefficient to implement with decNumber because // the digits are stored least significant first, which requires moving all // existing digits down one to make space for the new one to be appended. // void DigitList::append(char digit) { U_ASSERT(digit>='0' && digit<='9'); // Ignore digits which exceed the precision we can represent // And don't fix for larger precision. Fix callers instead. if (decNumberIsZero(fDecNumber)) { // Zero needs to be special cased because of the difference in the way // that the old DigitList and decNumber represent it. // digit cout was zero for digitList, is one for decNumber fDecNumber->lsu[0] = digit & 0x0f; fDecNumber->digits = 1; fDecNumber->exponent--; // To match the old digit list implementation. } else { int32_t nDigits = fDecNumber->digits; if (nDigits < fContext.digits) { int i; for (i=nDigits; i>0; i--) { fDecNumber->lsu[i] = fDecNumber->lsu[i-1]; } fDecNumber->lsu[0] = digit & 0x0f; fDecNumber->digits++; // DigitList emulation - appending doesn't change the magnitude of existing // digits. With decNumber's decimal being after the // least signficant digit, we need to adjust the exponent. fDecNumber->exponent--; } } internalClear(); } char DigitList::getStrtodDecimalSeparator() { // TODO: maybe use andy's pthread once. static char gDecimal = 0; char result; { Mutex mutex; result = gDecimal;; if (result == 0) { // We need to know the decimal separator character that will be used with strtod(). // Depends on the C runtime global locale. // Most commonly is '.' // TODO: caching could fail if the global locale is changed on the fly. char rep[MAX_DIGITS]; sprintf(rep, "%+1.1f", 1.0); result = rep[2]; gDecimal = result;; } } return result; } // ------------------------------------- /** * Currently, getDouble() depends on strtod() to do its conversion. * * WARNING!! * This is an extremely costly function. ~1/2 of the conversion time * can be linked to this function. */ double DigitList::getDouble() const { static char gDecimal = 0; char decimalSeparator; { Mutex mutex; if (fHave == kDouble) { return fUnion.fDouble; } else if(fHave == kInt64) { return (double)fUnion.fInt64; } decimalSeparator = gDecimal; } if (decimalSeparator == 0) { // We need to know the decimal separator character that will be used with strtod(). // Depends on the C runtime global locale. // Most commonly is '.' // TODO: caching could fail if the global locale is changed on the fly. char rep[MAX_DIGITS]; sprintf(rep, "%+1.1f", 1.0); decimalSeparator = rep[2]; } double tDouble = 0.0; if (isZero()) { tDouble = 0.0; if (decNumberIsNegative(fDecNumber)) { tDouble /= -1; } } else if (isInfinite()) { if (std::numeric_limits<double>::has_infinity) { tDouble = std::numeric_limits<double>::infinity(); } else { tDouble = std::numeric_limits<double>::max(); } if (!isPositive()) { tDouble = -tDouble; //this was incorrectly "-fDouble" originally. } } else { MaybeStackArray<char, MAX_DBL_DIGITS+18> s; // Note: 14 is a magic constant from the decNumber library documentation, // the max number of extra characters beyond the number of digits // needed to represent the number in string form. Add a few more // for the additional digits we retain. // Round down to appx. double precision, if the number is longer than that. // Copy the number first, so that we don't modify the original. if (getCount() > MAX_DBL_DIGITS + 3) { DigitList numToConvert(*this); numToConvert.reduce(); // Removes any trailing zeros, so that digit count is good. numToConvert.round(MAX_DBL_DIGITS+3); uprv_decNumberToString(numToConvert.fDecNumber, s.getAlias()); // TODO: how many extra digits should be included for an accurate conversion? } else { uprv_decNumberToString(this->fDecNumber, s.getAlias()); } U_ASSERT(uprv_strlen(&s[0]) < MAX_DBL_DIGITS+18); if (decimalSeparator != '.') { char *decimalPt = strchr(s.getAlias(), '.'); if (decimalPt != NULL) { *decimalPt = decimalSeparator; } } char *end = NULL; tDouble = uprv_strtod(s.getAlias(), &end); } { Mutex mutex; DigitList *nonConstThis = const_cast<DigitList *>(this); nonConstThis->internalSetDouble(tDouble); gDecimal = decimalSeparator; } return tDouble; } // ------------------------------------- /** * convert this number to an int32_t. Round if there is a fractional part. * Return zero if the number cannot be represented. */ int32_t DigitList::getLong() /*const*/ { int32_t result = 0; if (getUpperExponent() > 10) { // Overflow, absolute value too big. return result; } if (fDecNumber->exponent != 0) { // Force to an integer, with zero exponent, rounding if necessary. // (decNumberToInt32 will only work if the exponent is exactly zero.) DigitList copy(*this); DigitList zero; uprv_decNumberQuantize(copy.fDecNumber, copy.fDecNumber, zero.fDecNumber, &fContext); result = uprv_decNumberToInt32(copy.fDecNumber, &fContext); } else { result = uprv_decNumberToInt32(fDecNumber, &fContext); } return result; } /** * convert this number to an int64_t. Truncate if there is a fractional part. * Return zero if the number cannot be represented. */ int64_t DigitList::getInt64() /*const*/ { if(fHave==kInt64) { return fUnion.fInt64; } // Truncate if non-integer. // Return 0 if out of range. // Range of in64_t is -9223372036854775808 to 9223372036854775807 (19 digits) // if (getUpperExponent() > 19) { // Overflow, absolute value too big. return 0; } // The number of integer digits may differ from the number of digits stored // in the decimal number. // for 12.345 numIntDigits = 2, number->digits = 5 // for 12E4 numIntDigits = 6, number->digits = 2 // The conversion ignores the fraction digits in the first case, // and fakes up extra zero digits in the second. // TODO: It would be faster to store a table of powers of ten to multiply by // instead of looping over zero digits, multiplying each time. int32_t numIntDigits = getUpperExponent(); uint64_t value = 0; for (int32_t i = 0; i < numIntDigits; i++) { // Loop is iterating over digits starting with the most significant. // Numbers are stored with the least significant digit at index zero. int32_t digitIndex = fDecNumber->digits - i - 1; int32_t v = (digitIndex >= 0) ? fDecNumber->lsu[digitIndex] : 0; value = value * (uint64_t)10 + (uint64_t)v; } if (decNumberIsNegative(fDecNumber)) { value = ~value; value += 1; } int64_t svalue = (int64_t)value; // Check overflow. It's convenient that the MSD is 9 only on overflow, the amount of // overflow can't wrap too far. The test will also fail -0, but // that does no harm; the right answer is 0. if (numIntDigits == 19) { if (( decNumberIsNegative(fDecNumber) && svalue>0) || (!decNumberIsNegative(fDecNumber) && svalue<0)) { svalue = 0; } } return svalue; } /** * Return a string form of this number. * Format is as defined by the decNumber library, for interchange of * decimal numbers. */ void DigitList::getDecimal(CharString &str, UErrorCode &status) { if (U_FAILURE(status)) { return; } // A decimal number in string form can, worst case, be 14 characters longer // than the number of digits. So says the decNumber library doc. int32_t maxLength = fDecNumber->digits + 14; int32_t capacity = 0; char *buffer = str.clear().getAppendBuffer(maxLength, 0, capacity, status); if (U_FAILURE(status)) { return; // Memory allocation error on growing the string. } U_ASSERT(capacity >= maxLength); uprv_decNumberToString(this->fDecNumber, buffer); U_ASSERT((int32_t)uprv_strlen(buffer) <= maxLength); str.append(buffer, -1, status); } /** * Return true if this is an integer value that can be held * by an int32_t type. */ UBool DigitList::fitsIntoLong(UBool ignoreNegativeZero) /*const*/ { if (decNumberIsSpecial(this->fDecNumber)) { // NaN or Infinity. Does not fit in int32. return FALSE; } uprv_decNumberTrim(this->fDecNumber); if (fDecNumber->exponent < 0) { // Number contains fraction digits. return FALSE; } if (decNumberIsZero(this->fDecNumber) && !ignoreNegativeZero && (fDecNumber->bits & DECNEG) != 0) { // Negative Zero, not ingored. Cannot represent as a long. return FALSE; } if (getUpperExponent() < 10) { // The number is 9 or fewer digits. // The max and min int32 are 10 digts, so this number fits. // This is the common case. return TRUE; } // TODO: Should cache these constants; construction is relatively costly. // But not of huge consequence; they're only needed for 10 digit ints. UErrorCode status = U_ZERO_ERROR; DigitList min32; min32.set("-2147483648", status); if (this->compare(min32) < 0) { return FALSE; } DigitList max32; max32.set("2147483647", status); if (this->compare(max32) > 0) { return FALSE; } if (U_FAILURE(status)) { return FALSE; } return true; } /** * Return true if the number represented by this object can fit into * a long. */ UBool DigitList::fitsIntoInt64(UBool ignoreNegativeZero) /*const*/ { if (decNumberIsSpecial(this->fDecNumber)) { // NaN or Infinity. Does not fit in int32. return FALSE; } uprv_decNumberTrim(this->fDecNumber); if (fDecNumber->exponent < 0) { // Number contains fraction digits. return FALSE; } if (decNumberIsZero(this->fDecNumber) && !ignoreNegativeZero && (fDecNumber->bits & DECNEG) != 0) { // Negative Zero, not ingored. Cannot represent as a long. return FALSE; } if (getUpperExponent() < 19) { // The number is 18 or fewer digits. // The max and min int64 are 19 digts, so this number fits. // This is the common case. return TRUE; } // TODO: Should cache these constants; construction is relatively costly. // But not of huge consequence; they're only needed for 19 digit ints. UErrorCode status = U_ZERO_ERROR; DigitList min64; min64.set("-9223372036854775808", status); if (this->compare(min64) < 0) { return FALSE; } DigitList max64; max64.set("9223372036854775807", status); if (this->compare(max64) > 0) { return FALSE; } if (U_FAILURE(status)) { return FALSE; } return true; } // ------------------------------------- void DigitList::set(int32_t source) { set((int64_t)source); internalSetDouble(source); } // ------------------------------------- /** * Set an int64, via decnumber */ void DigitList::set(int64_t source) { char str[MAX_DIGITS+2]; // Leave room for sign and trailing nul. formatBase10(source, str); U_ASSERT(uprv_strlen(str) < sizeof(str)); uprv_decNumberFromString(fDecNumber, str, &fContext); internalSetDouble(static_cast<double>(source)); } /** * Set an int64, with no decnumber */ void DigitList::setInteger(int64_t source) { fDecNumber=NULL; internalSetInt64(source); } // ------------------------------------- /** * Set the DigitList from a decimal number string. * * The incoming string _must_ be nul terminated, even though it is arriving * as a StringPiece because that is what the decNumber library wants. * We can get away with this for an internal function; it would not * be acceptable for a public API. */ void DigitList::set(const StringPiece &source, UErrorCode &status, uint32_t /*fastpathBits*/) { if (U_FAILURE(status)) { return; } #if 0 if(fastpathBits==(kFastpathOk|kNoDecimal)) { int32_t size = source.size(); const char *data = source.data(); int64_t r = 0; int64_t m = 1; // fast parse while(size>0) { char ch = data[--size]; if(ch=='+') { break; } else if(ch=='-') { r = -r; break; } else { int64_t d = ch-'0'; //printf("CH[%d]=%c, %d, *=%d\n", size,ch, (int)d, (int)m); r+=(d)*m; m *= 10; } } //printf("R=%d\n", r); set(r); } else #endif { // Figure out a max number of digits to use during the conversion, and // resize the number up if necessary. int32_t numDigits = source.length(); if (numDigits > fContext.digits) { // fContext.digits == fStorage.getCapacity() decNumber *t = fStorage.resize(numDigits, fStorage.getCapacity()); if (t == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } fDecNumber = t; fContext.digits = numDigits; } fContext.status = 0; uprv_decNumberFromString(fDecNumber, source.data(), &fContext); if ((fContext.status & DEC_Conversion_syntax) != 0) { status = U_DECIMAL_NUMBER_SYNTAX_ERROR; } } internalClear(); } /** * Set the digit list to a representation of the given double value. * This method supports both fixed-point and exponential notation. * @param source Value to be converted. */ void DigitList::set(double source) { // for now, simple implementation; later, do proper IEEE stuff char rep[MAX_DIGITS + 8]; // Extra space for '+', '.', e+NNN, and '\0' (actually +8 is enough) // Generate a representation of the form /[+-][0-9].[0-9]+e[+-][0-9]+/ // Can also generate /[+-]nan/ or /[+-]inf/ // TODO: Use something other than sprintf() here, since it's behavior is somewhat platform specific. // That is why infinity is special cased here. if (uprv_isInfinite(source)) { if (uprv_isNegativeInfinity(source)) { uprv_strcpy(rep,"-inf"); // Handle negative infinity } else { uprv_strcpy(rep,"inf"); } } else { sprintf(rep, "%+1.*e", MAX_DBL_DIGITS - 1, source); } U_ASSERT(uprv_strlen(rep) < sizeof(rep)); // uprv_decNumberFromString() will parse the string expecting '.' as a // decimal separator, however sprintf() can use ',' in certain locales. // Overwrite a ',' with '.' here before proceeding. char *decimalSeparator = strchr(rep, ','); if (decimalSeparator != NULL) { *decimalSeparator = '.'; } // Create a decNumber from the string. uprv_decNumberFromString(fDecNumber, rep, &fContext); uprv_decNumberTrim(fDecNumber); internalSetDouble(source); } // ------------------------------------- /* * Multiply * The number will be expanded if need be to retain full precision. * In practice, for formatting, multiply is by 10, 100 or 1000, so more digits * will not be required for this use. */ void DigitList::mult(const DigitList &other, UErrorCode &status) { if (U_FAILURE(status)) { return; } fContext.status = 0; int32_t requiredDigits = this->digits() + other.digits(); if (requiredDigits > fContext.digits) { reduce(); // Remove any trailing zeros int32_t requiredDigits = this->digits() + other.digits(); ensureCapacity(requiredDigits, status); } uprv_decNumberMultiply(fDecNumber, fDecNumber, other.fDecNumber, &fContext); internalClear(); } // ------------------------------------- /* * Divide * The number will _not_ be expanded for inexact results. * TODO: probably should expand some, for rounding increments that * could add a few digits, e.g. .25, but not expand arbitrarily. */ void DigitList::div(const DigitList &other, UErrorCode &status) { if (U_FAILURE(status)) { return; } uprv_decNumberDivide(fDecNumber, fDecNumber, other.fDecNumber, &fContext); internalClear(); } // ------------------------------------- /* * ensureCapacity. Grow the digit storage for the number if it's less than the requested * amount. Never reduce it. Available size is kept in fContext.digits. */ void DigitList::ensureCapacity(int32_t requestedCapacity, UErrorCode &status) { if (U_FAILURE(status)) { return; } if (requestedCapacity <= 0) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } if (requestedCapacity > DEC_MAX_DIGITS) { // Don't report an error for requesting too much. // Arithemetic Results will be rounded to what can be supported. // At 999,999,999 max digits, exceeding the limit is not too likely! requestedCapacity = DEC_MAX_DIGITS; } if (requestedCapacity > fContext.digits) { decNumber *newBuffer = fStorage.resize(requestedCapacity, fStorage.getCapacity()); if (newBuffer == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } fContext.digits = requestedCapacity; fDecNumber = newBuffer; } } // ------------------------------------- /** * Round the representation to the given number of digits. * @param maximumDigits The maximum number of digits to be shown. * Upon return, count will be less than or equal to maximumDigits. */ void DigitList::round(int32_t maximumDigits) { reduce(); if (maximumDigits >= fDecNumber->digits) { return; } int32_t savedDigits = fContext.digits; fContext.digits = maximumDigits; uprv_decNumberPlus(fDecNumber, fDecNumber, &fContext); fContext.digits = savedDigits; uprv_decNumberTrim(fDecNumber); reduce(); internalClear(); } void DigitList::roundFixedPoint(int32_t maximumFractionDigits) { reduce(); // Remove trailing zeros. if (fDecNumber->exponent >= -maximumFractionDigits) { return; } decNumber scale; // Dummy decimal number, but with the desired number of uprv_decNumberZero(&scale); // fraction digits. scale.exponent = -maximumFractionDigits; scale.lsu[0] = 1; uprv_decNumberQuantize(fDecNumber, fDecNumber, &scale, &fContext); reduce(); internalClear(); } // ------------------------------------- void DigitList::toIntegralValue() { uprv_decNumberToIntegralValue(fDecNumber, fDecNumber, &fContext); } // ------------------------------------- UBool DigitList::isZero() const { return decNumberIsZero(fDecNumber); } // ------------------------------------- int32_t DigitList::getUpperExponent() const { return fDecNumber->digits + fDecNumber->exponent; } DigitInterval & DigitList::getSmallestInterval(DigitInterval &result) const { result.setLeastSignificantInclusive(fDecNumber->exponent); result.setMostSignificantExclusive(getUpperExponent()); return result; } uint8_t DigitList::getDigitByExponent(int32_t exponent) const { int32_t idx = exponent - fDecNumber->exponent; if (idx < 0 || idx >= fDecNumber->digits) { return 0; } return fDecNumber->lsu[idx]; } void DigitList::appendDigitsTo(CharString &str, UErrorCode &status) const { str.append((const char *) fDecNumber->lsu, fDecNumber->digits, status); } void DigitList::roundAtExponent(int32_t exponent, int32_t maxSigDigits) { reduce(); if (maxSigDigits < fDecNumber->digits) { int32_t minExponent = getUpperExponent() - maxSigDigits; if (exponent < minExponent) { exponent = minExponent; } } if (exponent <= fDecNumber->exponent) { return; } int32_t digits = getUpperExponent() - exponent; if (digits > 0) { round(digits); } else { roundFixedPoint(-exponent); } } void DigitList::quantize(const DigitList &quantity, UErrorCode &status) { if (U_FAILURE(status)) { return; } div(quantity, status); roundAtExponent(0); mult(quantity, status); reduce(); } int32_t DigitList::getScientificExponent( int32_t minIntDigitCount, int32_t exponentMultiplier) const { // The exponent for zero is always zero. if (isZero()) { return 0; } int32_t intDigitCount = getUpperExponent(); int32_t exponent; if (intDigitCount >= minIntDigitCount) { int32_t maxAdjustment = intDigitCount - minIntDigitCount; exponent = (maxAdjustment / exponentMultiplier) * exponentMultiplier; } else { int32_t minAdjustment = minIntDigitCount - intDigitCount; exponent = ((minAdjustment + exponentMultiplier - 1) / exponentMultiplier) * -exponentMultiplier; } return exponent; } int32_t DigitList::toScientific( int32_t minIntDigitCount, int32_t exponentMultiplier) { int32_t exponent = getScientificExponent( minIntDigitCount, exponentMultiplier); shiftDecimalRight(-exponent); return exponent; } void DigitList::shiftDecimalRight(int32_t n) { fDecNumber->exponent += n; internalClear(); } U_NAMESPACE_END #endif // #if !UCONFIG_NO_FORMATTING //eof