/* ******************************************************************************* * * Copyright (C) 1999-2015, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: collationweights.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2001mar08 as ucol_wgt.cpp * created by: Markus W. Scherer * * This file contains code for allocating n collation element weights * between two exclusive limits. * It is used only internally by the collation tailoring builder. */ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "cmemory.h" #include "collation.h" #include "collationweights.h" #include "uarrsort.h" #include "uassert.h" #ifdef UCOL_DEBUG # include <stdio.h> #endif U_NAMESPACE_BEGIN /* collation element weight allocation -------------------------------------- */ /* helper functions for CE weights */ static inline uint32_t getWeightTrail(uint32_t weight, int32_t length) { return (uint32_t)(weight>>(8*(4-length)))&0xff; } static inline uint32_t setWeightTrail(uint32_t weight, int32_t length, uint32_t trail) { length=8*(4-length); return (uint32_t)((weight&(0xffffff00<<length))|(trail<<length)); } static inline uint32_t getWeightByte(uint32_t weight, int32_t idx) { return getWeightTrail(weight, idx); /* same calculation */ } static inline uint32_t setWeightByte(uint32_t weight, int32_t idx, uint32_t byte) { uint32_t mask; /* 0xffffffff except a 00 "hole" for the index-th byte */ idx*=8; if(idx<32) { mask=((uint32_t)0xffffffff)>>idx; } else { // Do not use uint32_t>>32 because on some platforms that does not shift at all // while we need it to become 0. // PowerPC: 0xffffffff>>32 = 0 (wanted) // x86: 0xffffffff>>32 = 0xffffffff (not wanted) // // ANSI C99 6.5.7 Bitwise shift operators: // "If the value of the right operand is negative // or is greater than or equal to the width of the promoted left operand, // the behavior is undefined." mask=0; } idx=32-idx; mask|=0xffffff00<<idx; return (uint32_t)((weight&mask)|(byte<<idx)); } static inline uint32_t truncateWeight(uint32_t weight, int32_t length) { return (uint32_t)(weight&(0xffffffff<<(8*(4-length)))); } static inline uint32_t incWeightTrail(uint32_t weight, int32_t length) { return (uint32_t)(weight+(1UL<<(8*(4-length)))); } static inline uint32_t decWeightTrail(uint32_t weight, int32_t length) { return (uint32_t)(weight-(1UL<<(8*(4-length)))); } CollationWeights::CollationWeights() : middleLength(0), rangeIndex(0), rangeCount(0) { for(int32_t i = 0; i < 5; ++i) { minBytes[i] = maxBytes[i] = 0; } } void CollationWeights::initForPrimary(UBool compressible) { middleLength=1; minBytes[1] = Collation::MERGE_SEPARATOR_BYTE + 1; maxBytes[1] = Collation::TRAIL_WEIGHT_BYTE; if(compressible) { minBytes[2] = Collation::PRIMARY_COMPRESSION_LOW_BYTE + 1; maxBytes[2] = Collation::PRIMARY_COMPRESSION_HIGH_BYTE - 1; } else { minBytes[2] = 2; maxBytes[2] = 0xff; } minBytes[3] = 2; maxBytes[3] = 0xff; minBytes[4] = 2; maxBytes[4] = 0xff; } void CollationWeights::initForSecondary() { // We use only the lower 16 bits for secondary weights. middleLength=3; minBytes[1] = 0; maxBytes[1] = 0; minBytes[2] = 0; maxBytes[2] = 0; minBytes[3] = Collation::LEVEL_SEPARATOR_BYTE + 1; maxBytes[3] = 0xff; minBytes[4] = 2; maxBytes[4] = 0xff; } void CollationWeights::initForTertiary() { // We use only the lower 16 bits for tertiary weights. middleLength=3; minBytes[1] = 0; maxBytes[1] = 0; minBytes[2] = 0; maxBytes[2] = 0; // We use only 6 bits per byte. // The other bits are used for case & quaternary weights. minBytes[3] = Collation::LEVEL_SEPARATOR_BYTE + 1; maxBytes[3] = 0x3f; minBytes[4] = 2; maxBytes[4] = 0x3f; } uint32_t CollationWeights::incWeight(uint32_t weight, int32_t length) const { for(;;) { uint32_t byte=getWeightByte(weight, length); if(byte<maxBytes[length]) { return setWeightByte(weight, length, byte+1); } else { // Roll over, set this byte to the minimum and increment the previous one. weight=setWeightByte(weight, length, minBytes[length]); --length; U_ASSERT(length > 0); } } } uint32_t CollationWeights::incWeightByOffset(uint32_t weight, int32_t length, int32_t offset) const { for(;;) { offset += getWeightByte(weight, length); if((uint32_t)offset <= maxBytes[length]) { return setWeightByte(weight, length, offset); } else { // Split the offset between this byte and the previous one. offset -= minBytes[length]; weight = setWeightByte(weight, length, minBytes[length] + offset % countBytes(length)); offset /= countBytes(length); --length; U_ASSERT(length > 0); } } } void CollationWeights::lengthenRange(WeightRange &range) const { int32_t length=range.length+1; range.start=setWeightTrail(range.start, length, minBytes[length]); range.end=setWeightTrail(range.end, length, maxBytes[length]); range.count*=countBytes(length); range.length=length; } /* for uprv_sortArray: sort ranges in weight order */ static int32_t U_CALLCONV compareRanges(const void * /*context*/, const void *left, const void *right) { uint32_t l, r; l=((const CollationWeights::WeightRange *)left)->start; r=((const CollationWeights::WeightRange *)right)->start; if(l<r) { return -1; } else if(l>r) { return 1; } else { return 0; } } UBool CollationWeights::getWeightRanges(uint32_t lowerLimit, uint32_t upperLimit) { U_ASSERT(lowerLimit != 0); U_ASSERT(upperLimit != 0); /* get the lengths of the limits */ int32_t lowerLength=lengthOfWeight(lowerLimit); int32_t upperLength=lengthOfWeight(upperLimit); #ifdef UCOL_DEBUG printf("length of lower limit 0x%08lx is %ld\n", lowerLimit, lowerLength); printf("length of upper limit 0x%08lx is %ld\n", upperLimit, upperLength); #endif U_ASSERT(lowerLength>=middleLength); // Permit upperLength<middleLength: The upper limit for secondaries is 0x10000. if(lowerLimit>=upperLimit) { #ifdef UCOL_DEBUG printf("error: no space between lower & upper limits\n"); #endif return FALSE; } /* check that neither is a prefix of the other */ if(lowerLength<upperLength) { if(lowerLimit==truncateWeight(upperLimit, lowerLength)) { #ifdef UCOL_DEBUG printf("error: lower limit 0x%08lx is a prefix of upper limit 0x%08lx\n", lowerLimit, upperLimit); #endif return FALSE; } } /* if the upper limit is a prefix of the lower limit then the earlier test lowerLimit>=upperLimit has caught it */ WeightRange lower[5], middle, upper[5]; /* [0] and [1] are not used - this simplifies indexing */ uprv_memset(lower, 0, sizeof(lower)); uprv_memset(&middle, 0, sizeof(middle)); uprv_memset(upper, 0, sizeof(upper)); /* * With the limit lengths of 1..4, there are up to 7 ranges for allocation: * range minimum length * lower[4] 4 * lower[3] 3 * lower[2] 2 * middle 1 * upper[2] 2 * upper[3] 3 * upper[4] 4 * * We are now going to calculate up to 7 ranges. * Some of them will typically overlap, so we will then have to merge and eliminate ranges. */ uint32_t weight=lowerLimit; for(int32_t length=lowerLength; length>middleLength; --length) { uint32_t trail=getWeightTrail(weight, length); if(trail<maxBytes[length]) { lower[length].start=incWeightTrail(weight, length); lower[length].end=setWeightTrail(weight, length, maxBytes[length]); lower[length].length=length; lower[length].count=maxBytes[length]-trail; } weight=truncateWeight(weight, length-1); } if(weight<0xff000000) { middle.start=incWeightTrail(weight, middleLength); } else { // Prevent overflow for primary lead byte FF // which would yield a middle range starting at 0. middle.start=0xffffffff; // no middle range } weight=upperLimit; for(int32_t length=upperLength; length>middleLength; --length) { uint32_t trail=getWeightTrail(weight, length); if(trail>minBytes[length]) { upper[length].start=setWeightTrail(weight, length, minBytes[length]); upper[length].end=decWeightTrail(weight, length); upper[length].length=length; upper[length].count=trail-minBytes[length]; } weight=truncateWeight(weight, length-1); } middle.end=decWeightTrail(weight, middleLength); /* set the middle range */ middle.length=middleLength; if(middle.end>=middle.start) { middle.count=(int32_t)((middle.end-middle.start)>>(8*(4-middleLength)))+1; } else { /* no middle range, eliminate overlaps */ for(int32_t length=4; length>middleLength; --length) { if(lower[length].count>0 && upper[length].count>0) { // Note: The lowerEnd and upperStart weights are versions of // lowerLimit and upperLimit (which are lowerLimit<upperLimit), // truncated (still less-or-equal) // and then with their last bytes changed to the // maxByte (for lowerEnd) or minByte (for upperStart). const uint32_t lowerEnd=lower[length].end; const uint32_t upperStart=upper[length].start; UBool merged=FALSE; if(lowerEnd>upperStart) { // These two lower and upper ranges collide. // Since lowerLimit<upperLimit and lowerEnd and upperStart // are versions with only their last bytes modified // (and following ones removed/reset to 0), // lowerEnd>upperStart is only possible // if the leading bytes are equal // and lastByte(lowerEnd)>lastByte(upperStart). U_ASSERT(truncateWeight(lowerEnd, length-1)== truncateWeight(upperStart, length-1)); // Intersect these two ranges. lower[length].end=upper[length].end; lower[length].count= (int32_t)getWeightTrail(lower[length].end, length)- (int32_t)getWeightTrail(lower[length].start, length)+1; // count might be <=0 in which case there is no room, // and the range-collecting code below will ignore this range. merged=TRUE; } else if(lowerEnd==upperStart) { // Not possible, unless minByte==maxByte which is not allowed. U_ASSERT(minBytes[length]<maxBytes[length]); } else /* lowerEnd<upperStart */ { if(incWeight(lowerEnd, length)==upperStart) { // Merge adjacent ranges. lower[length].end=upper[length].end; lower[length].count+=upper[length].count; // might be >countBytes merged=TRUE; } } if(merged) { // Remove all shorter ranges. // There was no room available for them between the ranges we just merged. upper[length].count=0; while(--length>middleLength) { lower[length].count=upper[length].count=0; } break; } } } } #ifdef UCOL_DEBUG /* print ranges */ for(int32_t length=4; length>=2; --length) { if(lower[length].count>0) { printf("lower[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, lower[length].start, lower[length].end, lower[length].count); } } if(middle.count>0) { printf("middle .start=0x%08lx .end=0x%08lx .count=%ld\n", middle.start, middle.end, middle.count); } for(int32_t length=2; length<=4; ++length) { if(upper[length].count>0) { printf("upper[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, upper[length].start, upper[length].end, upper[length].count); } } #endif /* copy the ranges, shortest first, into the result array */ rangeCount=0; if(middle.count>0) { uprv_memcpy(ranges, &middle, sizeof(WeightRange)); rangeCount=1; } for(int32_t length=middleLength+1; length<=4; ++length) { /* copy upper first so that later the middle range is more likely the first one to use */ if(upper[length].count>0) { uprv_memcpy(ranges+rangeCount, upper+length, sizeof(WeightRange)); ++rangeCount; } if(lower[length].count>0) { uprv_memcpy(ranges+rangeCount, lower+length, sizeof(WeightRange)); ++rangeCount; } } return rangeCount>0; } UBool CollationWeights::allocWeightsInShortRanges(int32_t n, int32_t minLength) { // See if the first few minLength and minLength+1 ranges have enough weights. for(int32_t i = 0; i < rangeCount && ranges[i].length <= (minLength + 1); ++i) { if(n <= ranges[i].count) { // Use the first few minLength and minLength+1 ranges. if(ranges[i].length > minLength) { // Reduce the number of weights from the last minLength+1 range // which might sort before some minLength ranges, // so that we use all weights in the minLength ranges. ranges[i].count = n; } rangeCount = i + 1; #ifdef UCOL_DEBUG printf("take first %ld ranges\n", rangeCount); #endif if(rangeCount>1) { /* sort the ranges by weight values */ UErrorCode errorCode=U_ZERO_ERROR; uprv_sortArray(ranges, rangeCount, sizeof(WeightRange), compareRanges, NULL, FALSE, &errorCode); /* ignore error code: we know that the internal sort function will not fail here */ } return TRUE; } n -= ranges[i].count; // still >0 } return FALSE; } UBool CollationWeights::allocWeightsInMinLengthRanges(int32_t n, int32_t minLength) { // See if the minLength ranges have enough weights // when we split one and lengthen the following ones. int32_t count = 0; int32_t minLengthRangeCount; for(minLengthRangeCount = 0; minLengthRangeCount < rangeCount && ranges[minLengthRangeCount].length == minLength; ++minLengthRangeCount) { count += ranges[minLengthRangeCount].count; } int32_t nextCountBytes = countBytes(minLength + 1); if(n > count * nextCountBytes) { return FALSE; } // Use the minLength ranges. Merge them, and then split again as necessary. uint32_t start = ranges[0].start; uint32_t end = ranges[0].end; for(int32_t i = 1; i < minLengthRangeCount; ++i) { if(ranges[i].start < start) { start = ranges[i].start; } if(ranges[i].end > end) { end = ranges[i].end; } } // Calculate how to split the range between minLength (count1) and minLength+1 (count2). // Goal: // count1 + count2 * nextCountBytes = n // count1 + count2 = count // These turn into // (count - count2) + count2 * nextCountBytes = n // and then into the following count1 & count2 computations. int32_t count2 = (n - count) / (nextCountBytes - 1); // number of weights to be lengthened int32_t count1 = count - count2; // number of minLength weights if(count2 == 0 || (count1 + count2 * nextCountBytes) < n) { // round up ++count2; --count1; U_ASSERT((count1 + count2 * nextCountBytes) >= n); } ranges[0].start = start; if(count1 == 0) { // Make one long range. ranges[0].end = end; ranges[0].count = count; lengthenRange(ranges[0]); rangeCount = 1; } else { // Split the range, lengthen the second part. #ifdef UCOL_DEBUG printf("split the range number %ld (out of %ld minLength ranges) by %ld:%ld\n", splitRange, rangeCount, count1, count2); #endif // Next start = start + count1. First end = 1 before that. ranges[0].end = incWeightByOffset(start, minLength, count1 - 1); ranges[0].count = count1; ranges[1].start = incWeight(ranges[0].end, minLength); ranges[1].end = end; ranges[1].length = minLength; // +1 when lengthened ranges[1].count = count2; // *countBytes when lengthened lengthenRange(ranges[1]); rangeCount = 2; } return TRUE; } /* * call getWeightRanges and then determine heuristically * which ranges to use for a given number of weights between (excluding) * two limits */ UBool CollationWeights::allocWeights(uint32_t lowerLimit, uint32_t upperLimit, int32_t n) { #ifdef UCOL_DEBUG puts(""); #endif if(!getWeightRanges(lowerLimit, upperLimit)) { #ifdef UCOL_DEBUG printf("error: unable to get Weight ranges\n"); #endif return FALSE; } /* try until we find suitably large ranges */ for(;;) { /* get the smallest number of bytes in a range */ int32_t minLength=ranges[0].length; if(allocWeightsInShortRanges(n, minLength)) { break; } if(minLength == 4) { #ifdef UCOL_DEBUG printf("error: the maximum number of %ld weights is insufficient for n=%ld\n", minLengthCount, n); #endif return FALSE; } if(allocWeightsInMinLengthRanges(n, minLength)) { break; } /* no good match, lengthen all minLength ranges and iterate */ #ifdef UCOL_DEBUG printf("lengthen the short ranges from %ld bytes to %ld and iterate\n", minLength, minLength+1); #endif for(int32_t i=0; ranges[i].length==minLength; ++i) { lengthenRange(ranges[i]); } } #ifdef UCOL_DEBUG puts("final ranges:"); for(int32_t i=0; i<rangeCount; ++i) { printf("ranges[%ld] .start=0x%08lx .end=0x%08lx .length=%ld .count=%ld\n", i, ranges[i].start, ranges[i].end, ranges[i].length, ranges[i].count); } #endif rangeIndex = 0; return TRUE; } uint32_t CollationWeights::nextWeight() { if(rangeIndex >= rangeCount) { return 0xffffffff; } else { /* get the next weight */ WeightRange &range = ranges[rangeIndex]; uint32_t weight = range.start; if(--range.count == 0) { /* this range is finished */ ++rangeIndex; } else { /* increment the weight for the next value */ range.start = incWeight(weight, range.length); U_ASSERT(range.start <= range.end); } return weight; } } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_COLLATION */