/* ****************************************************************************** * * Copyright (C) 2001-2012, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * file name: utrie.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2001oct20 * created by: Markus W. Scherer * * This is a common implementation of a "folded" trie. * It is a kind of compressed, serializable table of 16- or 32-bit values associated with * Unicode code points (0..0x10ffff). */ #ifdef UTRIE_DEBUG # include <stdio.h> #endif #include "unicode/utypes.h" #include "cmemory.h" #include "utrie.h" /* miscellaneous ------------------------------------------------------------ */ #undef ABS #define ABS(x) ((x)>=0 ? (x) : -(x)) static inline UBool equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { while(length>0 && *s==*t) { ++s; ++t; --length; } return (UBool)(length==0); } /* Building a trie ----------------------------------------------------------*/ U_CAPI UNewTrie * U_EXPORT2 utrie_open(UNewTrie *fillIn, uint32_t *aliasData, int32_t maxDataLength, uint32_t initialValue, uint32_t leadUnitValue, UBool latin1Linear) { UNewTrie *trie; int32_t i, j; if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH || (latin1Linear && maxDataLength<1024) ) { return NULL; } if(fillIn!=NULL) { trie=fillIn; } else { trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie)); if(trie==NULL) { return NULL; } } uprv_memset(trie, 0, sizeof(UNewTrie)); trie->isAllocated= (UBool)(fillIn==NULL); if(aliasData!=NULL) { trie->data=aliasData; trie->isDataAllocated=FALSE; } else { trie->data=(uint32_t *)uprv_malloc(maxDataLength*4); if(trie->data==NULL) { uprv_free(trie); return NULL; } trie->isDataAllocated=TRUE; } /* preallocate and reset the first data block (block index 0) */ j=UTRIE_DATA_BLOCK_LENGTH; if(latin1Linear) { /* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */ /* made sure above that maxDataLength>=1024 */ /* set indexes to point to consecutive data blocks */ i=0; do { /* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */ trie->index[i++]=j; j+=UTRIE_DATA_BLOCK_LENGTH; } while(i<(256>>UTRIE_SHIFT)); } /* reset the initially allocated blocks to the initial value */ trie->dataLength=j; while(j>0) { trie->data[--j]=initialValue; } trie->leadUnitValue=leadUnitValue; trie->indexLength=UTRIE_MAX_INDEX_LENGTH; trie->dataCapacity=maxDataLength; trie->isLatin1Linear=latin1Linear; trie->isCompacted=FALSE; return trie; } U_CAPI UNewTrie * U_EXPORT2 utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) { UNewTrie *trie; UBool isDataAllocated; /* do not clone if other is not valid or already compacted */ if(other==NULL || other->data==NULL || other->isCompacted) { return NULL; } /* clone data */ if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) { isDataAllocated=FALSE; } else { aliasDataCapacity=other->dataCapacity; aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4); if(aliasData==NULL) { return NULL; } isDataAllocated=TRUE; } trie=utrie_open(fillIn, aliasData, aliasDataCapacity, other->data[0], other->leadUnitValue, other->isLatin1Linear); if(trie==NULL) { uprv_free(aliasData); } else { uprv_memcpy(trie->index, other->index, sizeof(trie->index)); uprv_memcpy(trie->data, other->data, other->dataLength*4); trie->dataLength=other->dataLength; trie->isDataAllocated=isDataAllocated; } return trie; } U_CAPI void U_EXPORT2 utrie_close(UNewTrie *trie) { if(trie!=NULL) { if(trie->isDataAllocated) { uprv_free(trie->data); trie->data=NULL; } if(trie->isAllocated) { uprv_free(trie); } } } U_CAPI uint32_t * U_EXPORT2 utrie_getData(UNewTrie *trie, int32_t *pLength) { if(trie==NULL || pLength==NULL) { return NULL; } *pLength=trie->dataLength; return trie->data; } static int32_t utrie_allocDataBlock(UNewTrie *trie) { int32_t newBlock, newTop; newBlock=trie->dataLength; newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH; if(newTop>trie->dataCapacity) { /* out of memory in the data array */ return -1; } trie->dataLength=newTop; return newBlock; } /** * No error checking for illegal arguments. * * @return -1 if no new data block available (out of memory in data array) * @internal */ static int32_t utrie_getDataBlock(UNewTrie *trie, UChar32 c) { int32_t indexValue, newBlock; c>>=UTRIE_SHIFT; indexValue=trie->index[c]; if(indexValue>0) { return indexValue; } /* allocate a new data block */ newBlock=utrie_allocDataBlock(trie); if(newBlock<0) { /* out of memory in the data array */ return -1; } trie->index[c]=newBlock; /* copy-on-write for a block from a setRange() */ uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH); return newBlock; } /** * @return TRUE if the value was successfully set */ U_CAPI UBool U_EXPORT2 utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) { int32_t block; /* valid, uncompacted trie and valid c? */ if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { return FALSE; } block=utrie_getDataBlock(trie, c); if(block<0) { return FALSE; } trie->data[block+(c&UTRIE_MASK)]=value; return TRUE; } U_CAPI uint32_t U_EXPORT2 utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) { int32_t block; /* valid, uncompacted trie and valid c? */ if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { if(pInBlockZero!=NULL) { *pInBlockZero=TRUE; } return 0; } block=trie->index[c>>UTRIE_SHIFT]; if(pInBlockZero!=NULL) { *pInBlockZero= (UBool)(block==0); } return trie->data[ABS(block)+(c&UTRIE_MASK)]; } /** * @internal */ static void utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit, uint32_t value, uint32_t initialValue, UBool overwrite) { uint32_t *pLimit; pLimit=block+limit; block+=start; if(overwrite) { while(block<pLimit) { *block++=value; } } else { while(block<pLimit) { if(*block==initialValue) { *block=value; } ++block; } } } U_CAPI UBool U_EXPORT2 utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) { /* * repeat value in [start..limit[ * mark index values for repeat-data blocks by setting bit 31 of the index values * fill around existing values if any, if(overwrite) */ uint32_t initialValue; int32_t block, rest, repeatBlock; /* valid, uncompacted trie and valid indexes? */ if( trie==NULL || trie->isCompacted || (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit ) { return FALSE; } if(start==limit) { return TRUE; /* nothing to do */ } initialValue=trie->data[0]; if(start&UTRIE_MASK) { UChar32 nextStart; /* set partial block at [start..following block boundary[ */ block=utrie_getDataBlock(trie, start); if(block<0) { return FALSE; } nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK; if(nextStart<=limit) { utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite); start=nextStart; } else { utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK, value, initialValue, overwrite); return TRUE; } } /* number of positions in the last, partial block */ rest=limit&UTRIE_MASK; /* round down limit to a block boundary */ limit&=~UTRIE_MASK; /* iterate over all-value blocks */ if(value==initialValue) { repeatBlock=0; } else { repeatBlock=-1; } while(start<limit) { /* get index value */ block=trie->index[start>>UTRIE_SHIFT]; if(block>0) { /* already allocated, fill in value */ utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite); } else if(trie->data[-block]!=value && (block==0 || overwrite)) { /* set the repeatBlock instead of the current block 0 or range block */ if(repeatBlock>=0) { trie->index[start>>UTRIE_SHIFT]=-repeatBlock; } else { /* create and set and fill the repeatBlock */ repeatBlock=utrie_getDataBlock(trie, start); if(repeatBlock<0) { return FALSE; } /* set the negative block number to indicate that it is a repeat block */ trie->index[start>>UTRIE_SHIFT]=-repeatBlock; utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE); } } start+=UTRIE_DATA_BLOCK_LENGTH; } if(rest>0) { /* set partial block at [last block boundary..limit[ */ block=utrie_getDataBlock(trie, start); if(block<0) { return FALSE; } utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite); } return TRUE; } static int32_t _findSameIndexBlock(const int32_t *idx, int32_t indexLength, int32_t otherBlock) { int32_t block, i; for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) { for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) { if(idx[block+i]!=idx[otherBlock+i]) { break; } } if(i==UTRIE_SURROGATE_BLOCK_COUNT) { return block; } } return indexLength; } /* * Fold the normalization data for supplementary code points into * a compact area on top of the BMP-part of the trie index, * with the lead surrogates indexing this compact area. * * Duplicate the index values for lead surrogates: * From inside the BMP area, where some may be overridden with folded values, * to just after the BMP area, where they can be retrieved for * code point lookups. */ static void utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) { int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT]; int32_t *idx; uint32_t value; UChar32 c; int32_t indexLength, block; #ifdef UTRIE_DEBUG int countLeadCUWithData=0; #endif idx=trie->index; /* copy the lead surrogate indexes into a temporary array */ uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT); /* * set all values for lead surrogate code *units* to leadUnitValue * so that, by default, runtime lookups will find no data for associated * supplementary code points, unless there is data for such code points * which will result in a non-zero folding value below that is set for * the respective lead units * * the above saved the indexes for surrogate code *points* * fill the indexes with simplified code from utrie_setRange32() */ if(trie->leadUnitValue==trie->data[0]) { block=0; /* leadUnitValue==initialValue, use all-initial-value block */ } else { /* create and fill the repeatBlock */ block=utrie_allocDataBlock(trie); if(block<0) { /* data table overflow */ *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return; } utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE); block=-block; /* negative block number to indicate that it is a repeat block */ } for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) { trie->index[c]=block; } /* * Fold significant index values into the area just after the BMP indexes. * In case the first lead surrogate has significant data, * its index block must be used first (in which case the folding is a no-op). * Later all folded index blocks are moved up one to insert the copied * lead surrogate indexes. */ indexLength=UTRIE_BMP_INDEX_LENGTH; /* search for any index (stage 1) entries for supplementary code points */ for(c=0x10000; c<0x110000;) { if(idx[c>>UTRIE_SHIFT]!=0) { /* there is data, treat the full block for a lead surrogate */ c&=~0x3ff; #ifdef UTRIE_DEBUG ++countLeadCUWithData; /* printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); */ #endif /* is there an identical index block? */ block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT); /* * get a folded value for [c..c+0x400[ and, * if different from the value for the lead surrogate code point, * set it for the lead surrogate code unit */ value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT); if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) { if(!utrie_set32(trie, U16_LEAD(c), value)) { /* data table overflow */ *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return; } /* if we did not find an identical index block... */ if(block==indexLength) { /* move the actual index (stage 1) entries from the supplementary position to the new one */ uprv_memmove(idx+indexLength, idx+(c>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT); indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; } } c+=0x400; } else { c+=UTRIE_DATA_BLOCK_LENGTH; } } #ifdef UTRIE_DEBUG if(countLeadCUWithData>0) { printf("supplementary data for %d lead surrogates\n", countLeadCUWithData); } #endif /* * index array overflow? * This is to guarantee that a folding offset is of the form * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023. * If the index is too large, then n>=1024 and more than 10 bits are necessary. * * In fact, it can only ever become n==1024 with completely unfoldable data and * the additional block of duplicated values for lead surrogates. */ if(indexLength>=UTRIE_MAX_INDEX_LENGTH) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return; } /* * make space for the lead surrogate index block and * insert it between the BMP indexes and the folded ones */ uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT, idx+UTRIE_BMP_INDEX_LENGTH, 4*(indexLength-UTRIE_BMP_INDEX_LENGTH)); uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH, leadIndexes, 4*UTRIE_SURROGATE_BLOCK_COUNT); indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; #ifdef UTRIE_DEBUG printf("trie index count: BMP %ld all Unicode %ld folded %ld\n", UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength); #endif trie->indexLength=indexLength; } /* * Set a value in the trie index map to indicate which data block * is referenced and which one is not. * utrie_compact() will remove data blocks that are not used at all. * Set * - 0 if it is used * - -1 if it is not used */ static void _findUnusedBlocks(UNewTrie *trie) { int32_t i; /* fill the entire map with "not used" */ uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4); /* mark each block that _is_ used with 0 */ for(i=0; i<trie->indexLength; ++i) { trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0; } /* never move the all-initial-value block 0 */ trie->map[0]=0; } static int32_t _findSameDataBlock(const uint32_t *data, int32_t dataLength, int32_t otherBlock, int32_t step) { int32_t block; /* ensure that we do not even partially get past dataLength */ dataLength-=UTRIE_DATA_BLOCK_LENGTH; for(block=0; block<=dataLength; block+=step) { if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) { return block; } } return -1; } /* * Compact a folded build-time trie. * * The compaction * - removes blocks that are identical with earlier ones * - overlaps adjacent blocks as much as possible (if overlap==TRUE) * - moves blocks in steps of the data granularity * - moves and overlaps blocks that overlap with multiple values in the overlap region * * It does not * - try to move and overlap blocks that are not already adjacent */ static void utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) { int32_t i, start, newStart, overlapStart; if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return; } /* valid, uncompacted trie? */ if(trie==NULL) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return; } if(trie->isCompacted) { return; /* nothing left to do */ } /* compaction */ /* initialize the index map with "block is used/unused" flags */ _findUnusedBlocks(trie); /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */ if(trie->isLatin1Linear && UTRIE_SHIFT<=8) { overlapStart=UTRIE_DATA_BLOCK_LENGTH+256; } else { overlapStart=UTRIE_DATA_BLOCK_LENGTH; } newStart=UTRIE_DATA_BLOCK_LENGTH; for(start=newStart; start<trie->dataLength;) { /* * start: index of first entry of current block * newStart: index where the current block is to be moved * (right after current end of already-compacted data) */ /* skip blocks that are not used */ if(trie->map[start>>UTRIE_SHIFT]<0) { /* advance start to the next block */ start+=UTRIE_DATA_BLOCK_LENGTH; /* leave newStart with the previous block! */ continue; } /* search for an identical block */ if( start>=overlapStart && (i=_findSameDataBlock(trie->data, newStart, start, overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH)) >=0 ) { /* found an identical block, set the other block's index value for the current block */ trie->map[start>>UTRIE_SHIFT]=i; /* advance start to the next block */ start+=UTRIE_DATA_BLOCK_LENGTH; /* leave newStart with the previous block! */ continue; } /* see if the beginning of this block can be overlapped with the end of the previous block */ if(overlap && start>=overlapStart) { /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY; i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i); i-=UTRIE_DATA_GRANULARITY) {} } else { i=0; } if(i>0) { /* some overlap */ trie->map[start>>UTRIE_SHIFT]=newStart-i; /* move the non-overlapping indexes to their new positions */ start+=i; for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) { trie->data[newStart++]=trie->data[start++]; } } else if(newStart<start) { /* no overlap, just move the indexes to their new positions */ trie->map[start>>UTRIE_SHIFT]=newStart; for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) { trie->data[newStart++]=trie->data[start++]; } } else /* no overlap && newStart==start */ { trie->map[start>>UTRIE_SHIFT]=start; newStart+=UTRIE_DATA_BLOCK_LENGTH; start=newStart; } } /* now adjust the index (stage 1) table */ for(i=0; i<trie->indexLength; ++i) { trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]; } #ifdef UTRIE_DEBUG /* we saved some space */ printf("compacting trie: count of 32-bit words %lu->%lu\n", (long)trie->dataLength, (long)newStart); #endif trie->dataLength=newStart; } /* serialization ------------------------------------------------------------ */ /* * Default function for the folding value: * Just store the offset (16 bits) if there is any non-initial-value entry. * * The offset parameter is never 0. * Returning the offset itself is safe for UTRIE_SHIFT>=5 because * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800 * which fits into 16-bit trie values; * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases. * * Theoretically, it would be safer for all possible UTRIE_SHIFT including * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS * which would always result in a value of 0x40..0x43f * (start/end 1k blocks of supplementary Unicode code points). * However, this would be uglier, and would not work for some existing * binary data file formats. * * Also, we do not plan to change UTRIE_SHIFT because it would change binary * data file formats, and we would probably not make it smaller because of * the then even larger BMP index length even for empty tries. */ static uint32_t U_CALLCONV defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) { uint32_t value, initialValue; UChar32 limit; UBool inBlockZero; initialValue=trie->data[0]; limit=start+0x400; while(start<limit) { value=utrie_get32(trie, start, &inBlockZero); if(inBlockZero) { start+=UTRIE_DATA_BLOCK_LENGTH; } else if(value!=initialValue) { return (uint32_t)offset; } else { ++start; } } return 0; } U_CAPI int32_t U_EXPORT2 utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity, UNewTrieGetFoldedValue *getFoldedValue, UBool reduceTo16Bits, UErrorCode *pErrorCode) { UTrieHeader *header; uint32_t *p; uint16_t *dest16; int32_t i, length; uint8_t* data = NULL; /* argument check */ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return 0; } if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } if(getFoldedValue==NULL) { getFoldedValue=defaultGetFoldedValue; } data = (uint8_t*)dt; /* fold and compact if necessary, also checks that indexLength is within limits */ if(!trie->isCompacted) { /* compact once without overlap to improve folding */ utrie_compact(trie, FALSE, pErrorCode); /* fold the supplementary part of the index array */ utrie_fold(trie, getFoldedValue, pErrorCode); /* compact again with overlap for minimum data array length */ utrie_compact(trie, TRUE, pErrorCode); trie->isCompacted=TRUE; if(U_FAILURE(*pErrorCode)) { return 0; } } /* is dataLength within limits? */ if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; } length=sizeof(UTrieHeader)+2*trie->indexLength; if(reduceTo16Bits) { length+=2*trie->dataLength; } else { length+=4*trie->dataLength; } if(length>capacity) { return length; /* preflighting */ } #ifdef UTRIE_DEBUG printf("**UTrieLengths(serialize)** index:%6ld data:%6ld serialized:%6ld\n", (long)trie->indexLength, (long)trie->dataLength, (long)length); #endif /* set the header fields */ header=(UTrieHeader *)data; data+=sizeof(UTrieHeader); header->signature=0x54726965; /* "Trie" */ header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT); if(!reduceTo16Bits) { header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT; } if(trie->isLatin1Linear) { header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR; } header->indexLength=trie->indexLength; header->dataLength=trie->dataLength; /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */ if(reduceTo16Bits) { /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */ p=(uint32_t *)trie->index; dest16=(uint16_t *)data; for(i=trie->indexLength; i>0; --i) { *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT); } /* write 16-bit data values */ p=trie->data; for(i=trie->dataLength; i>0; --i) { *dest16++=(uint16_t)*p++; } } else { /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */ p=(uint32_t *)trie->index; dest16=(uint16_t *)data; for(i=trie->indexLength; i>0; --i) { *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT); } /* write 32-bit data values */ uprv_memcpy(dest16, trie->data, 4*trie->dataLength); } return length; } /* inverse to defaultGetFoldedValue() */ U_CAPI int32_t U_EXPORT2 utrie_defaultGetFoldingOffset(uint32_t data) { return (int32_t)data; } U_CAPI int32_t U_EXPORT2 utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) { const UTrieHeader *header; const uint16_t *p16; uint32_t options; if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return -1; } /* enough data for a trie header? */ if(length<(int32_t)sizeof(UTrieHeader)) { *pErrorCode=U_INVALID_FORMAT_ERROR; return -1; } /* check the signature */ header=(const UTrieHeader *)data; if(header->signature!=0x54726965) { *pErrorCode=U_INVALID_FORMAT_ERROR; return -1; } /* get the options and check the shift values */ options=header->options; if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT || ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT ) { *pErrorCode=U_INVALID_FORMAT_ERROR; return -1; } trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0); /* get the length values */ trie->indexLength=header->indexLength; trie->dataLength=header->dataLength; length-=(int32_t)sizeof(UTrieHeader); /* enough data for the index? */ if(length<2*trie->indexLength) { *pErrorCode=U_INVALID_FORMAT_ERROR; return -1; } p16=(const uint16_t *)(header+1); trie->index=p16; p16+=trie->indexLength; length-=2*trie->indexLength; /* get the data */ if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) { if(length<4*trie->dataLength) { *pErrorCode=U_INVALID_FORMAT_ERROR; return -1; } trie->data32=(const uint32_t *)p16; trie->initialValue=trie->data32[0]; length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength; } else { if(length<2*trie->dataLength) { *pErrorCode=U_INVALID_FORMAT_ERROR; return -1; } /* the "data16" data is used via the index pointer */ trie->data32=NULL; trie->initialValue=trie->index[trie->indexLength]; length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength; } trie->getFoldingOffset=utrie_defaultGetFoldingOffset; return length; } U_CAPI int32_t U_EXPORT2 utrie_unserializeDummy(UTrie *trie, void *data, int32_t length, uint32_t initialValue, uint32_t leadUnitValue, UBool make16BitTrie, UErrorCode *pErrorCode) { uint16_t *p16; int32_t actualLength, latin1Length, i, limit; uint16_t block; if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return -1; } /* calculate the actual size of the dummy trie data */ /* max(Latin-1, block 0) */ latin1Length= 256; /*UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH;*/ trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT; trie->dataLength=latin1Length; if(leadUnitValue!=initialValue) { trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH; } actualLength=trie->indexLength*2; if(make16BitTrie) { actualLength+=trie->dataLength*2; } else { actualLength+=trie->dataLength*4; } /* enough space for the dummy trie? */ if(length<actualLength) { *pErrorCode=U_BUFFER_OVERFLOW_ERROR; return actualLength; } trie->isLatin1Linear=TRUE; trie->initialValue=initialValue; /* fill the index and data arrays */ p16=(uint16_t *)data; trie->index=p16; if(make16BitTrie) { /* indexes to block 0 */ block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT); limit=trie->indexLength; for(i=0; i<limit; ++i) { p16[i]=block; } if(leadUnitValue!=initialValue) { /* indexes for lead surrogate code units to the block after Latin-1 */ block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); i=0xd800>>UTRIE_SHIFT; limit=0xdc00>>UTRIE_SHIFT; for(; i<limit; ++i) { p16[i]=block; } } trie->data32=NULL; /* Latin-1 data */ p16+=trie->indexLength; for(i=0; i<latin1Length; ++i) { p16[i]=(uint16_t)initialValue; } /* data for lead surrogate code units */ if(leadUnitValue!=initialValue) { limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; for(/* i=latin1Length */; i<limit; ++i) { p16[i]=(uint16_t)leadUnitValue; } } } else { uint32_t *p32; /* indexes to block 0 */ uprv_memset(p16, 0, trie->indexLength*2); if(leadUnitValue!=initialValue) { /* indexes for lead surrogate code units to the block after Latin-1 */ block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); i=0xd800>>UTRIE_SHIFT; limit=0xdc00>>UTRIE_SHIFT; for(; i<limit; ++i) { p16[i]=block; } } trie->data32=p32=(uint32_t *)(p16+trie->indexLength); /* Latin-1 data */ for(i=0; i<latin1Length; ++i) { p32[i]=initialValue; } /* data for lead surrogate code units */ if(leadUnitValue!=initialValue) { limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; for(/* i=latin1Length */; i<limit; ++i) { p32[i]=leadUnitValue; } } } trie->getFoldingOffset=utrie_defaultGetFoldingOffset; return actualLength; } /* enumeration -------------------------------------------------------------- */ /* default UTrieEnumValue() returns the input value itself */ static uint32_t U_CALLCONV enumSameValue(const void * /*context*/, uint32_t value) { return value; } /** * Enumerate all ranges of code points with the same relevant values. * The values are transformed from the raw trie entries by the enumValue function. */ U_CAPI void U_EXPORT2 utrie_enum(const UTrie *trie, UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) { const uint32_t *data32; const uint16_t *idx; uint32_t value, prevValue, initialValue; UChar32 c, prev; int32_t l, i, j, block, prevBlock, nullBlock, offset; /* check arguments */ if(trie==NULL || trie->index==NULL || enumRange==NULL) { return; } if(enumValue==NULL) { enumValue=enumSameValue; } idx=trie->index; data32=trie->data32; /* get the enumeration value that corresponds to an initial-value trie data entry */ initialValue=enumValue(context, trie->initialValue); if(data32==NULL) { nullBlock=trie->indexLength; } else { nullBlock=0; } /* set variables for previous range */ prevBlock=nullBlock; prev=0; prevValue=initialValue; /* enumerate BMP - the main loop enumerates data blocks */ for(i=0, c=0; c<=0xffff; ++i) { if(c==0xd800) { /* skip lead surrogate code _units_, go to lead surr. code _points_ */ i=UTRIE_BMP_INDEX_LENGTH; } else if(c==0xdc00) { /* go back to regular BMP code points */ i=c>>UTRIE_SHIFT; } block=idx[i]<<UTRIE_INDEX_SHIFT; if(block==prevBlock) { /* the block is the same as the previous one, and filled with value */ c+=UTRIE_DATA_BLOCK_LENGTH; } else if(block==nullBlock) { /* this is the all-initial-value block */ if(prevValue!=initialValue) { if(prev<c) { if(!enumRange(context, prev, c, prevValue)) { return; } } prevBlock=nullBlock; prev=c; prevValue=initialValue; } c+=UTRIE_DATA_BLOCK_LENGTH; } else { prevBlock=block; for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); if(value!=prevValue) { if(prev<c) { if(!enumRange(context, prev, c, prevValue)) { return; } } if(j>0) { /* the block is not filled with all the same value */ prevBlock=-1; } prev=c; prevValue=value; } ++c; } } } /* enumerate supplementary code points */ for(l=0xd800; l<0xdc00;) { /* lead surrogate access */ offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT; if(offset==nullBlock) { /* no entries for a whole block of lead surrogates */ if(prevValue!=initialValue) { if(prev<c) { if(!enumRange(context, prev, c, prevValue)) { return; } } prevBlock=nullBlock; prev=c; prevValue=initialValue; } l+=UTRIE_DATA_BLOCK_LENGTH; c+=UTRIE_DATA_BLOCK_LENGTH<<10; continue; } value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRIE_MASK)]; /* enumerate trail surrogates for this lead surrogate */ offset=trie->getFoldingOffset(value); if(offset<=0) { /* no data for this lead surrogate */ if(prevValue!=initialValue) { if(prev<c) { if(!enumRange(context, prev, c, prevValue)) { return; } } prevBlock=nullBlock; prev=c; prevValue=initialValue; } /* nothing else to do for the supplementary code points for this lead surrogate */ c+=0x400; } else { /* enumerate code points for this lead surrogate */ i=offset; offset+=UTRIE_SURROGATE_BLOCK_COUNT; do { /* copy of most of the body of the BMP loop */ block=idx[i]<<UTRIE_INDEX_SHIFT; if(block==prevBlock) { /* the block is the same as the previous one, and filled with value */ c+=UTRIE_DATA_BLOCK_LENGTH; } else if(block==nullBlock) { /* this is the all-initial-value block */ if(prevValue!=initialValue) { if(prev<c) { if(!enumRange(context, prev, c, prevValue)) { return; } } prevBlock=nullBlock; prev=c; prevValue=initialValue; } c+=UTRIE_DATA_BLOCK_LENGTH; } else { prevBlock=block; for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); if(value!=prevValue) { if(prev<c) { if(!enumRange(context, prev, c, prevValue)) { return; } } if(j>0) { /* the block is not filled with all the same value */ prevBlock=-1; } prev=c; prevValue=value; } ++c; } } } while(++i<offset); } ++l; } /* deliver last range */ enumRange(context, prev, c, prevValue); }