/* ****************************************************************************** * Copyright (C) 1999-2015, International Business Machines Corporation and * others. All Rights Reserved. ****************************************************************************** * * File unistr.cpp * * Modification History: * * Date Name Description * 09/25/98 stephen Creation. * 04/20/99 stephen Overhauled per 4/16 code review. * 07/09/99 stephen Renamed {hi,lo},{byte,word} to icu_X for HP/UX * 11/18/99 aliu Added handleReplaceBetween() to make inherit from * Replaceable. * 06/25/01 grhoten Removed the dependency on iostream ****************************************************************************** */ #include "unicode/utypes.h" #include "unicode/appendable.h" #include "unicode/putil.h" #include "cstring.h" #include "cmemory.h" #include "unicode/ustring.h" #include "unicode/unistr.h" #include "unicode/utf.h" #include "unicode/utf16.h" #include "uelement.h" #include "ustr_imp.h" #include "umutex.h" #include "uassert.h" #if 0 #include <iostream> using namespace std; //DEBUGGING void print(const UnicodeString& s, const char *name) { UChar c; cout << name << ":|"; for(int i = 0; i < s.length(); ++i) { c = s[i]; if(c>= 0x007E || c < 0x0020) cout << "[0x" << hex << s[i] << "]"; else cout << (char) s[i]; } cout << '|' << endl; } void print(const UChar *s, int32_t len, const char *name) { UChar c; cout << name << ":|"; for(int i = 0; i < len; ++i) { c = s[i]; if(c>= 0x007E || c < 0x0020) cout << "[0x" << hex << s[i] << "]"; else cout << (char) s[i]; } cout << '|' << endl; } // END DEBUGGING #endif // Local function definitions for now // need to copy areas that may overlap static inline void us_arrayCopy(const UChar *src, int32_t srcStart, UChar *dst, int32_t dstStart, int32_t count) { if(count>0) { uprv_memmove(dst+dstStart, src+srcStart, (size_t)(count*sizeof(*src))); } } // u_unescapeAt() callback to get a UChar from a UnicodeString U_CDECL_BEGIN static UChar U_CALLCONV UnicodeString_charAt(int32_t offset, void *context) { return ((icu::UnicodeString*) context)->charAt(offset); } U_CDECL_END U_NAMESPACE_BEGIN /* The Replaceable virtual destructor can't be defined in the header due to how AIX works with multiple definitions of virtual functions. */ Replaceable::~Replaceable() {} UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UnicodeString) UnicodeString U_EXPORT2 operator+ (const UnicodeString &s1, const UnicodeString &s2) { return UnicodeString(s1.length()+s2.length()+1, (UChar32)0, 0). append(s1). append(s2); } //======================================== // Reference Counting functions, put at top of file so that optimizing compilers // have a chance to automatically inline. //======================================== void UnicodeString::addRef() { umtx_atomic_inc((u_atomic_int32_t *)fUnion.fFields.fArray - 1); } int32_t UnicodeString::removeRef() { return umtx_atomic_dec((u_atomic_int32_t *)fUnion.fFields.fArray - 1); } int32_t UnicodeString::refCount() const { return umtx_loadAcquire(*((u_atomic_int32_t *)fUnion.fFields.fArray - 1)); } void UnicodeString::releaseArray() { if((fUnion.fFields.fLengthAndFlags & kRefCounted) && removeRef() == 0) { uprv_free((int32_t *)fUnion.fFields.fArray - 1); } } //======================================== // Constructors //======================================== // The default constructor is inline in unistr.h. UnicodeString::UnicodeString(int32_t capacity, UChar32 c, int32_t count) { fUnion.fFields.fLengthAndFlags = 0; if(count <= 0 || (uint32_t)c > 0x10ffff) { // just allocate and do not do anything else allocate(capacity); } else { // count > 0, allocate and fill the new string with count c's int32_t unitCount = U16_LENGTH(c), length = count * unitCount; if(capacity < length) { capacity = length; } if(allocate(capacity)) { UChar *array = getArrayStart(); int32_t i = 0; // fill the new string with c if(unitCount == 1) { // fill with length UChars while(i < length) { array[i++] = (UChar)c; } } else { // get the code units for c UChar units[U16_MAX_LENGTH]; U16_APPEND_UNSAFE(units, i, c); // now it must be i==unitCount i = 0; // for Unicode, unitCount can only be 1, 2, 3, or 4 // 1 is handled above while(i < length) { int32_t unitIdx = 0; while(unitIdx < unitCount) { array[i++]=units[unitIdx++]; } } } } setLength(length); } } UnicodeString::UnicodeString(UChar ch) { fUnion.fFields.fLengthAndFlags = kLength1 | kShortString; fUnion.fStackFields.fBuffer[0] = ch; } UnicodeString::UnicodeString(UChar32 ch) { fUnion.fFields.fLengthAndFlags = kShortString; int32_t i = 0; UBool isError = FALSE; U16_APPEND(fUnion.fStackFields.fBuffer, i, US_STACKBUF_SIZE, ch, isError); // We test isError so that the compiler does not complain that we don't. // If isError then i==0 which is what we want anyway. if(!isError) { setShortLength(i); } } UnicodeString::UnicodeString(const UChar *text) { fUnion.fFields.fLengthAndFlags = kShortString; doAppend(text, 0, -1); } UnicodeString::UnicodeString(const UChar *text, int32_t textLength) { fUnion.fFields.fLengthAndFlags = kShortString; doAppend(text, 0, textLength); } UnicodeString::UnicodeString(UBool isTerminated, const UChar *text, int32_t textLength) { fUnion.fFields.fLengthAndFlags = kReadonlyAlias; if(text == NULL) { // treat as an empty string, do not alias setToEmpty(); } else if(textLength < -1 || (textLength == -1 && !isTerminated) || (textLength >= 0 && isTerminated && text[textLength] != 0) ) { setToBogus(); } else { if(textLength == -1) { // text is terminated, or else it would have failed the above test textLength = u_strlen(text); } setArray((UChar *)text, textLength, isTerminated ? textLength + 1 : textLength); } } UnicodeString::UnicodeString(UChar *buff, int32_t buffLength, int32_t buffCapacity) { fUnion.fFields.fLengthAndFlags = kWritableAlias; if(buff == NULL) { // treat as an empty string, do not alias setToEmpty(); } else if(buffLength < -1 || buffCapacity < 0 || buffLength > buffCapacity) { setToBogus(); } else { if(buffLength == -1) { // fLength = u_strlen(buff); but do not look beyond buffCapacity const UChar *p = buff, *limit = buff + buffCapacity; while(p != limit && *p != 0) { ++p; } buffLength = (int32_t)(p - buff); } setArray(buff, buffLength, buffCapacity); } } UnicodeString::UnicodeString(const char *src, int32_t length, EInvariant) { fUnion.fFields.fLengthAndFlags = kShortString; if(src==NULL) { // treat as an empty string } else { if(length<0) { length=(int32_t)uprv_strlen(src); } if(cloneArrayIfNeeded(length, length, FALSE)) { u_charsToUChars(src, getArrayStart(), length); setLength(length); } else { setToBogus(); } } } #if U_CHARSET_IS_UTF8 UnicodeString::UnicodeString(const char *codepageData) { fUnion.fFields.fLengthAndFlags = kShortString; if(codepageData != 0) { setToUTF8(codepageData); } } UnicodeString::UnicodeString(const char *codepageData, int32_t dataLength) { fUnion.fFields.fLengthAndFlags = kShortString; // if there's nothing to convert, do nothing if(codepageData == 0 || dataLength == 0 || dataLength < -1) { return; } if(dataLength == -1) { dataLength = (int32_t)uprv_strlen(codepageData); } setToUTF8(StringPiece(codepageData, dataLength)); } // else see unistr_cnv.cpp #endif UnicodeString::UnicodeString(const UnicodeString& that) { fUnion.fFields.fLengthAndFlags = kShortString; copyFrom(that); } #if U_HAVE_RVALUE_REFERENCES UnicodeString::UnicodeString(UnicodeString &&src) U_NOEXCEPT { fUnion.fFields.fLengthAndFlags = kShortString; moveFrom(src); } #endif UnicodeString::UnicodeString(const UnicodeString& that, int32_t srcStart) { fUnion.fFields.fLengthAndFlags = kShortString; setTo(that, srcStart); } UnicodeString::UnicodeString(const UnicodeString& that, int32_t srcStart, int32_t srcLength) { fUnion.fFields.fLengthAndFlags = kShortString; setTo(that, srcStart, srcLength); } // Replaceable base class clone() default implementation, does not clone Replaceable * Replaceable::clone() const { return NULL; } // UnicodeString overrides clone() with a real implementation Replaceable * UnicodeString::clone() const { return new UnicodeString(*this); } //======================================== // array allocation //======================================== UBool UnicodeString::allocate(int32_t capacity) { if(capacity <= US_STACKBUF_SIZE) { fUnion.fFields.fLengthAndFlags = kShortString; } else { // count bytes for the refCounter and the string capacity, and // round up to a multiple of 16; then divide by 4 and allocate int32_t's // to be safely aligned for the refCount // the +1 is for the NUL terminator, to avoid reallocation in getTerminatedBuffer() int32_t words = (int32_t)(((sizeof(int32_t) + (capacity + 1) * U_SIZEOF_UCHAR + 15) & ~15) >> 2); int32_t *array = (int32_t*) uprv_malloc( sizeof(int32_t) * words ); if(array != 0) { // set initial refCount and point behind the refCount *array++ = 1; // have fArray point to the first UChar fUnion.fFields.fArray = (UChar *)array; fUnion.fFields.fCapacity = (int32_t)((words - 1) * (sizeof(int32_t) / U_SIZEOF_UCHAR)); fUnion.fFields.fLengthAndFlags = kLongString; } else { fUnion.fFields.fLengthAndFlags = kIsBogus; fUnion.fFields.fArray = 0; fUnion.fFields.fCapacity = 0; return FALSE; } } return TRUE; } //======================================== // Destructor //======================================== #ifdef UNISTR_COUNT_FINAL_STRING_LENGTHS static u_atomic_int32_t finalLengthCounts[0x400]; // UnicodeString::kMaxShortLength+1 static u_atomic_int32_t beyondCount(0); U_CAPI void unistr_printLengths() { int32_t i; for(i = 0; i <= 59; ++i) { printf("%2d, %9d\n", i, (int32_t)finalLengthCounts[i]); } int32_t beyond = beyondCount; for(; i < UPRV_LENGTHOF(finalLengthCounts); ++i) { beyond += finalLengthCounts[i]; } printf(">59, %9d\n", beyond); } #endif UnicodeString::~UnicodeString() { #ifdef UNISTR_COUNT_FINAL_STRING_LENGTHS // Count lengths of strings at the end of their lifetime. // Useful for discussion of a desirable stack buffer size. // Count the contents length, not the optional NUL terminator nor further capacity. // Ignore open-buffer strings and strings which alias external storage. if((fUnion.fFields.fLengthAndFlags&(kOpenGetBuffer|kReadonlyAlias|kWritableAlias)) == 0) { if(hasShortLength()) { umtx_atomic_inc(finalLengthCounts + getShortLength()); } else { umtx_atomic_inc(&beyondCount); } } #endif releaseArray(); } //======================================== // Factory methods //======================================== UnicodeString UnicodeString::fromUTF8(const StringPiece &utf8) { UnicodeString result; result.setToUTF8(utf8); return result; } UnicodeString UnicodeString::fromUTF32(const UChar32 *utf32, int32_t length) { UnicodeString result; int32_t capacity; // Most UTF-32 strings will be BMP-only and result in a same-length // UTF-16 string. We overestimate the capacity just slightly, // just in case there are a few supplementary characters. if(length <= US_STACKBUF_SIZE) { capacity = US_STACKBUF_SIZE; } else { capacity = length + (length >> 4) + 4; } do { UChar *utf16 = result.getBuffer(capacity); int32_t length16; UErrorCode errorCode = U_ZERO_ERROR; u_strFromUTF32WithSub(utf16, result.getCapacity(), &length16, utf32, length, 0xfffd, // Substitution character. NULL, // Don't care about number of substitutions. &errorCode); result.releaseBuffer(length16); if(errorCode == U_BUFFER_OVERFLOW_ERROR) { capacity = length16 + 1; // +1 for the terminating NUL. continue; } else if(U_FAILURE(errorCode)) { result.setToBogus(); } break; } while(TRUE); return result; } //======================================== // Assignment //======================================== UnicodeString & UnicodeString::operator=(const UnicodeString &src) { return copyFrom(src); } UnicodeString & UnicodeString::fastCopyFrom(const UnicodeString &src) { return copyFrom(src, TRUE); } UnicodeString & UnicodeString::copyFrom(const UnicodeString &src, UBool fastCopy) { // if assigning to ourselves, do nothing if(this == &src) { return *this; } // is the right side bogus? if(src.isBogus()) { setToBogus(); return *this; } // delete the current contents releaseArray(); if(src.isEmpty()) { // empty string - use the stack buffer setToEmpty(); return *this; } // fLength>0 and not an "open" src.getBuffer(minCapacity) fUnion.fFields.fLengthAndFlags = src.fUnion.fFields.fLengthAndFlags; switch(src.fUnion.fFields.fLengthAndFlags & kAllStorageFlags) { case kShortString: // short string using the stack buffer, do the same uprv_memcpy(fUnion.fStackFields.fBuffer, src.fUnion.fStackFields.fBuffer, getShortLength() * U_SIZEOF_UCHAR); break; case kLongString: // src uses a refCounted string buffer, use that buffer with refCount // src is const, use a cast - we don't actually change it ((UnicodeString &)src).addRef(); // copy all fields, share the reference-counted buffer fUnion.fFields.fArray = src.fUnion.fFields.fArray; fUnion.fFields.fCapacity = src.fUnion.fFields.fCapacity; if(!hasShortLength()) { fUnion.fFields.fLength = src.fUnion.fFields.fLength; } break; case kReadonlyAlias: if(fastCopy) { // src is a readonly alias, do the same // -> maintain the readonly alias as such fUnion.fFields.fArray = src.fUnion.fFields.fArray; fUnion.fFields.fCapacity = src.fUnion.fFields.fCapacity; if(!hasShortLength()) { fUnion.fFields.fLength = src.fUnion.fFields.fLength; } break; } // else if(!fastCopy) fall through to case kWritableAlias // -> allocate a new buffer and copy the contents case kWritableAlias: { // src is a writable alias; we make a copy of that instead int32_t srcLength = src.length(); if(allocate(srcLength)) { uprv_memcpy(getArrayStart(), src.getArrayStart(), srcLength * U_SIZEOF_UCHAR); setLength(srcLength); break; } // if there is not enough memory, then fall through to setting to bogus } default: // if src is bogus, set ourselves to bogus // do not call setToBogus() here because fArray and flags are not consistent here fUnion.fFields.fLengthAndFlags = kIsBogus; fUnion.fFields.fArray = 0; fUnion.fFields.fCapacity = 0; break; } return *this; } UnicodeString &UnicodeString::moveFrom(UnicodeString &src) U_NOEXCEPT { // No explicit check for self move assignment, consistent with standard library. // Self move assignment causes no crash nor leak but might make the object bogus. releaseArray(); copyFieldsFrom(src, TRUE); return *this; } // Same as moveFrom() except without memory management. void UnicodeString::copyFieldsFrom(UnicodeString &src, UBool setSrcToBogus) U_NOEXCEPT { int16_t lengthAndFlags = fUnion.fFields.fLengthAndFlags = src.fUnion.fFields.fLengthAndFlags; if(lengthAndFlags & kUsingStackBuffer) { // Short string using the stack buffer, copy the contents. // Check for self assignment to prevent "overlap in memcpy" warnings, // although it should be harmless to copy a buffer to itself exactly. if(this != &src) { uprv_memcpy(fUnion.fStackFields.fBuffer, src.fUnion.fStackFields.fBuffer, getShortLength() * U_SIZEOF_UCHAR); } } else { // In all other cases, copy all fields. fUnion.fFields.fArray = src.fUnion.fFields.fArray; fUnion.fFields.fCapacity = src.fUnion.fFields.fCapacity; if(!hasShortLength()) { fUnion.fFields.fLength = src.fUnion.fFields.fLength; } if(setSrcToBogus) { // Set src to bogus without releasing any memory. src.fUnion.fFields.fLengthAndFlags = kIsBogus; src.fUnion.fFields.fArray = NULL; src.fUnion.fFields.fCapacity = 0; } } } void UnicodeString::swap(UnicodeString &other) U_NOEXCEPT { UnicodeString temp; // Empty short string: Known not to need releaseArray(). // Copy fields without resetting source values in between. temp.copyFieldsFrom(*this, FALSE); this->copyFieldsFrom(other, FALSE); other.copyFieldsFrom(temp, FALSE); // Set temp to an empty string so that other's memory is not released twice. temp.fUnion.fFields.fLengthAndFlags = kShortString; } //======================================== // Miscellaneous operations //======================================== UnicodeString UnicodeString::unescape() const { UnicodeString result(length(), (UChar32)0, (int32_t)0); // construct with capacity if (result.isBogus()) { return result; } const UChar *array = getBuffer(); int32_t len = length(); int32_t prev = 0; for (int32_t i=0;;) { if (i == len) { result.append(array, prev, len - prev); break; } if (array[i++] == 0x5C /*'\\'*/) { result.append(array, prev, (i - 1) - prev); UChar32 c = unescapeAt(i); // advances i if (c < 0) { result.remove(); // return empty string break; // invalid escape sequence } result.append(c); prev = i; } } return result; } UChar32 UnicodeString::unescapeAt(int32_t &offset) const { return u_unescapeAt(UnicodeString_charAt, &offset, length(), (void*)this); } //======================================== // Read-only implementation //======================================== UBool UnicodeString::doEquals(const UnicodeString &text, int32_t len) const { // Requires: this & text not bogus and have same lengths. // Byte-wise comparison works for equality regardless of endianness. return uprv_memcmp(getArrayStart(), text.getArrayStart(), len * U_SIZEOF_UCHAR) == 0; } int8_t UnicodeString::doCompare( int32_t start, int32_t length, const UChar *srcChars, int32_t srcStart, int32_t srcLength) const { // compare illegal string values if(isBogus()) { return -1; } // pin indices to legal values pinIndices(start, length); if(srcChars == NULL) { // treat const UChar *srcChars==NULL as an empty string return length == 0 ? 0 : 1; } // get the correct pointer const UChar *chars = getArrayStart(); chars += start; srcChars += srcStart; int32_t minLength; int8_t lengthResult; // get the srcLength if necessary if(srcLength < 0) { srcLength = u_strlen(srcChars + srcStart); } // are we comparing different lengths? if(length != srcLength) { if(length < srcLength) { minLength = length; lengthResult = -1; } else { minLength = srcLength; lengthResult = 1; } } else { minLength = length; lengthResult = 0; } /* * note that uprv_memcmp() returns an int but we return an int8_t; * we need to take care not to truncate the result - * one way to do this is to right-shift the value to * move the sign bit into the lower 8 bits and making sure that this * does not become 0 itself */ if(minLength > 0 && chars != srcChars) { int32_t result; # if U_IS_BIG_ENDIAN // big-endian: byte comparison works result = uprv_memcmp(chars, srcChars, minLength * sizeof(UChar)); if(result != 0) { return (int8_t)(result >> 15 | 1); } # else // little-endian: compare UChar units do { result = ((int32_t)*(chars++) - (int32_t)*(srcChars++)); if(result != 0) { return (int8_t)(result >> 15 | 1); } } while(--minLength > 0); # endif } return lengthResult; } /* String compare in code point order - doCompare() compares in code unit order. */ int8_t UnicodeString::doCompareCodePointOrder(int32_t start, int32_t length, const UChar *srcChars, int32_t srcStart, int32_t srcLength) const { // compare illegal string values // treat const UChar *srcChars==NULL as an empty string if(isBogus()) { return -1; } // pin indices to legal values pinIndices(start, length); if(srcChars == NULL) { srcStart = srcLength = 0; } int32_t diff = uprv_strCompare(getArrayStart() + start, length, (srcChars!=NULL)?(srcChars + srcStart):NULL, srcLength, FALSE, TRUE); /* translate the 32-bit result into an 8-bit one */ if(diff!=0) { return (int8_t)(diff >> 15 | 1); } else { return 0; } } int32_t UnicodeString::getLength() const { return length(); } UChar UnicodeString::getCharAt(int32_t offset) const { return charAt(offset); } UChar32 UnicodeString::getChar32At(int32_t offset) const { return char32At(offset); } UChar32 UnicodeString::char32At(int32_t offset) const { int32_t len = length(); if((uint32_t)offset < (uint32_t)len) { const UChar *array = getArrayStart(); UChar32 c; U16_GET(array, 0, offset, len, c); return c; } else { return kInvalidUChar; } } int32_t UnicodeString::getChar32Start(int32_t offset) const { if((uint32_t)offset < (uint32_t)length()) { const UChar *array = getArrayStart(); U16_SET_CP_START(array, 0, offset); return offset; } else { return 0; } } int32_t UnicodeString::getChar32Limit(int32_t offset) const { int32_t len = length(); if((uint32_t)offset < (uint32_t)len) { const UChar *array = getArrayStart(); U16_SET_CP_LIMIT(array, 0, offset, len); return offset; } else { return len; } } int32_t UnicodeString::countChar32(int32_t start, int32_t length) const { pinIndices(start, length); // if(isBogus()) then fArray==0 and start==0 - u_countChar32() checks for NULL return u_countChar32(getArrayStart()+start, length); } UBool UnicodeString::hasMoreChar32Than(int32_t start, int32_t length, int32_t number) const { pinIndices(start, length); // if(isBogus()) then fArray==0 and start==0 - u_strHasMoreChar32Than() checks for NULL return u_strHasMoreChar32Than(getArrayStart()+start, length, number); } int32_t UnicodeString::moveIndex32(int32_t index, int32_t delta) const { // pin index int32_t len = length(); if(index<0) { index=0; } else if(index>len) { index=len; } const UChar *array = getArrayStart(); if(delta>0) { U16_FWD_N(array, index, len, delta); } else { U16_BACK_N(array, 0, index, -delta); } return index; } void UnicodeString::doExtract(int32_t start, int32_t length, UChar *dst, int32_t dstStart) const { // pin indices to legal values pinIndices(start, length); // do not copy anything if we alias dst itself const UChar *array = getArrayStart(); if(array + start != dst + dstStart) { us_arrayCopy(array, start, dst, dstStart, length); } } int32_t UnicodeString::extract(UChar *dest, int32_t destCapacity, UErrorCode &errorCode) const { int32_t len = length(); if(U_SUCCESS(errorCode)) { if(isBogus() || destCapacity<0 || (destCapacity>0 && dest==0)) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; } else { const UChar *array = getArrayStart(); if(len>0 && len<=destCapacity && array!=dest) { uprv_memcpy(dest, array, len*U_SIZEOF_UCHAR); } return u_terminateUChars(dest, destCapacity, len, &errorCode); } } return len; } int32_t UnicodeString::extract(int32_t start, int32_t length, char *target, int32_t targetCapacity, enum EInvariant) const { // if the arguments are illegal, then do nothing if(targetCapacity < 0 || (targetCapacity > 0 && target == NULL)) { return 0; } // pin the indices to legal values pinIndices(start, length); if(length <= targetCapacity) { u_UCharsToChars(getArrayStart() + start, target, length); } UErrorCode status = U_ZERO_ERROR; return u_terminateChars(target, targetCapacity, length, &status); } UnicodeString UnicodeString::tempSubString(int32_t start, int32_t len) const { pinIndices(start, len); const UChar *array = getBuffer(); // not getArrayStart() to check kIsBogus & kOpenGetBuffer if(array==NULL) { array=fUnion.fStackFields.fBuffer; // anything not NULL because that would make an empty string len=-2; // bogus result string } return UnicodeString(FALSE, array + start, len); } int32_t UnicodeString::toUTF8(int32_t start, int32_t len, char *target, int32_t capacity) const { pinIndices(start, len); int32_t length8; UErrorCode errorCode = U_ZERO_ERROR; u_strToUTF8WithSub(target, capacity, &length8, getBuffer() + start, len, 0xFFFD, // Standard substitution character. NULL, // Don't care about number of substitutions. &errorCode); return length8; } #if U_CHARSET_IS_UTF8 int32_t UnicodeString::extract(int32_t start, int32_t len, char *target, uint32_t dstSize) const { // if the arguments are illegal, then do nothing if(/*dstSize < 0 || */(dstSize > 0 && target == 0)) { return 0; } return toUTF8(start, len, target, dstSize <= 0x7fffffff ? (int32_t)dstSize : 0x7fffffff); } // else see unistr_cnv.cpp #endif void UnicodeString::extractBetween(int32_t start, int32_t limit, UnicodeString& target) const { pinIndex(start); pinIndex(limit); doExtract(start, limit - start, target); } // When converting from UTF-16 to UTF-8, the result will have at most 3 times // as many bytes as the source has UChars. // The "worst cases" are writing systems like Indic, Thai and CJK with // 3:1 bytes:UChars. void UnicodeString::toUTF8(ByteSink &sink) const { int32_t length16 = length(); if(length16 != 0) { char stackBuffer[1024]; int32_t capacity = (int32_t)sizeof(stackBuffer); UBool utf8IsOwned = FALSE; char *utf8 = sink.GetAppendBuffer(length16 < capacity ? length16 : capacity, 3*length16, stackBuffer, capacity, &capacity); int32_t length8 = 0; UErrorCode errorCode = U_ZERO_ERROR; u_strToUTF8WithSub(utf8, capacity, &length8, getBuffer(), length16, 0xFFFD, // Standard substitution character. NULL, // Don't care about number of substitutions. &errorCode); if(errorCode == U_BUFFER_OVERFLOW_ERROR) { utf8 = (char *)uprv_malloc(length8); if(utf8 != NULL) { utf8IsOwned = TRUE; errorCode = U_ZERO_ERROR; u_strToUTF8WithSub(utf8, length8, &length8, getBuffer(), length16, 0xFFFD, // Standard substitution character. NULL, // Don't care about number of substitutions. &errorCode); } else { errorCode = U_MEMORY_ALLOCATION_ERROR; } } if(U_SUCCESS(errorCode)) { sink.Append(utf8, length8); sink.Flush(); } if(utf8IsOwned) { uprv_free(utf8); } } } int32_t UnicodeString::toUTF32(UChar32 *utf32, int32_t capacity, UErrorCode &errorCode) const { int32_t length32=0; if(U_SUCCESS(errorCode)) { // getBuffer() and u_strToUTF32WithSub() check for illegal arguments. u_strToUTF32WithSub(utf32, capacity, &length32, getBuffer(), length(), 0xfffd, // Substitution character. NULL, // Don't care about number of substitutions. &errorCode); } return length32; } int32_t UnicodeString::indexOf(const UChar *srcChars, int32_t srcStart, int32_t srcLength, int32_t start, int32_t length) const { if(isBogus() || srcChars == 0 || srcStart < 0 || srcLength == 0) { return -1; } // UnicodeString does not find empty substrings if(srcLength < 0 && srcChars[srcStart] == 0) { return -1; } // get the indices within bounds pinIndices(start, length); // find the first occurrence of the substring const UChar *array = getArrayStart(); const UChar *match = u_strFindFirst(array + start, length, srcChars + srcStart, srcLength); if(match == NULL) { return -1; } else { return (int32_t)(match - array); } } int32_t UnicodeString::doIndexOf(UChar c, int32_t start, int32_t length) const { // pin indices pinIndices(start, length); // find the first occurrence of c const UChar *array = getArrayStart(); const UChar *match = u_memchr(array + start, c, length); if(match == NULL) { return -1; } else { return (int32_t)(match - array); } } int32_t UnicodeString::doIndexOf(UChar32 c, int32_t start, int32_t length) const { // pin indices pinIndices(start, length); // find the first occurrence of c const UChar *array = getArrayStart(); const UChar *match = u_memchr32(array + start, c, length); if(match == NULL) { return -1; } else { return (int32_t)(match - array); } } int32_t UnicodeString::lastIndexOf(const UChar *srcChars, int32_t srcStart, int32_t srcLength, int32_t start, int32_t length) const { if(isBogus() || srcChars == 0 || srcStart < 0 || srcLength == 0) { return -1; } // UnicodeString does not find empty substrings if(srcLength < 0 && srcChars[srcStart] == 0) { return -1; } // get the indices within bounds pinIndices(start, length); // find the last occurrence of the substring const UChar *array = getArrayStart(); const UChar *match = u_strFindLast(array + start, length, srcChars + srcStart, srcLength); if(match == NULL) { return -1; } else { return (int32_t)(match - array); } } int32_t UnicodeString::doLastIndexOf(UChar c, int32_t start, int32_t length) const { if(isBogus()) { return -1; } // pin indices pinIndices(start, length); // find the last occurrence of c const UChar *array = getArrayStart(); const UChar *match = u_memrchr(array + start, c, length); if(match == NULL) { return -1; } else { return (int32_t)(match - array); } } int32_t UnicodeString::doLastIndexOf(UChar32 c, int32_t start, int32_t length) const { // pin indices pinIndices(start, length); // find the last occurrence of c const UChar *array = getArrayStart(); const UChar *match = u_memrchr32(array + start, c, length); if(match == NULL) { return -1; } else { return (int32_t)(match - array); } } //======================================== // Write implementation //======================================== UnicodeString& UnicodeString::findAndReplace(int32_t start, int32_t length, const UnicodeString& oldText, int32_t oldStart, int32_t oldLength, const UnicodeString& newText, int32_t newStart, int32_t newLength) { if(isBogus() || oldText.isBogus() || newText.isBogus()) { return *this; } pinIndices(start, length); oldText.pinIndices(oldStart, oldLength); newText.pinIndices(newStart, newLength); if(oldLength == 0) { return *this; } while(length > 0 && length >= oldLength) { int32_t pos = indexOf(oldText, oldStart, oldLength, start, length); if(pos < 0) { // no more oldText's here: done break; } else { // we found oldText, replace it by newText and go beyond it replace(pos, oldLength, newText, newStart, newLength); length -= pos + oldLength - start; start = pos + newLength; } } return *this; } void UnicodeString::setToBogus() { releaseArray(); fUnion.fFields.fLengthAndFlags = kIsBogus; fUnion.fFields.fArray = 0; fUnion.fFields.fCapacity = 0; } // turn a bogus string into an empty one void UnicodeString::unBogus() { if(fUnion.fFields.fLengthAndFlags & kIsBogus) { setToEmpty(); } } const UChar * UnicodeString::getTerminatedBuffer() { if(!isWritable()) { return 0; } UChar *array = getArrayStart(); int32_t len = length(); if(len < getCapacity()) { if(fUnion.fFields.fLengthAndFlags & kBufferIsReadonly) { // If len<capacity on a read-only alias, then array[len] is // either the original NUL (if constructed with (TRUE, s, length)) // or one of the original string contents characters (if later truncated), // therefore we can assume that array[len] is initialized memory. if(array[len] == 0) { return array; } } else if(((fUnion.fFields.fLengthAndFlags & kRefCounted) == 0 || refCount() == 1)) { // kRefCounted: Do not write the NUL if the buffer is shared. // That is mostly safe, except when the length of one copy was modified // without copy-on-write, e.g., via truncate(newLength) or remove(void). // Then the NUL would be written into the middle of another copy's string. // Otherwise, the buffer is fully writable and it is anyway safe to write the NUL. // Do not test if there is a NUL already because it might be uninitialized memory. // (That would be safe, but tools like valgrind & Purify would complain.) array[len] = 0; return array; } } if(cloneArrayIfNeeded(len+1)) { array = getArrayStart(); array[len] = 0; return array; } else { return NULL; } } // setTo() analogous to the readonly-aliasing constructor with the same signature UnicodeString & UnicodeString::setTo(UBool isTerminated, const UChar *text, int32_t textLength) { if(fUnion.fFields.fLengthAndFlags & kOpenGetBuffer) { // do not modify a string that has an "open" getBuffer(minCapacity) return *this; } if(text == NULL) { // treat as an empty string, do not alias releaseArray(); setToEmpty(); return *this; } if( textLength < -1 || (textLength == -1 && !isTerminated) || (textLength >= 0 && isTerminated && text[textLength] != 0) ) { setToBogus(); return *this; } releaseArray(); if(textLength == -1) { // text is terminated, or else it would have failed the above test textLength = u_strlen(text); } fUnion.fFields.fLengthAndFlags = kReadonlyAlias; setArray((UChar *)text, textLength, isTerminated ? textLength + 1 : textLength); return *this; } // setTo() analogous to the writable-aliasing constructor with the same signature UnicodeString & UnicodeString::setTo(UChar *buffer, int32_t buffLength, int32_t buffCapacity) { if(fUnion.fFields.fLengthAndFlags & kOpenGetBuffer) { // do not modify a string that has an "open" getBuffer(minCapacity) return *this; } if(buffer == NULL) { // treat as an empty string, do not alias releaseArray(); setToEmpty(); return *this; } if(buffLength < -1 || buffCapacity < 0 || buffLength > buffCapacity) { setToBogus(); return *this; } else if(buffLength == -1) { // buffLength = u_strlen(buff); but do not look beyond buffCapacity const UChar *p = buffer, *limit = buffer + buffCapacity; while(p != limit && *p != 0) { ++p; } buffLength = (int32_t)(p - buffer); } releaseArray(); fUnion.fFields.fLengthAndFlags = kWritableAlias; setArray(buffer, buffLength, buffCapacity); return *this; } UnicodeString &UnicodeString::setToUTF8(const StringPiece &utf8) { unBogus(); int32_t length = utf8.length(); int32_t capacity; // The UTF-16 string will be at most as long as the UTF-8 string. if(length <= US_STACKBUF_SIZE) { capacity = US_STACKBUF_SIZE; } else { capacity = length + 1; // +1 for the terminating NUL. } UChar *utf16 = getBuffer(capacity); int32_t length16; UErrorCode errorCode = U_ZERO_ERROR; u_strFromUTF8WithSub(utf16, getCapacity(), &length16, utf8.data(), length, 0xfffd, // Substitution character. NULL, // Don't care about number of substitutions. &errorCode); releaseBuffer(length16); if(U_FAILURE(errorCode)) { setToBogus(); } return *this; } UnicodeString& UnicodeString::setCharAt(int32_t offset, UChar c) { int32_t len = length(); if(cloneArrayIfNeeded() && len > 0) { if(offset < 0) { offset = 0; } else if(offset >= len) { offset = len - 1; } getArrayStart()[offset] = c; } return *this; } UnicodeString& UnicodeString::replace(int32_t start, int32_t _length, UChar32 srcChar) { UChar buffer[U16_MAX_LENGTH]; int32_t count = 0; UBool isError = FALSE; U16_APPEND(buffer, count, U16_MAX_LENGTH, srcChar, isError); // We test isError so that the compiler does not complain that we don't. // If isError (srcChar is not a valid code point) then count==0 which means // we remove the source segment rather than replacing it with srcChar. return doReplace(start, _length, buffer, 0, isError ? 0 : count); } UnicodeString& UnicodeString::append(UChar32 srcChar) { UChar buffer[U16_MAX_LENGTH]; int32_t _length = 0; UBool isError = FALSE; U16_APPEND(buffer, _length, U16_MAX_LENGTH, srcChar, isError); // We test isError so that the compiler does not complain that we don't. // If isError then _length==0 which turns the doAppend() into a no-op anyway. return isError ? *this : doAppend(buffer, 0, _length); } UnicodeString& UnicodeString::doReplace( int32_t start, int32_t length, const UnicodeString& src, int32_t srcStart, int32_t srcLength) { // pin the indices to legal values src.pinIndices(srcStart, srcLength); // get the characters from src // and replace the range in ourselves with them return doReplace(start, length, src.getArrayStart(), srcStart, srcLength); } UnicodeString& UnicodeString::doReplace(int32_t start, int32_t length, const UChar *srcChars, int32_t srcStart, int32_t srcLength) { if(!isWritable()) { return *this; } int32_t oldLength = this->length(); // optimize (read-only alias).remove(0, start) and .remove(start, end) if((fUnion.fFields.fLengthAndFlags&kBufferIsReadonly) && srcLength == 0) { if(start == 0) { // remove prefix by adjusting the array pointer pinIndex(length); fUnion.fFields.fArray += length; fUnion.fFields.fCapacity -= length; setLength(oldLength - length); return *this; } else { pinIndex(start); if(length >= (oldLength - start)) { // remove suffix by reducing the length (like truncate()) setLength(start); fUnion.fFields.fCapacity = start; // not NUL-terminated any more return *this; } } } if(start == oldLength) { return doAppend(srcChars, srcStart, srcLength); } if(srcChars == 0) { srcStart = srcLength = 0; } else if(srcLength < 0) { // get the srcLength if necessary srcLength = u_strlen(srcChars + srcStart); } // pin the indices to legal values pinIndices(start, length); // calculate the size of the string after the replace int32_t newLength = oldLength - length + srcLength; // cloneArrayIfNeeded(doCopyArray=FALSE) may change fArray but will not copy the current contents; // therefore we need to keep the current fArray UChar oldStackBuffer[US_STACKBUF_SIZE]; UChar *oldArray; if((fUnion.fFields.fLengthAndFlags&kUsingStackBuffer) && (newLength > US_STACKBUF_SIZE)) { // copy the stack buffer contents because it will be overwritten with // fUnion.fFields values u_memcpy(oldStackBuffer, fUnion.fStackFields.fBuffer, oldLength); oldArray = oldStackBuffer; } else { oldArray = getArrayStart(); } // clone our array and allocate a bigger array if needed int32_t *bufferToDelete = 0; if(!cloneArrayIfNeeded(newLength, newLength + (newLength >> 2) + kGrowSize, FALSE, &bufferToDelete) ) { return *this; } // now do the replace UChar *newArray = getArrayStart(); if(newArray != oldArray) { // if fArray changed, then we need to copy everything except what will change us_arrayCopy(oldArray, 0, newArray, 0, start); us_arrayCopy(oldArray, start + length, newArray, start + srcLength, oldLength - (start + length)); } else if(length != srcLength) { // fArray did not change; copy only the portion that isn't changing, leaving a hole us_arrayCopy(oldArray, start + length, newArray, start + srcLength, oldLength - (start + length)); } // now fill in the hole with the new string us_arrayCopy(srcChars, srcStart, newArray, start, srcLength); setLength(newLength); // delayed delete in case srcChars == fArray when we started, and // to keep oldArray alive for the above operations if (bufferToDelete) { uprv_free(bufferToDelete); } return *this; } // Versions of doReplace() only for append() variants. // doReplace() and doAppend() optimize for different cases. UnicodeString& UnicodeString::doAppend(const UnicodeString& src, int32_t srcStart, int32_t srcLength) { if(srcLength == 0) { return *this; } // pin the indices to legal values src.pinIndices(srcStart, srcLength); return doAppend(src.getArrayStart(), srcStart, srcLength); } UnicodeString& UnicodeString::doAppend(const UChar *srcChars, int32_t srcStart, int32_t srcLength) { if(!isWritable() || srcLength == 0 || srcChars == NULL) { return *this; } if(srcLength < 0) { // get the srcLength if necessary if((srcLength = u_strlen(srcChars + srcStart)) == 0) { return *this; } } int32_t oldLength = length(); int32_t newLength = oldLength + srcLength; // optimize append() onto a large-enough, owned string if((newLength <= getCapacity() && isBufferWritable()) || cloneArrayIfNeeded(newLength, newLength + (newLength >> 2) + kGrowSize)) { UChar *newArray = getArrayStart(); // Do not copy characters when // UChar *buffer=str.getAppendBuffer(...); // is followed by // str.append(buffer, length); // or // str.appendString(buffer, length) // or similar. if(srcChars + srcStart != newArray + oldLength) { us_arrayCopy(srcChars, srcStart, newArray, oldLength, srcLength); } setLength(newLength); } return *this; } /** * Replaceable API */ void UnicodeString::handleReplaceBetween(int32_t start, int32_t limit, const UnicodeString& text) { replaceBetween(start, limit, text); } /** * Replaceable API */ void UnicodeString::copy(int32_t start, int32_t limit, int32_t dest) { if (limit <= start) { return; // Nothing to do; avoid bogus malloc call } UChar* text = (UChar*) uprv_malloc( sizeof(UChar) * (limit - start) ); // Check to make sure text is not null. if (text != NULL) { extractBetween(start, limit, text, 0); insert(dest, text, 0, limit - start); uprv_free(text); } } /** * Replaceable API * * NOTE: This is for the Replaceable class. There is no rep.cpp, * so we implement this function here. */ UBool Replaceable::hasMetaData() const { return TRUE; } /** * Replaceable API */ UBool UnicodeString::hasMetaData() const { return FALSE; } UnicodeString& UnicodeString::doReverse(int32_t start, int32_t length) { if(length <= 1 || !cloneArrayIfNeeded()) { return *this; } // pin the indices to legal values pinIndices(start, length); if(length <= 1) { // pinIndices() might have shrunk the length return *this; } UChar *left = getArrayStart() + start; UChar *right = left + length - 1; // -1 for inclusive boundary (length>=2) UChar swap; UBool hasSupplementary = FALSE; // Before the loop we know left<right because length>=2. do { hasSupplementary |= (UBool)U16_IS_LEAD(swap = *left); hasSupplementary |= (UBool)U16_IS_LEAD(*left++ = *right); *right-- = swap; } while(left < right); // Make sure to test the middle code unit of an odd-length string. // Redundant if the length is even. hasSupplementary |= (UBool)U16_IS_LEAD(*left); /* if there are supplementary code points in the reversed range, then re-swap their surrogates */ if(hasSupplementary) { UChar swap2; left = getArrayStart() + start; right = left + length - 1; // -1 so that we can look at *(left+1) if left<right while(left < right) { if(U16_IS_TRAIL(swap = *left) && U16_IS_LEAD(swap2 = *(left + 1))) { *left++ = swap2; *left++ = swap; } else { ++left; } } } return *this; } UBool UnicodeString::padLeading(int32_t targetLength, UChar padChar) { int32_t oldLength = length(); if(oldLength >= targetLength || !cloneArrayIfNeeded(targetLength)) { return FALSE; } else { // move contents up by padding width UChar *array = getArrayStart(); int32_t start = targetLength - oldLength; us_arrayCopy(array, 0, array, start, oldLength); // fill in padding character while(--start >= 0) { array[start] = padChar; } setLength(targetLength); return TRUE; } } UBool UnicodeString::padTrailing(int32_t targetLength, UChar padChar) { int32_t oldLength = length(); if(oldLength >= targetLength || !cloneArrayIfNeeded(targetLength)) { return FALSE; } else { // fill in padding character UChar *array = getArrayStart(); int32_t length = targetLength; while(--length >= oldLength) { array[length] = padChar; } setLength(targetLength); return TRUE; } } //======================================== // Hashing //======================================== int32_t UnicodeString::doHashCode() const { /* Delegate hash computation to uhash. This makes UnicodeString * hashing consistent with UChar* hashing. */ int32_t hashCode = ustr_hashUCharsN(getArrayStart(), length()); if (hashCode == kInvalidHashCode) { hashCode = kEmptyHashCode; } return hashCode; } //======================================== // External Buffer //======================================== UChar * UnicodeString::getBuffer(int32_t minCapacity) { if(minCapacity>=-1 && cloneArrayIfNeeded(minCapacity)) { fUnion.fFields.fLengthAndFlags|=kOpenGetBuffer; setZeroLength(); return getArrayStart(); } else { return 0; } } void UnicodeString::releaseBuffer(int32_t newLength) { if(fUnion.fFields.fLengthAndFlags&kOpenGetBuffer && newLength>=-1) { // set the new fLength int32_t capacity=getCapacity(); if(newLength==-1) { // the new length is the string length, capped by fCapacity const UChar *array=getArrayStart(), *p=array, *limit=array+capacity; while(p<limit && *p!=0) { ++p; } newLength=(int32_t)(p-array); } else if(newLength>capacity) { newLength=capacity; } setLength(newLength); fUnion.fFields.fLengthAndFlags&=~kOpenGetBuffer; } } //======================================== // Miscellaneous //======================================== UBool UnicodeString::cloneArrayIfNeeded(int32_t newCapacity, int32_t growCapacity, UBool doCopyArray, int32_t **pBufferToDelete, UBool forceClone) { // default parameters need to be static, therefore // the defaults are -1 to have convenience defaults if(newCapacity == -1) { newCapacity = getCapacity(); } // while a getBuffer(minCapacity) is "open", // prevent any modifications of the string by returning FALSE here // if the string is bogus, then only an assignment or similar can revive it if(!isWritable()) { return FALSE; } /* * We need to make a copy of the array if * the buffer is read-only, or * the buffer is refCounted (shared), and refCount>1, or * the buffer is too small. * Return FALSE if memory could not be allocated. */ if(forceClone || fUnion.fFields.fLengthAndFlags & kBufferIsReadonly || (fUnion.fFields.fLengthAndFlags & kRefCounted && refCount() > 1) || newCapacity > getCapacity() ) { // check growCapacity for default value and use of the stack buffer if(growCapacity < 0) { growCapacity = newCapacity; } else if(newCapacity <= US_STACKBUF_SIZE && growCapacity > US_STACKBUF_SIZE) { growCapacity = US_STACKBUF_SIZE; } // save old values UChar oldStackBuffer[US_STACKBUF_SIZE]; UChar *oldArray; int32_t oldLength = length(); int16_t flags = fUnion.fFields.fLengthAndFlags; if(flags&kUsingStackBuffer) { U_ASSERT(!(flags&kRefCounted)); /* kRefCounted and kUsingStackBuffer are mutally exclusive */ if(doCopyArray && growCapacity > US_STACKBUF_SIZE) { // copy the stack buffer contents because it will be overwritten with // fUnion.fFields values us_arrayCopy(fUnion.fStackFields.fBuffer, 0, oldStackBuffer, 0, oldLength); oldArray = oldStackBuffer; } else { oldArray = NULL; // no need to copy from the stack buffer to itself } } else { oldArray = fUnion.fFields.fArray; U_ASSERT(oldArray!=NULL); /* when stack buffer is not used, oldArray must have a non-NULL reference */ } // allocate a new array if(allocate(growCapacity) || (newCapacity < growCapacity && allocate(newCapacity)) ) { if(doCopyArray) { // copy the contents // do not copy more than what fits - it may be smaller than before int32_t minLength = oldLength; newCapacity = getCapacity(); if(newCapacity < minLength) { minLength = newCapacity; } if(oldArray != NULL) { us_arrayCopy(oldArray, 0, getArrayStart(), 0, minLength); } setLength(minLength); } else { setZeroLength(); } // release the old array if(flags & kRefCounted) { // the array is refCounted; decrement and release if 0 u_atomic_int32_t *pRefCount = ((u_atomic_int32_t *)oldArray - 1); if(umtx_atomic_dec(pRefCount) == 0) { if(pBufferToDelete == 0) { // Note: cast to (void *) is needed with MSVC, where u_atomic_int32_t // is defined as volatile. (Volatile has useful non-standard behavior // with this compiler.) uprv_free((void *)pRefCount); } else { // the caller requested to delete it himself *pBufferToDelete = (int32_t *)pRefCount; } } } } else { // not enough memory for growCapacity and not even for the smaller newCapacity // reset the old values for setToBogus() to release the array if(!(flags&kUsingStackBuffer)) { fUnion.fFields.fArray = oldArray; } fUnion.fFields.fLengthAndFlags = flags; setToBogus(); return FALSE; } } return TRUE; } // UnicodeStringAppendable ------------------------------------------------- *** UnicodeStringAppendable::~UnicodeStringAppendable() {} UBool UnicodeStringAppendable::appendCodeUnit(UChar c) { return str.doAppend(&c, 0, 1).isWritable(); } UBool UnicodeStringAppendable::appendCodePoint(UChar32 c) { UChar buffer[U16_MAX_LENGTH]; int32_t cLength = 0; UBool isError = FALSE; U16_APPEND(buffer, cLength, U16_MAX_LENGTH, c, isError); return !isError && str.doAppend(buffer, 0, cLength).isWritable(); } UBool UnicodeStringAppendable::appendString(const UChar *s, int32_t length) { return str.doAppend(s, 0, length).isWritable(); } UBool UnicodeStringAppendable::reserveAppendCapacity(int32_t appendCapacity) { return str.cloneArrayIfNeeded(str.length() + appendCapacity); } UChar * UnicodeStringAppendable::getAppendBuffer(int32_t minCapacity, int32_t desiredCapacityHint, UChar *scratch, int32_t scratchCapacity, int32_t *resultCapacity) { if(minCapacity < 1 || scratchCapacity < minCapacity) { *resultCapacity = 0; return NULL; } int32_t oldLength = str.length(); if(str.cloneArrayIfNeeded(oldLength + minCapacity, oldLength + desiredCapacityHint)) { *resultCapacity = str.getCapacity() - oldLength; return str.getArrayStart() + oldLength; } *resultCapacity = scratchCapacity; return scratch; } U_NAMESPACE_END U_NAMESPACE_USE U_CAPI int32_t U_EXPORT2 uhash_hashUnicodeString(const UElement key) { const UnicodeString *str = (const UnicodeString*) key.pointer; return (str == NULL) ? 0 : str->hashCode(); } // Moved here from uhash_us.cpp so that using a UVector of UnicodeString* // does not depend on hashtable code. U_CAPI UBool U_EXPORT2 uhash_compareUnicodeString(const UElement key1, const UElement key2) { const UnicodeString *str1 = (const UnicodeString*) key1.pointer; const UnicodeString *str2 = (const UnicodeString*) key2.pointer; if (str1 == str2) { return TRUE; } if (str1 == NULL || str2 == NULL) { return FALSE; } return *str1 == *str2; } #ifdef U_STATIC_IMPLEMENTATION /* This should never be called. It is defined here to make sure that the virtual vector deleting destructor is defined within unistr.cpp. The vector deleting destructor is already a part of UObject, but defining it here makes sure that it is included with this object file. This makes sure that static library dependencies are kept to a minimum. */ static void uprv_UnicodeStringDummy(void) { delete [] (new UnicodeString[2]); } #endif