/* ****************************************************************************** * Copyright (C) 2015, International Business Machines Corporation and * others. All Rights Reserved. ****************************************************************************** * * File UNIFIEDCACHE.CPP ****************************************************************************** */ #include "uhash.h" #include "unifiedcache.h" #include "umutex.h" #include "mutex.h" #include "uassert.h" #include "ucln_cmn.h" static icu::UnifiedCache *gCache = NULL; static icu::SharedObject *gNoValue = NULL; static UMutex gCacheMutex = U_MUTEX_INITIALIZER; static UConditionVar gInProgressValueAddedCond = U_CONDITION_INITIALIZER; static icu::UInitOnce gCacheInitOnce = U_INITONCE_INITIALIZER; static const int32_t MAX_EVICT_ITERATIONS = 10; static int32_t DEFAULT_MAX_UNUSED = 1000; static int32_t DEFAULT_PERCENTAGE_OF_IN_USE = 100; U_CDECL_BEGIN static UBool U_CALLCONV unifiedcache_cleanup() { gCacheInitOnce.reset(); if (gCache) { delete gCache; gCache = NULL; } if (gNoValue) { delete gNoValue; gNoValue = NULL; } return TRUE; } U_CDECL_END U_NAMESPACE_BEGIN U_CAPI int32_t U_EXPORT2 ucache_hashKeys(const UHashTok key) { const CacheKeyBase *ckey = (const CacheKeyBase *) key.pointer; return ckey->hashCode(); } U_CAPI UBool U_EXPORT2 ucache_compareKeys(const UHashTok key1, const UHashTok key2) { const CacheKeyBase *p1 = (const CacheKeyBase *) key1.pointer; const CacheKeyBase *p2 = (const CacheKeyBase *) key2.pointer; return *p1 == *p2; } U_CAPI void U_EXPORT2 ucache_deleteKey(void *obj) { CacheKeyBase *p = (CacheKeyBase *) obj; delete p; } CacheKeyBase::~CacheKeyBase() { } static void U_CALLCONV cacheInit(UErrorCode &status) { U_ASSERT(gCache == NULL); ucln_common_registerCleanup( UCLN_COMMON_UNIFIED_CACHE, unifiedcache_cleanup); // gNoValue must be created first to avoid assertion error in // cache constructor. gNoValue = new SharedObject(); gCache = new UnifiedCache(status); if (gCache == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } if (U_FAILURE(status)) { delete gCache; delete gNoValue; gCache = NULL; gNoValue = NULL; return; } // We add a softref because we want hash elements with gNoValue to be // elligible for purging but we don't ever want gNoValue to be deleted. gNoValue->addSoftRef(); } UnifiedCache *UnifiedCache::getInstance(UErrorCode &status) { umtx_initOnce(gCacheInitOnce, &cacheInit, status); if (U_FAILURE(status)) { return NULL; } U_ASSERT(gCache != NULL); return gCache; } UnifiedCache::UnifiedCache(UErrorCode &status) : fHashtable(NULL), fEvictPos(UHASH_FIRST), fItemsInUseCount(0), fMaxUnused(DEFAULT_MAX_UNUSED), fMaxPercentageOfInUse(DEFAULT_PERCENTAGE_OF_IN_USE), fAutoEvictedCount(0) { if (U_FAILURE(status)) { return; } U_ASSERT(gNoValue != NULL); fHashtable = uhash_open( &ucache_hashKeys, &ucache_compareKeys, NULL, &status); if (U_FAILURE(status)) { return; } uhash_setKeyDeleter(fHashtable, &ucache_deleteKey); } void UnifiedCache::setEvictionPolicy( int32_t count, int32_t percentageOfInUseItems, UErrorCode &status) { if (U_FAILURE(status)) { return; } if (count < 0 || percentageOfInUseItems < 0) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } Mutex lock(&gCacheMutex); fMaxUnused = count; fMaxPercentageOfInUse = percentageOfInUseItems; } int32_t UnifiedCache::unusedCount() const { Mutex lock(&gCacheMutex); return uhash_count(fHashtable) - fItemsInUseCount; } int64_t UnifiedCache::autoEvictedCount() const { Mutex lock(&gCacheMutex); return fAutoEvictedCount; } int32_t UnifiedCache::keyCount() const { Mutex lock(&gCacheMutex); return uhash_count(fHashtable); } void UnifiedCache::flush() const { Mutex lock(&gCacheMutex); // Use a loop in case cache items that are flushed held hard references to // other cache items making those additional cache items eligible for // flushing. while (_flush(FALSE)); } #ifdef UNIFIED_CACHE_DEBUG #include <stdio.h> void UnifiedCache::dump() { UErrorCode status = U_ZERO_ERROR; const UnifiedCache *cache = getInstance(status); if (U_FAILURE(status)) { fprintf(stderr, "Unified Cache: Error fetching cache.\n"); return; } cache->dumpContents(); } void UnifiedCache::dumpContents() const { Mutex lock(&gCacheMutex); _dumpContents(); } // Dumps content of cache. // On entry, gCacheMutex must be held. // On exit, cache contents dumped to stderr. void UnifiedCache::_dumpContents() const { int32_t pos = UHASH_FIRST; const UHashElement *element = uhash_nextElement(fHashtable, &pos); char buffer[256]; int32_t cnt = 0; for (; element != NULL; element = uhash_nextElement(fHashtable, &pos)) { const SharedObject *sharedObject = (const SharedObject *) element->value.pointer; const CacheKeyBase *key = (const CacheKeyBase *) element->key.pointer; if (sharedObject->hasHardReferences()) { ++cnt; fprintf( stderr, "Unified Cache: Key '%s', error %d, value %p, total refcount %d, soft refcount %d\n", key->writeDescription(buffer, 256), key->creationStatus, sharedObject == gNoValue ? NULL :sharedObject, sharedObject->getRefCount(), sharedObject->getSoftRefCount()); } } fprintf(stderr, "Unified Cache: %d out of a total of %d still have hard references\n", cnt, uhash_count(fHashtable)); } #endif UnifiedCache::~UnifiedCache() { // Try our best to clean up first. flush(); { // Now all that should be left in the cache are entries that refer to // each other and entries with hard references from outside the cache. // Nothing we can do about these so proceed to wipe out the cache. Mutex lock(&gCacheMutex); _flush(TRUE); } uhash_close(fHashtable); } // Returns the next element in the cache round robin style. // On entry, gCacheMutex must be held. const UHashElement * UnifiedCache::_nextElement() const { const UHashElement *element = uhash_nextElement(fHashtable, &fEvictPos); if (element == NULL) { fEvictPos = UHASH_FIRST; return uhash_nextElement(fHashtable, &fEvictPos); } return element; } // Flushes the contents of the cache. If cache values hold references to other // cache values then _flush should be called in a loop until it returns FALSE. // On entry, gCacheMutex must be held. // On exit, those values with are evictable are flushed. If all is true // then every value is flushed even if it is not evictable. // Returns TRUE if any value in cache was flushed or FALSE otherwise. UBool UnifiedCache::_flush(UBool all) const { UBool result = FALSE; int32_t origSize = uhash_count(fHashtable); for (int32_t i = 0; i < origSize; ++i) { const UHashElement *element = _nextElement(); if (all || _isEvictable(element)) { const SharedObject *sharedObject = (const SharedObject *) element->value.pointer; uhash_removeElement(fHashtable, element); sharedObject->removeSoftRef(); result = TRUE; } } return result; } // Computes how many items should be evicted. // On entry, gCacheMutex must be held. // Returns number of items that should be evicted or a value <= 0 if no // items need to be evicted. int32_t UnifiedCache::_computeCountOfItemsToEvict() const { int32_t maxPercentageOfInUseCount = fItemsInUseCount * fMaxPercentageOfInUse / 100; int32_t maxUnusedCount = fMaxUnused; if (maxUnusedCount < maxPercentageOfInUseCount) { maxUnusedCount = maxPercentageOfInUseCount; } return uhash_count(fHashtable) - fItemsInUseCount - maxUnusedCount; } // Run an eviction slice. // On entry, gCacheMutex must be held. // _runEvictionSlice runs a slice of the evict pipeline by examining the next // 10 entries in the cache round robin style evicting them if they are eligible. void UnifiedCache::_runEvictionSlice() const { int32_t maxItemsToEvict = _computeCountOfItemsToEvict(); if (maxItemsToEvict <= 0) { return; } for (int32_t i = 0; i < MAX_EVICT_ITERATIONS; ++i) { const UHashElement *element = _nextElement(); if (_isEvictable(element)) { const SharedObject *sharedObject = (const SharedObject *) element->value.pointer; uhash_removeElement(fHashtable, element); sharedObject->removeSoftRef(); ++fAutoEvictedCount; if (--maxItemsToEvict == 0) { break; } } } } // Places a new value and creationStatus in the cache for the given key. // On entry, gCacheMutex must be held. key must not exist in the cache. // On exit, value and creation status placed under key. Soft reference added // to value on successful add. On error sets status. void UnifiedCache::_putNew( const CacheKeyBase &key, const SharedObject *value, const UErrorCode creationStatus, UErrorCode &status) const { if (U_FAILURE(status)) { return; } CacheKeyBase *keyToAdopt = key.clone(); if (keyToAdopt == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } keyToAdopt->fCreationStatus = creationStatus; if (value->noSoftReferences()) { _registerMaster(keyToAdopt, value); } uhash_put(fHashtable, keyToAdopt, (void *) value, &status); if (U_SUCCESS(status)) { value->addSoftRef(); } } // Places value and status at key if there is no value at key or if cache // entry for key is in progress. Otherwise, it leaves the current value and // status there. // On entry. gCacheMutex must not be held. value must be // included in the reference count of the object to which it points. // On exit, value and status are changed to what was already in the cache if // something was there and not in progress. Otherwise, value and status are left // unchanged in which case they are placed in the cache on a best-effort basis. // Caller must call removeRef() on value. void UnifiedCache::_putIfAbsentAndGet( const CacheKeyBase &key, const SharedObject *&value, UErrorCode &status) const { Mutex lock(&gCacheMutex); const UHashElement *element = uhash_find(fHashtable, &key); if (element != NULL && !_inProgress(element)) { _fetch(element, value, status); return; } if (element == NULL) { UErrorCode putError = U_ZERO_ERROR; // best-effort basis only. _putNew(key, value, status, putError); } else { _put(element, value, status); } // Run an eviction slice. This will run even if we added a master entry // which doesn't increase the unused count, but that is still o.k _runEvictionSlice(); } // Attempts to fetch value and status for key from cache. // On entry, gCacheMutex must not be held value must be NULL and status must // be U_ZERO_ERROR. // On exit, either returns FALSE (In this // case caller should try to create the object) or returns TRUE with value // pointing to the fetched value and status set to fetched status. When // FALSE is returned status may be set to failure if an in progress hash // entry could not be made but value will remain unchanged. When TRUE is // returned, caler must call removeRef() on value. UBool UnifiedCache::_poll( const CacheKeyBase &key, const SharedObject *&value, UErrorCode &status) const { U_ASSERT(value == NULL); U_ASSERT(status == U_ZERO_ERROR); Mutex lock(&gCacheMutex); const UHashElement *element = uhash_find(fHashtable, &key); while (element != NULL && _inProgress(element)) { umtx_condWait(&gInProgressValueAddedCond, &gCacheMutex); element = uhash_find(fHashtable, &key); } if (element != NULL) { _fetch(element, value, status); return TRUE; } _putNew(key, gNoValue, U_ZERO_ERROR, status); return FALSE; } // Gets value out of cache. // On entry. gCacheMutex must not be held. value must be NULL. status // must be U_ZERO_ERROR. // On exit. value and status set to what is in cache at key or on cache // miss the key's createObject() is called and value and status are set to // the result of that. In this latter case, best effort is made to add the // value and status to the cache. If createObject() fails to create a value, // gNoValue is stored in cache, and value is set to NULL. Caller must call // removeRef on value if non NULL. void UnifiedCache::_get( const CacheKeyBase &key, const SharedObject *&value, const void *creationContext, UErrorCode &status) const { U_ASSERT(value == NULL); U_ASSERT(status == U_ZERO_ERROR); if (_poll(key, value, status)) { if (value == gNoValue) { SharedObject::clearPtr(value); } return; } if (U_FAILURE(status)) { return; } value = key.createObject(creationContext, status); U_ASSERT(value == NULL || value->hasHardReferences()); U_ASSERT(value != NULL || status != U_ZERO_ERROR); if (value == NULL) { SharedObject::copyPtr(gNoValue, value); } _putIfAbsentAndGet(key, value, status); if (value == gNoValue) { SharedObject::clearPtr(value); } } void UnifiedCache::decrementItemsInUseWithLockingAndEviction() const { Mutex mutex(&gCacheMutex); decrementItemsInUse(); _runEvictionSlice(); } void UnifiedCache::incrementItemsInUse() const { ++fItemsInUseCount; } void UnifiedCache::decrementItemsInUse() const { --fItemsInUseCount; } // Register a master cache entry. // On entry, gCacheMutex must be held. // On exit, items in use count incremented, entry is marked as a master // entry, and value registered with cache so that subsequent calls to // addRef() and removeRef() on it correctly updates items in use count void UnifiedCache::_registerMaster( const CacheKeyBase *theKey, const SharedObject *value) const { theKey->fIsMaster = TRUE; ++fItemsInUseCount; value->registerWithCache(this); } // Store a value and error in given hash entry. // On entry, gCacheMutex must be held. Hash entry element must be in progress. // value must be non NULL. // On Exit, soft reference added to value. value and status stored in hash // entry. Soft reference removed from previous stored value. Waiting // threads notified. void UnifiedCache::_put( const UHashElement *element, const SharedObject *value, const UErrorCode status) const { U_ASSERT(_inProgress(element)); const CacheKeyBase *theKey = (const CacheKeyBase *) element->key.pointer; const SharedObject *oldValue = (const SharedObject *) element->value.pointer; theKey->fCreationStatus = status; if (value->noSoftReferences()) { _registerMaster(theKey, value); } value->addSoftRef(); UHashElement *ptr = const_cast<UHashElement *>(element); ptr->value.pointer = (void *) value; oldValue->removeSoftRef(); // Tell waiting threads that we replace in-progress status with // an error. umtx_condBroadcast(&gInProgressValueAddedCond); } void UnifiedCache::copyPtr(const SharedObject *src, const SharedObject *&dest) { if(src != dest) { if(dest != NULL) { dest->removeRefWhileHoldingCacheLock(); } dest = src; if(src != NULL) { src->addRefWhileHoldingCacheLock(); } } } void UnifiedCache::clearPtr(const SharedObject *&ptr) { if (ptr != NULL) { ptr->removeRefWhileHoldingCacheLock(); ptr = NULL; } } // Fetch value and error code from a particular hash entry. // On entry, gCacheMutex must be held. value must be either NULL or must be // included in the ref count of the object to which it points. // On exit, value and status set to what is in the hash entry. Caller must // eventually call removeRef on value. // If hash entry is in progress, value will be set to gNoValue and status will // be set to U_ZERO_ERROR. void UnifiedCache::_fetch( const UHashElement *element, const SharedObject *&value, UErrorCode &status) { const CacheKeyBase *theKey = (const CacheKeyBase *) element->key.pointer; status = theKey->fCreationStatus; // Since we have the cache lock, calling regular SharedObject methods // could cause us to deadlock on ourselves since they may need to lock // the cache mutex. UnifiedCache::copyPtr((const SharedObject *) element->value.pointer, value); } // Determine if given hash entry is in progress. // On entry, gCacheMutex must be held. UBool UnifiedCache::_inProgress(const UHashElement *element) { const SharedObject *value = NULL; UErrorCode status = U_ZERO_ERROR; _fetch(element, value, status); UBool result = _inProgress(value, status); // Since we have the cache lock, calling regular SharedObject methods // could cause us to deadlock on ourselves since they may need to lock // the cache mutex. UnifiedCache::clearPtr(value); return result; } // Determine if given hash entry is in progress. // On entry, gCacheMutex must be held. UBool UnifiedCache::_inProgress( const SharedObject *theValue, UErrorCode creationStatus) { return (theValue == gNoValue && creationStatus == U_ZERO_ERROR); } // Determine if given hash entry is eligible for eviction. // On entry, gCacheMutex must be held. UBool UnifiedCache::_isEvictable(const UHashElement *element) { const CacheKeyBase *theKey = (const CacheKeyBase *) element->key.pointer; const SharedObject *theValue = (const SharedObject *) element->value.pointer; // Entries that are under construction are never evictable if (_inProgress(theValue, theKey->fCreationStatus)) { return FALSE; } // We can evict entries that are either not a master or have just // one reference (The one reference being from the cache itself). return (!theKey->fIsMaster || (theValue->getSoftRefCount() == 1 && theValue->noHardReferences())); } U_NAMESPACE_END