/* ****************************************************************************** * * Copyright (C) 2000-2015, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * file name: ucnvmbcs.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2000jul03 * created by: Markus W. Scherer * * The current code in this file replaces the previous implementation * of conversion code from multi-byte codepages to Unicode and back. * This implementation supports the following: * - legacy variable-length codepages with up to 4 bytes per character * - all Unicode code points (up to 0x10ffff) * - efficient distinction of unassigned vs. illegal byte sequences * - it is possible in fromUnicode() to directly deal with simple * stateful encodings (used for EBCDIC_STATEFUL) * - it is possible to convert Unicode code points * to a single zero byte (but not as a fallback except for SBCS) * * Remaining limitations in fromUnicode: * - byte sequences must not have leading zero bytes * - except for SBCS codepages: no fallback mapping from Unicode to a zero byte * - limitation to up to 4 bytes per character * * ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these * limitations and adds m:n character mappings and other features. * See ucnv_ext.h for details. * * Change history: * * 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U, * MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2 * macros to ucnvmbcs.h file */ #include "unicode/utypes.h" #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION #include "unicode/ucnv.h" #include "unicode/ucnv_cb.h" #include "unicode/udata.h" #include "unicode/uset.h" #include "unicode/utf8.h" #include "unicode/utf16.h" #include "ucnv_bld.h" #include "ucnvmbcs.h" #include "ucnv_ext.h" #include "ucnv_cnv.h" #include "cmemory.h" #include "cstring.h" #include "umutex.h" /* control optimizations according to the platform */ #define MBCS_UNROLL_SINGLE_TO_BMP 1 #define MBCS_UNROLL_SINGLE_FROM_BMP 0 /* * _MBCSHeader versions 5.3 & 4.3 * (Note that the _MBCSHeader version is in addition to the converter formatVersion.) * * This version is optional. Version 5 is used for incompatible data format changes. * makeconv will continue to generate version 4 files if possible. * * Changes from version 4: * * The main difference is an additional _MBCSHeader field with * - the length (number of uint32_t) of the _MBCSHeader * - flags for further incompatible data format changes * - flags for further, backward compatible data format changes * * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from * the file and needs to be reconstituted at load time. * This requires a utf8Friendly format with an additional mbcsIndex table for fast * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar. * (For details about these structures see below, and see ucnvmbcs.h.) * * utf8Friendly also implies that the fromUnicode mappings are stored in ascending order * of the Unicode code points. (This requires that the .ucm file has the |0 etc. * precision markers for all mappings.) * * All fallbacks have been moved to the extension table, leaving only roundtrips in the * omitted data that can be reconstituted from the toUnicode data. * * Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted. * With only roundtrip mappings in the base fromUnicode data, this part is fully * redundant with the mbcsIndex and will be reconstituted from that (also using the * stage 1 table which contains the information about how stage 2 was compacted). * * The rest of the stage 2 table, the part for code points above maxFastUChar, * is stored in the file and will be appended to the reconstituted part. * * The entire fromUBytes array is omitted from the file and will be reconstitued. * This is done by enumerating all toUnicode roundtrip mappings, performing * each mapping (using the stage 1 and reconstituted stage 2 tables) and * writing instead of reading the byte values. * * _MBCSHeader version 4.3 * * Change from version 4.2: * - Optional utf8Friendly data structures, with 64-entry stage 3 block * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS * files which can be used instead of stages 1 & 2. * Faster lookups for roundtrips from most commonly used characters, * and lookups from UTF-8 byte sequences with a natural bit distribution. * See ucnvmbcs.h for more details. * * Change from version 4.1: * - Added an optional extension table structure at the end of the .cnv file. * It is present if the upper bits of the header flags field contains a non-zero * byte offset to it. * Files that contain only a conversion table and no base table * use the special outputType MBCS_OUTPUT_EXT_ONLY. * These contain the base table name between the MBCS header and the extension * data. * * Change from version 4.0: * - Replace header.reserved with header.fromUBytesLength so that all * fields in the data have length. * * Changes from version 3 (for performance improvements): * - new bit distribution for state table entries * - reordered action codes * - new data structure for single-byte fromUnicode * + stage 2 only contains indexes * + stage 3 stores 16 bits per character with classification bits 15..8 * - no multiplier for stage 1 entries * - stage 2 for non-single-byte codepages contains the index and the flags in * one 32-bit value * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers * * For more details about old versions of the MBCS data structure, see * the corresponding versions of this file. * * Converting stateless codepage data ---------------------------------------*** * (or codepage data with simple states) to Unicode. * * Data structure and algorithm for converting from complex legacy codepages * to Unicode. (Designed before 2000-may-22.) * * The basic idea is that the structure of legacy codepages can be described * with state tables. * When reading a byte stream, each input byte causes a state transition. * Some transitions result in the output of a code point, some result in * "unassigned" or "illegal" output. * This is used here for character conversion. * * The data structure begins with a state table consisting of a row * per state, with 256 entries (columns) per row for each possible input * byte value. * Each entry is 32 bits wide, with two formats distinguished by * the sign bit (bit 31): * * One format for transitional entries (bit 31 not set) for non-final bytes, and * one format for final entries (bit 31 set). * Both formats contain the number of the next state in the same bit * positions. * State 0 is the initial state. * * Most of the time, the offset values of subsequent states are added * up to a scalar value. This value will eventually be the index of * the Unicode code point in a table that follows the state table. * The effect is that the code points for final state table rows * are contiguous. The code points of final state rows follow each other * in the order of the references to those final states by previous * states, etc. * * For some terminal states, the offset is itself the output Unicode * code point (16 bits for a BMP code point or 20 bits for a supplementary * code point (stored as code point minus 0x10000 so that 20 bits are enough). * For others, the code point in the Unicode table is stored with either * one or two code units: one for BMP code points, two for a pair of * surrogates. * All code points for a final state entry take up the same number of code * units, regardless of whether they all actually _use_ the same number * of code units. This is necessary for simple array access. * * An additional feature comes in with what in ICU is called "fallback" * mappings: * * In addition to round-trippable, precise, 1:1 mappings, there are often * mappings defined between similar, though not the same, characters. * Typically, such mappings occur only in fromUnicode mapping tables because * Unicode has a superset repertoire of most other codepages. However, it * is possible to provide such mappings in the toUnicode tables, too. * In this case, the fallback mappings are partly integrated into the * general state tables because the structure of the encoding includes their * byte sequences. * For final entries in an initial state, fallback mappings are stored in * the entry itself like with roundtrip mappings. * For other final entries, they are stored in the code units table if * the entry is for a pair of code units. * For single-unit results in the code units table, there is no space to * alternatively hold a fallback mapping; in this case, the code unit * is stored as U+fffe (unassigned), and the fallback mapping needs to * be looked up by the scalar offset value in a separate table. * * "Unassigned" state entries really mean "structurally unassigned", * i.e., such a byte sequence will never have a mapping result. * * The interpretation of the bits in each entry is as follows: * * Bit 31 not set, not a terminal entry ("transitional"): * 30..24 next state * 23..0 offset delta, to be added up * * Bit 31 set, terminal ("final") entry: * 30..24 next state (regardless of action code) * 23..20 action code: * action codes 0 and 1 result in precise-mapping Unicode code points * 0 valid byte sequence * 19..16 not used, 0 * 15..0 16-bit Unicode BMP code point * never U+fffe or U+ffff * 1 valid byte sequence * 19..0 20-bit Unicode supplementary code point * never U+fffe or U+ffff * * action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points * 2 valid byte sequence (fallback) * 19..16 not used, 0 * 15..0 16-bit Unicode BMP code point as fallback result * 3 valid byte sequence (fallback) * 19..0 20-bit Unicode supplementary code point as fallback result * * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results * depending on the code units they result in * 4 valid byte sequence * 19..9 not used, 0 * 8..0 final offset delta * pointing to one 16-bit code unit which may be * fffe unassigned -- look for a fallback for this offset * ffff illegal * 5 valid byte sequence * 19..9 not used, 0 * 8..0 final offset delta * pointing to two 16-bit code units * (typically UTF-16 surrogates) * the result depends on the first code unit as follows: * 0000..d7ff roundtrip BMP code point (1st alone) * d800..dbff roundtrip surrogate pair (1st, 2nd) * dc00..dfff fallback surrogate pair (1st-400, 2nd) * e000 roundtrip BMP code point (2nd alone) * e001 fallback BMP code point (2nd alone) * fffe unassigned * ffff illegal * (the final offset deltas are at most 255 * 2, * times 2 because of storing code unit pairs) * * 6 unassigned byte sequence * 19..16 not used, 0 * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2) * this does not contain a final offset delta because the main * purpose of this action code is to save scalar offset values; * therefore, fallback values cannot be assigned to byte * sequences that result in this action code * 7 illegal byte sequence * 19..16 not used, 0 * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2) * 8 state change only * 19..0 not used, 0 * useful for state changes in simple stateful encodings, * at Shift-In/Shift-Out codes * * * 9..15 reserved for future use * current implementations will only perform a state change * and ignore bits 19..0 * * An encoding with contiguous ranges of unassigned byte sequences, like * Shift-JIS and especially EUC-TW, can be stored efficiently by having * at least two states for the trail bytes: * One trail byte state that results in code points, and one that only * has "unassigned" and "illegal" terminal states. * * Note: partly by accident, this data structure supports simple stateful * encodings without any additional logic. * Currently, only simple Shift-In/Shift-Out schemes are handled with * appropriate state tables (especially EBCDIC_STATEFUL!). * * MBCS version 2 added: * unassigned and illegal action codes have U+fffe and U+ffff * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP() * * Converting from Unicode to codepage bytes --------------------------------*** * * The conversion data structure for fromUnicode is designed for the known * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to * a sequence of 1..4 bytes, in addition to a flag that indicates if there is * a roundtrip mapping. * * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3 * like in the character properties table. * The beginning of the trie is at offsetFromUTable, the beginning of stage 3 * with the resulting bytes is at offsetFromUBytes. * * Beginning with version 4, single-byte codepages have a significantly different * trie compared to other codepages. * In all cases, the entry in stage 1 is directly the index of the block of * 64 entries in stage 2. * * Single-byte lookup: * * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3. * Stage 3 contains one 16-bit word per result: * Bits 15..8 indicate the kind of result: * f roundtrip result * c fallback result from private-use code point * 8 fallback result from other code points * 0 unassigned * Bits 7..0 contain the codepage byte. A zero byte is always possible. * * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. * ASCII code points can be looked up with a linear array access into stage 3. * See maxFastUChar and other details in ucnvmbcs.h. * * Multi-byte lookup: * * Stage 2 contains a 32-bit word for each 16-block in stage 3: * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) * If this test is false, then a non-zero result will be interpreted as * a fallback mapping. * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char) * * Stage 3 contains 2, 3, or 4 bytes per result. * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness, * while 3 bytes are stored as bytes in big-endian order. * Leading zero bytes are ignored, and the number of bytes is counted. * A zero byte mapping result is possible as a roundtrip result. * For some output types, the actual result is processed from this; * see ucnv_MBCSFromUnicodeWithOffsets(). * * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10), * or (version 3 and up) for BMP-only codepages, it contains 64 entries. * * In version 4.3, a utf8Friendly file contains an mbcsIndex table. * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. * ASCII code points can be looked up with a linear array access into stage 3. * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h. * * In version 3, stage 2 blocks may overlap by multiples of the multiplier * for compaction. * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks) * may overlap by any number of entries. * * MBCS version 2 added: * the converter checks for known output types, which allows * adding new ones without crashing an unaware converter */ /** * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from * consecutive sequences of bytes, starting from the one encoded in value, * to Unicode code points. (Multiple mappings to reduce per-function call overhead.) * Does not currently support m:n mappings or reverse fallbacks. * This function will not be called for sequences of bytes with leading zeros. * * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode() * @param value contains 1..4 bytes of the first byte sequence, right-aligned * @param codePoints resulting Unicode code points, or negative if a byte sequence does * not map to anything * @return TRUE to continue enumeration, FALSE to stop */ typedef UBool U_CALLCONV UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]); static void ucnv_MBCSLoad(UConverterSharedData *sharedData, UConverterLoadArgs *pArgs, const uint8_t *raw, UErrorCode *pErrorCode); static void ucnv_MBCSUnload(UConverterSharedData *sharedData); static void ucnv_MBCSOpen(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *pErrorCode); static UChar32 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode); static void ucnv_MBCSGetStarters(const UConverter* cnv, UBool starters[256], UErrorCode *pErrorCode); static const char * ucnv_MBCSGetName(const UConverter *cnv); static void ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs, int32_t offsetIndex, UErrorCode *pErrorCode); static UChar32 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode); static void ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, UConverterToUnicodeArgs *pToUArgs, UErrorCode *pErrorCode); static void ucnv_MBCSGetUnicodeSet(const UConverter *cnv, const USetAdder *sa, UConverterUnicodeSet which, UErrorCode *pErrorCode); static void ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, UConverterToUnicodeArgs *pToUArgs, UErrorCode *pErrorCode); static const UConverterImpl _SBCSUTF8Impl={ UCNV_MBCS, ucnv_MBCSLoad, ucnv_MBCSUnload, ucnv_MBCSOpen, NULL, NULL, ucnv_MBCSToUnicodeWithOffsets, ucnv_MBCSToUnicodeWithOffsets, ucnv_MBCSFromUnicodeWithOffsets, ucnv_MBCSFromUnicodeWithOffsets, ucnv_MBCSGetNextUChar, ucnv_MBCSGetStarters, ucnv_MBCSGetName, ucnv_MBCSWriteSub, NULL, ucnv_MBCSGetUnicodeSet, NULL, ucnv_SBCSFromUTF8 }; static const UConverterImpl _DBCSUTF8Impl={ UCNV_MBCS, ucnv_MBCSLoad, ucnv_MBCSUnload, ucnv_MBCSOpen, NULL, NULL, ucnv_MBCSToUnicodeWithOffsets, ucnv_MBCSToUnicodeWithOffsets, ucnv_MBCSFromUnicodeWithOffsets, ucnv_MBCSFromUnicodeWithOffsets, ucnv_MBCSGetNextUChar, ucnv_MBCSGetStarters, ucnv_MBCSGetName, ucnv_MBCSWriteSub, NULL, ucnv_MBCSGetUnicodeSet, NULL, ucnv_DBCSFromUTF8 }; static const UConverterImpl _MBCSImpl={ UCNV_MBCS, ucnv_MBCSLoad, ucnv_MBCSUnload, ucnv_MBCSOpen, NULL, NULL, ucnv_MBCSToUnicodeWithOffsets, ucnv_MBCSToUnicodeWithOffsets, ucnv_MBCSFromUnicodeWithOffsets, ucnv_MBCSFromUnicodeWithOffsets, ucnv_MBCSGetNextUChar, ucnv_MBCSGetStarters, ucnv_MBCSGetName, ucnv_MBCSWriteSub, NULL, ucnv_MBCSGetUnicodeSet, NULL, NULL }; /* Static data is in tools/makeconv/ucnvstat.c for data-based * converters. Be sure to update it as well. */ const UConverterSharedData _MBCSData={ sizeof(UConverterSharedData), 1, NULL, NULL, FALSE, TRUE, &_MBCSImpl, 0, UCNV_MBCS_TABLE_INITIALIZER }; /* GB 18030 data ------------------------------------------------------------ */ /* helper macros for linear values for GB 18030 four-byte sequences */ #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d)) #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30) #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff) /* * Some ranges of GB 18030 where both the Unicode code points and the * GB four-byte sequences are contiguous and are handled algorithmically by * the special callback functions below. * The values are start & end of Unicode & GB codes. * * Note that single surrogates are not mapped by GB 18030 * as of the re-released mapping tables from 2000-nov-30. */ static const uint32_t gb18030Ranges[14][4]={ {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)}, {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)}, {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)}, {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)}, {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)}, {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)}, {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)}, {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)}, {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)}, {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)}, {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)}, {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)}, {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)}, {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)} }; /* bit flag for UConverter.options indicating GB 18030 special handling */ #define _MBCS_OPTION_GB18030 0x8000 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */ #define _MBCS_OPTION_KEIS 0x01000 #define _MBCS_OPTION_JEF 0x02000 #define _MBCS_OPTION_JIPS 0x04000 #define KEIS_SO_CHAR_1 0x0A #define KEIS_SO_CHAR_2 0x42 #define KEIS_SI_CHAR_1 0x0A #define KEIS_SI_CHAR_2 0x41 #define JEF_SO_CHAR 0x28 #define JEF_SI_CHAR 0x29 #define JIPS_SO_CHAR_1 0x1A #define JIPS_SO_CHAR_2 0x70 #define JIPS_SI_CHAR_1 0x1A #define JIPS_SI_CHAR_2 0x71 enum SISO_Option { SI, SO }; typedef enum SISO_Option SISO_Option; static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) { int32_t SISOLength = 0; switch (option) { case SI: if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { value[0] = KEIS_SI_CHAR_1; value[1] = KEIS_SI_CHAR_2; SISOLength = 2; } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { value[0] = JEF_SI_CHAR; SISOLength = 1; } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { value[0] = JIPS_SI_CHAR_1; value[1] = JIPS_SI_CHAR_2; SISOLength = 2; } else { value[0] = UCNV_SI; SISOLength = 1; } break; case SO: if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { value[0] = KEIS_SO_CHAR_1; value[1] = KEIS_SO_CHAR_2; SISOLength = 2; } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { value[0] = JEF_SO_CHAR; SISOLength = 1; } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { value[0] = JIPS_SO_CHAR_1; value[1] = JIPS_SO_CHAR_2; SISOLength = 2; } else { value[0] = UCNV_SO; SISOLength = 1; } break; default: /* Should never happen. */ break; } return SISOLength; } /* Miscellaneous ------------------------------------------------------------ */ /* similar to ucnv_MBCSGetNextUChar() but recursive */ static UBool enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[], int32_t state, uint32_t offset, uint32_t value, UConverterEnumToUCallback *callback, const void *context, UErrorCode *pErrorCode) { UChar32 codePoints[32]; const int32_t *row; const uint16_t *unicodeCodeUnits; UChar32 anyCodePoints; int32_t b, limit; row=mbcsTable->stateTable[state]; unicodeCodeUnits=mbcsTable->unicodeCodeUnits; value<<=8; anyCodePoints=-1; /* becomes non-negative if there is a mapping */ b=(stateProps[state]&0x38)<<2; if(b==0 && stateProps[state]>=0x40) { /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */ codePoints[0]=U_SENTINEL; b=1; } limit=((stateProps[state]&7)+1)<<5; while(b<limit) { int32_t entry=row[b]; if(MBCS_ENTRY_IS_TRANSITION(entry)) { int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry); if(stateProps[nextState]>=0) { /* recurse to a state with non-ignorable actions */ if(!enumToU( mbcsTable, stateProps, nextState, offset+MBCS_ENTRY_TRANSITION_OFFSET(entry), value|(uint32_t)b, callback, context, pErrorCode)) { return FALSE; } } codePoints[b&0x1f]=U_SENTINEL; } else { UChar32 c; int32_t action; /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=MBCS_ENTRY_FINAL_ACTION(entry); if(action==MBCS_STATE_VALID_DIRECT_16) { /* output BMP code point */ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); } else if(action==MBCS_STATE_VALID_16) { int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); c=unicodeCodeUnits[finalOffset]; if(c<0xfffe) { /* output BMP code point */ } else { c=U_SENTINEL; } } else if(action==MBCS_STATE_VALID_16_PAIR) { int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); c=unicodeCodeUnits[finalOffset++]; if(c<0xd800) { /* output BMP code point below 0xd800 */ } else if(c<=0xdbff) { /* output roundtrip or fallback supplementary code point */ c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00); } else if(c==0xe000) { /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ c=unicodeCodeUnits[finalOffset]; } else { c=U_SENTINEL; } } else if(action==MBCS_STATE_VALID_DIRECT_20) { /* output supplementary code point */ c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); } else { c=U_SENTINEL; } codePoints[b&0x1f]=c; anyCodePoints&=c; } if(((++b)&0x1f)==0) { if(anyCodePoints>=0) { if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) { return FALSE; } anyCodePoints=-1; } } } return TRUE; } /* * Only called if stateProps[state]==-1. * A recursive call may do stateProps[state]|=0x40 if this state is the target of an * MBCS_STATE_CHANGE_ONLY. */ static int8_t getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) { const int32_t *row; int32_t min, max, entry, nextState; row=stateTable[state]; stateProps[state]=0; /* find first non-ignorable state */ for(min=0;; ++min) { entry=row[min]; nextState=MBCS_ENTRY_STATE(entry); if(stateProps[nextState]==-1) { getStateProp(stateTable, stateProps, nextState); } if(MBCS_ENTRY_IS_TRANSITION(entry)) { if(stateProps[nextState]>=0) { break; } } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { break; } if(min==0xff) { stateProps[state]=-0x40; /* (int8_t)0xc0 */ return stateProps[state]; } } stateProps[state]|=(int8_t)((min>>5)<<3); /* find last non-ignorable state */ for(max=0xff; min<max; --max) { entry=row[max]; nextState=MBCS_ENTRY_STATE(entry); if(stateProps[nextState]==-1) { getStateProp(stateTable, stateProps, nextState); } if(MBCS_ENTRY_IS_TRANSITION(entry)) { if(stateProps[nextState]>=0) { break; } } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { break; } } stateProps[state]|=(int8_t)(max>>5); /* recurse further and collect direct-state information */ while(min<=max) { entry=row[min]; nextState=MBCS_ENTRY_STATE(entry); if(stateProps[nextState]==-1) { getStateProp(stateTable, stateProps, nextState); } if(MBCS_ENTRY_IS_FINAL(entry)) { stateProps[nextState]|=0x40; if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) { stateProps[state]|=0x40; } } ++min; } return stateProps[state]; } /* * Internal function enumerating the toUnicode data of an MBCS converter. * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U * table, but could also be used for a future ucnv_getUnicodeSet() option * that includes reverse fallbacks (after updating this function's implementation). * Currently only handles roundtrip mappings. * Does not currently handle extensions. */ static void ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable, UConverterEnumToUCallback *callback, const void *context, UErrorCode *pErrorCode) { /* * Properties for each state, to speed up the enumeration. * Ignorable actions are unassigned/illegal/state-change-only: * They do not lead to mappings. * * Bits 7..6: * 1 direct/initial state (stateful converters have multiple) * 0 non-initial state with transitions or with non-ignorable result actions * -1 final state with only ignorable actions * * Bits 5..3: * The lowest byte value with non-ignorable actions is * value<<5 (rounded down). * * Bits 2..0: * The highest byte value with non-ignorable actions is * (value<<5)&0x1f (rounded up). */ int8_t stateProps[MBCS_MAX_STATE_COUNT]; int32_t state; uprv_memset(stateProps, -1, sizeof(stateProps)); /* recurse from state 0 and set all stateProps */ getStateProp(mbcsTable->stateTable, stateProps, 0); for(state=0; state<mbcsTable->countStates; ++state) { /*if(stateProps[state]==-1) { printf("unused/unreachable <icu:state> %d\n", state); }*/ if(stateProps[state]>=0x40) { /* start from each direct state */ enumToU( mbcsTable, stateProps, state, 0, 0, callback, context, pErrorCode); } } } U_CFUNC void ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData, const USetAdder *sa, UConverterUnicodeSet which, UConverterSetFilter filter, UErrorCode *pErrorCode) { const UConverterMBCSTable *mbcsTable; const uint16_t *table; uint32_t st3; uint16_t st1, maxStage1, st2; UChar32 c; /* enumerate the from-Unicode trie table */ mbcsTable=&sharedData->mbcs; table=mbcsTable->fromUnicodeTable; if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { maxStage1=0x440; } else { maxStage1=0x40; } c=0; /* keep track of the current code point while enumerating */ if(mbcsTable->outputType==MBCS_OUTPUT_1) { const uint16_t *stage2, *stage3, *results; uint16_t minValue; results=(const uint16_t *)mbcsTable->fromUnicodeBytes; /* * Set a threshold variable for selecting which mappings to use. * See ucnv_MBCSSingleFromBMPWithOffsets() and * MBCS_SINGLE_RESULT_FROM_U() for details. */ if(which==UCNV_ROUNDTRIP_SET) { /* use only roundtrips */ minValue=0xf00; } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ { /* use all roundtrip and fallback results */ minValue=0x800; } for(st1=0; st1<maxStage1; ++st1) { st2=table[st1]; if(st2>maxStage1) { stage2=table+st2; for(st2=0; st2<64; ++st2) { if((st3=stage2[st2])!=0) { /* read the stage 3 block */ stage3=results+st3; do { if(*stage3++>=minValue) { sa->add(sa->set, c); } } while((++c&0xf)!=0); } else { c+=16; /* empty stage 3 block */ } } } else { c+=1024; /* empty stage 2 block */ } } } else { const uint32_t *stage2; const uint8_t *stage3, *bytes; uint32_t st3Multiplier; uint32_t value; UBool useFallback; bytes=mbcsTable->fromUnicodeBytes; useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET); switch(mbcsTable->outputType) { case MBCS_OUTPUT_3: case MBCS_OUTPUT_4_EUC: st3Multiplier=3; break; case MBCS_OUTPUT_4: st3Multiplier=4; break; default: st3Multiplier=2; break; } for(st1=0; st1<maxStage1; ++st1) { st2=table[st1]; if(st2>(maxStage1>>1)) { stage2=(const uint32_t *)table+st2; for(st2=0; st2<64; ++st2) { if((st3=stage2[st2])!=0) { /* read the stage 3 block */ stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3; /* get the roundtrip flags for the stage 3 block */ st3>>=16; /* * Add code points for which the roundtrip flag is set, * or which map to non-zero bytes if we use fallbacks. * See ucnv_MBCSFromUnicodeWithOffsets() for details. */ switch(filter) { case UCNV_SET_FILTER_NONE: do { if(st3&1) { sa->add(sa->set, c); stage3+=st3Multiplier; } else if(useFallback) { uint8_t b=0; switch(st3Multiplier) { case 4: b|=*stage3++; case 3: /*fall through*/ b|=*stage3++; case 2: /*fall through*/ b|=stage3[0]|stage3[1]; stage3+=2; default: break; } if(b!=0) { sa->add(sa->set, c); } } st3>>=1; } while((++c&0xf)!=0); break; case UCNV_SET_FILTER_DBCS_ONLY: /* Ignore single-byte results (<0x100). */ do { if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) { sa->add(sa->set, c); } st3>>=1; stage3+=2; /* +=st3Multiplier */ } while((++c&0xf)!=0); break; case UCNV_SET_FILTER_2022_CN: /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */ do { if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) { sa->add(sa->set, c); } st3>>=1; stage3+=3; /* +=st3Multiplier */ } while((++c&0xf)!=0); break; case UCNV_SET_FILTER_SJIS: /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */ do { if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) { sa->add(sa->set, c); } st3>>=1; stage3+=2; /* +=st3Multiplier */ } while((++c&0xf)!=0); break; case UCNV_SET_FILTER_GR94DBCS: /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */ do { if( ((st3&1)!=0 || useFallback) && (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) && (uint8_t)(value-0xa1)<=(0xfe - 0xa1) ) { sa->add(sa->set, c); } st3>>=1; stage3+=2; /* +=st3Multiplier */ } while((++c&0xf)!=0); break; case UCNV_SET_FILTER_HZ: /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */ do { if( ((st3&1)!=0 || useFallback) && (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) && (uint8_t)(value-0xa1)<=(0xfe - 0xa1) ) { sa->add(sa->set, c); } st3>>=1; stage3+=2; /* +=st3Multiplier */ } while((++c&0xf)!=0); break; default: *pErrorCode=U_INTERNAL_PROGRAM_ERROR; return; } } else { c+=16; /* empty stage 3 block */ } } } else { c+=1024; /* empty stage 2 block */ } } } ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode); } U_CFUNC void ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData, const USetAdder *sa, UConverterUnicodeSet which, UErrorCode *pErrorCode) { ucnv_MBCSGetFilteredUnicodeSetForUnicode( sharedData, sa, which, sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ? UCNV_SET_FILTER_DBCS_ONLY : UCNV_SET_FILTER_NONE, pErrorCode); } static void ucnv_MBCSGetUnicodeSet(const UConverter *cnv, const USetAdder *sa, UConverterUnicodeSet which, UErrorCode *pErrorCode) { if(cnv->options&_MBCS_OPTION_GB18030) { sa->addRange(sa->set, 0, 0xd7ff); sa->addRange(sa->set, 0xe000, 0x10ffff); } else { ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode); } } /* conversion extensions for input not in the main table -------------------- */ /* * Hardcoded extension handling for GB 18030. * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file. * * In the future, conversion extensions may handle m:n mappings and delta tables, * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html * * If an input character cannot be mapped, then these functions set an error * code. The framework will then call the callback function. */ /* * @return if(U_FAILURE) return the code point for cnv->fromUChar32 * else return 0 after output has been written to the target */ static UChar32 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData, UChar32 cp, const UChar **source, const UChar *sourceLimit, uint8_t **target, const uint8_t *targetLimit, int32_t **offsets, int32_t sourceIndex, UBool flush, UErrorCode *pErrorCode) { const int32_t *cx; cnv->useSubChar1=FALSE; if( (cx=sharedData->mbcs.extIndexes)!=NULL && ucnv_extInitialMatchFromU( cnv, cx, cp, source, sourceLimit, (char **)target, (char *)targetLimit, offsets, sourceIndex, flush, pErrorCode) ) { return 0; /* an extension mapping handled the input */ } /* GB 18030 */ if((cnv->options&_MBCS_OPTION_GB18030)!=0) { const uint32_t *range; int32_t i; range=gb18030Ranges[0]; for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) { if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) { /* found the Unicode code point, output the four-byte sequence for it */ uint32_t linear; char bytes[4]; /* get the linear value of the first GB 18030 code in this range */ linear=range[2]-LINEAR_18030_BASE; /* add the offset from the beginning of the range */ linear+=((uint32_t)cp-range[0]); /* turn this into a four-byte sequence */ bytes[3]=(char)(0x30+linear%10); linear/=10; bytes[2]=(char)(0x81+linear%126); linear/=126; bytes[1]=(char)(0x30+linear%10); linear/=10; bytes[0]=(char)(0x81+linear); /* output this sequence */ ucnv_fromUWriteBytes(cnv, bytes, 4, (char **)target, (char *)targetLimit, offsets, sourceIndex, pErrorCode); return 0; } } } /* no mapping */ *pErrorCode=U_INVALID_CHAR_FOUND; return cp; } /* * Input sequence: cnv->toUBytes[0..length[ * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input * else return 0 after output has been written to the target */ static int8_t _extToU(UConverter *cnv, const UConverterSharedData *sharedData, int8_t length, const uint8_t **source, const uint8_t *sourceLimit, UChar **target, const UChar *targetLimit, int32_t **offsets, int32_t sourceIndex, UBool flush, UErrorCode *pErrorCode) { const int32_t *cx; if( (cx=sharedData->mbcs.extIndexes)!=NULL && ucnv_extInitialMatchToU( cnv, cx, length, (const char **)source, (const char *)sourceLimit, target, targetLimit, offsets, sourceIndex, flush, pErrorCode) ) { return 0; /* an extension mapping handled the input */ } /* GB 18030 */ if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) { const uint32_t *range; uint32_t linear; int32_t i; linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]); range=gb18030Ranges[0]; for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) { if(range[2]<=linear && linear<=range[3]) { /* found the sequence, output the Unicode code point for it */ *pErrorCode=U_ZERO_ERROR; /* add the linear difference between the input and start sequences to the start code point */ linear=range[0]+(linear-range[2]); /* output this code point */ ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode); return 0; } } } /* no mapping */ *pErrorCode=U_INVALID_CHAR_FOUND; return length; } /* EBCDIC swap LF<->NL ------------------------------------------------------ */ /* * This code modifies a standard EBCDIC<->Unicode mapping table for * OS/390 (z/OS) Unix System Services (Open Edition). * The difference is in the mapping of Line Feed and New Line control codes: * Standard EBCDIC maps * * <U000A> \x25 |0 * <U0085> \x15 |0 * * but OS/390 USS EBCDIC swaps the control codes for LF and NL, * mapping * * <U000A> \x15 |0 * <U0085> \x25 |0 * * This code modifies a loaded standard EBCDIC<->Unicode mapping table * by copying it into allocated memory and swapping the LF and NL values. * It allows to support the same EBCDIC charset in both versions without * duplicating the entire installed table. */ /* standard EBCDIC codes */ #define EBCDIC_LF 0x25 #define EBCDIC_NL 0x15 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */ #define EBCDIC_RT_LF 0xf25 #define EBCDIC_RT_NL 0xf15 /* Unicode code points */ #define U_LF 0x0a #define U_NL 0x85 static UBool _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) { UConverterMBCSTable *mbcsTable; const uint16_t *table, *results; const uint8_t *bytes; int32_t (*newStateTable)[256]; uint16_t *newResults; uint8_t *p; char *name; uint32_t stage2Entry; uint32_t size, sizeofFromUBytes; mbcsTable=&sharedData->mbcs; table=mbcsTable->fromUnicodeTable; bytes=mbcsTable->fromUnicodeBytes; results=(const uint16_t *)bytes; /* * Check that this is an EBCDIC table with SBCS portion - * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings. * * If not, ignore the option. Options are always ignored if they do not apply. */ if(!( (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) && mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) && mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL) )) { return FALSE; } if(mbcsTable->outputType==MBCS_OUTPUT_1) { if(!( EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) && EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL) )) { return FALSE; } } else /* MBCS_OUTPUT_2_SISO */ { stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); if(!( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 && EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF) )) { return FALSE; } stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); if(!( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 && EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL) )) { return FALSE; } } if(mbcsTable->fromUBytesLength>0) { /* * We _know_ the number of bytes in the fromUnicodeBytes array * starting with header.version 4.1. */ sizeofFromUBytes=mbcsTable->fromUBytesLength; } else { /* * Otherwise: * There used to be code to enumerate the fromUnicode * trie and find the highest entry, but it was removed in ICU 3.2 * because it was not tested and caused a low code coverage number. * See Jitterbug 3674. * This affects only some .cnv file formats with a header.version * below 4.1, and only when swaplfnl is requested. * * ucnvmbcs.c revision 1.99 is the last one with the * ucnv_MBCSSizeofFromUBytes() function. */ *pErrorCode=U_INVALID_FORMAT_ERROR; return FALSE; } /* * The table has an appropriate format. * Allocate and build * - a modified to-Unicode state table * - a modified from-Unicode output array * - a converter name string with the swap option appended */ size= mbcsTable->countStates*1024+ sizeofFromUBytes+ UCNV_MAX_CONVERTER_NAME_LENGTH+20; p=(uint8_t *)uprv_malloc(size); if(p==NULL) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return FALSE; } /* copy and modify the to-Unicode state table */ newStateTable=(int32_t (*)[256])p; uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024); newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL); newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF); /* copy and modify the from-Unicode result table */ newResults=(uint16_t *)newStateTable[mbcsTable->countStates]; uprv_memcpy(newResults, bytes, sizeofFromUBytes); /* conveniently, the table access macros work on the left side of expressions */ if(mbcsTable->outputType==MBCS_OUTPUT_1) { MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL; MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF; } else /* MBCS_OUTPUT_2_SISO */ { stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL; stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF; } /* set the canonical converter name */ name=(char *)newResults+sizeofFromUBytes; uprv_strcpy(name, sharedData->staticData->name); uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING); /* set the pointers */ umtx_lock(NULL); if(mbcsTable->swapLFNLStateTable==NULL) { mbcsTable->swapLFNLStateTable=newStateTable; mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults; mbcsTable->swapLFNLName=name; newStateTable=NULL; } umtx_unlock(NULL); /* release the allocated memory if another thread beat us to it */ if(newStateTable!=NULL) { uprv_free(newStateTable); } return TRUE; } /* reconstitute omitted fromUnicode data ------------------------------------ */ /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */ static UBool U_CALLCONV writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) { UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context; const uint16_t *table; uint32_t *stage2; uint8_t *bytes, *p; UChar32 c; int32_t i, st3; table=mbcsTable->fromUnicodeTable; bytes=(uint8_t *)mbcsTable->fromUnicodeBytes; /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */ switch(mbcsTable->outputType) { case MBCS_OUTPUT_3_EUC: if(value<=0xffff) { /* short sequences are stored directly */ /* code set 0 or 1 */ } else if(value<=0x8effff) { /* code set 2 */ value&=0x7fff; } else /* first byte is 0x8f */ { /* code set 3 */ value&=0xff7f; } break; case MBCS_OUTPUT_4_EUC: if(value<=0xffffff) { /* short sequences are stored directly */ /* code set 0 or 1 */ } else if(value<=0x8effffff) { /* code set 2 */ value&=0x7fffff; } else /* first byte is 0x8f */ { /* code set 3 */ value&=0xff7fff; } break; default: break; } for(i=0; i<=0x1f; ++value, ++i) { c=codePoints[i]; if(c<0) { continue; } /* locate the stage 2 & 3 data */ stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f); p=bytes; st3=(int32_t)(uint16_t)*stage2*16+(c&0xf); /* write the codepage bytes into stage 3 */ switch(mbcsTable->outputType) { case MBCS_OUTPUT_3: case MBCS_OUTPUT_4_EUC: p+=st3*3; p[0]=(uint8_t)(value>>16); p[1]=(uint8_t)(value>>8); p[2]=(uint8_t)value; break; case MBCS_OUTPUT_4: ((uint32_t *)p)[st3]=value; break; default: /* 2 bytes per character */ ((uint16_t *)p)[st3]=(uint16_t)value; break; } /* set the roundtrip flag */ *stage2|=(1UL<<(16+(c&0xf))); } return TRUE; } static void reconstituteData(UConverterMBCSTable *mbcsTable, uint32_t stage1Length, uint32_t stage2Length, uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */ UErrorCode *pErrorCode) { uint16_t *stage1; uint32_t *stage2; uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength; mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength); if(mbcsTable->reconstitutedData==NULL) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return; } uprv_memset(mbcsTable->reconstitutedData, 0, dataLength); /* copy existing data and reroute the pointers */ stage1=(uint16_t *)mbcsTable->reconstitutedData; uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2); stage2=(uint32_t *)(stage1+stage1Length); uprv_memcpy(stage2+(fullStage2Length-stage2Length), mbcsTable->fromUnicodeTable+stage1Length, stage2Length*4); mbcsTable->fromUnicodeTable=stage1; mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length); /* indexes into stage 2 count from the bottom of the fromUnicodeTable */ stage2=(uint32_t *)stage1; /* reconstitute the initial part of stage 2 from the mbcsIndex */ { int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6; int32_t stageUTF8Index=0; int32_t st1, st2, st3, i; for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) { st2=stage1[st1]; if(st2!=(int32_t)stage1Length/2) { /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */ for(i=0; i<16; ++i) { st3=mbcsTable->mbcsIndex[stageUTF8Index++]; if(st3!=0) { /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */ st3>>=4; /* * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are * allocated together as a single 64-block for access from the mbcsIndex */ stage2[st2++]=st3++; stage2[st2++]=st3++; stage2[st2++]=st3++; stage2[st2++]=st3; } else { /* no stage 3 block, skip */ st2+=4; } } } else { /* no stage 2 block, skip */ stageUTF8Index+=16; } } } /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */ ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode); } /* MBCS setup functions ----------------------------------------------------- */ static void ucnv_MBCSLoad(UConverterSharedData *sharedData, UConverterLoadArgs *pArgs, const uint8_t *raw, UErrorCode *pErrorCode) { UDataInfo info; UConverterMBCSTable *mbcsTable=&sharedData->mbcs; _MBCSHeader *header=(_MBCSHeader *)raw; uint32_t offset; uint32_t headerLength; UBool noFromU=FALSE; if(header->version[0]==4) { headerLength=MBCS_HEADER_V4_LENGTH; } else if(header->version[0]==5 && header->version[1]>=3 && (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) { headerLength=header->options&MBCS_OPT_LENGTH_MASK; noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0); } else { *pErrorCode=U_INVALID_TABLE_FORMAT; return; } mbcsTable->outputType=(uint8_t)header->flags; if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) { *pErrorCode=U_INVALID_TABLE_FORMAT; return; } /* extension data, header version 4.2 and higher */ offset=header->flags>>8; if(offset!=0) { mbcsTable->extIndexes=(const int32_t *)(raw+offset); } if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) { UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER; UConverterSharedData *baseSharedData; const int32_t *extIndexes; const char *baseName; /* extension-only file, load the base table and set values appropriately */ if((extIndexes=mbcsTable->extIndexes)==NULL) { /* extension-only file without extension */ *pErrorCode=U_INVALID_TABLE_FORMAT; return; } if(pArgs->nestedLoads!=1) { /* an extension table must not be loaded as a base table */ *pErrorCode=U_INVALID_TABLE_FILE; return; } /* load the base table */ baseName=(const char *)header+headerLength*4; if(0==uprv_strcmp(baseName, sharedData->staticData->name)) { /* forbid loading this same extension-only file */ *pErrorCode=U_INVALID_TABLE_FORMAT; return; } /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */ args.size=sizeof(UConverterLoadArgs); args.nestedLoads=2; args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable; args.reserved=pArgs->reserved; args.options=pArgs->options; args.pkg=pArgs->pkg; args.name=baseName; baseSharedData=ucnv_load(&args, pErrorCode); if(U_FAILURE(*pErrorCode)) { return; } if( baseSharedData->staticData->conversionType!=UCNV_MBCS || baseSharedData->mbcs.baseSharedData!=NULL ) { ucnv_unload(baseSharedData); *pErrorCode=U_INVALID_TABLE_FORMAT; return; } if(pArgs->onlyTestIsLoadable) { /* * Exit as soon as we know that we can load the converter * and the format is valid and supported. * The worst that can happen in the following code is a memory * allocation error. */ ucnv_unload(baseSharedData); return; } /* copy the base table data */ uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable)); /* overwrite values with relevant ones for the extension converter */ mbcsTable->baseSharedData=baseSharedData; mbcsTable->extIndexes=extIndexes; /* * It would be possible to share the swapLFNL data with a base converter, * but the generated name would have to be different, and the memory * would have to be free'd only once. * It is easier to just create the data for the extension converter * separately when it is requested. */ mbcsTable->swapLFNLStateTable=NULL; mbcsTable->swapLFNLFromUnicodeBytes=NULL; mbcsTable->swapLFNLName=NULL; /* * The reconstitutedData must be deleted only when the base converter * is unloaded. */ mbcsTable->reconstitutedData=NULL; /* * Set a special, runtime-only outputType if the extension converter * is a DBCS version of a base converter that also maps single bytes. */ if( sharedData->staticData->conversionType==UCNV_DBCS || (sharedData->staticData->conversionType==UCNV_MBCS && sharedData->staticData->minBytesPerChar>=2) ) { if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) { /* the base converter is SI/SO-stateful */ int32_t entry; /* get the dbcs state from the state table entry for SO=0x0e */ entry=mbcsTable->stateTable[0][0xe]; if( MBCS_ENTRY_IS_FINAL(entry) && MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY && MBCS_ENTRY_FINAL_STATE(entry)!=0 ) { mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; } } else if( baseSharedData->staticData->conversionType==UCNV_MBCS && baseSharedData->staticData->minBytesPerChar==1 && baseSharedData->staticData->maxBytesPerChar==2 && mbcsTable->countStates<=127 ) { /* non-stateful base converter, need to modify the state table */ int32_t (*newStateTable)[256]; int32_t *state; int32_t i, count; /* allocate a new state table and copy the base state table contents */ count=mbcsTable->countStates; newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024); if(newStateTable==NULL) { ucnv_unload(baseSharedData); *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return; } uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024); /* change all final single-byte entries to go to a new all-illegal state */ state=newStateTable[0]; for(i=0; i<256; ++i) { if(MBCS_ENTRY_IS_FINAL(state[i])) { state[i]=MBCS_ENTRY_TRANSITION(count, 0); } } /* build the new all-illegal state */ state=newStateTable[count]; for(i=0; i<256; ++i) { state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0); } mbcsTable->stateTable=(const int32_t (*)[256])newStateTable; mbcsTable->countStates=(uint8_t)(count+1); mbcsTable->stateTableOwned=TRUE; mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; } } /* * unlike below for files with base tables, do not get the unicodeMask * from the sharedData; instead, use the base table's unicodeMask, * which we copied in the memcpy above; * this is necessary because the static data unicodeMask, especially * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data */ } else { /* conversion file with a base table; an additional extension table is optional */ /* make sure that the output type is known */ switch(mbcsTable->outputType) { case MBCS_OUTPUT_1: case MBCS_OUTPUT_2: case MBCS_OUTPUT_3: case MBCS_OUTPUT_4: case MBCS_OUTPUT_3_EUC: case MBCS_OUTPUT_4_EUC: case MBCS_OUTPUT_2_SISO: /* OK */ break; default: *pErrorCode=U_INVALID_TABLE_FORMAT; return; } if(pArgs->onlyTestIsLoadable) { /* * Exit as soon as we know that we can load the converter * and the format is valid and supported. * The worst that can happen in the following code is a memory * allocation error. */ return; } mbcsTable->countStates=(uint8_t)header->countStates; mbcsTable->countToUFallbacks=header->countToUFallbacks; mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4); mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates); mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits); mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable); mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes); mbcsTable->fromUBytesLength=header->fromUBytesLength; /* * converter versions 6.1 and up contain a unicodeMask that is * used here to select the most efficient function implementations */ info.size=sizeof(UDataInfo); udata_getInfo((UDataMemory *)sharedData->dataMemory, &info); if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) { /* mask off possible future extensions to be safe */ mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3); } else { /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */ mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES; } /* * _MBCSHeader.version 4.3 adds utf8Friendly data structures. * Check for the header version, SBCS vs. MBCS, and for whether the * data structures are optimized for code points as high as what the * runtime code is designed for. * The implementation does not handle mapping tables with entries for * unpaired surrogates. */ if( header->version[1]>=3 && (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 && (mbcsTable->countStates==1 ? (header->version[2]>=(SBCS_FAST_MAX>>8)) : (header->version[2]>=(MBCS_FAST_MAX>>8)) ) ) { mbcsTable->utf8Friendly=TRUE; if(mbcsTable->countStates==1) { /* * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher. * Build a table with indexes to each block, to be used instead of * the regular stage 1/2 table. */ int32_t i; for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) { mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)]; } /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */ mbcsTable->maxFastUChar=SBCS_FAST_MAX; } else { /* * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher. * The .cnv file is prebuilt with an additional stage table with indexes * to each block. */ mbcsTable->mbcsIndex=(const uint16_t *) (mbcsTable->fromUnicodeBytes+ (noFromU ? 0 : mbcsTable->fromUBytesLength)); mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff; } } /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */ { uint32_t asciiRoundtrips=0xffffffff; int32_t i; for(i=0; i<0x80; ++i) { if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) { asciiRoundtrips&=~((uint32_t)1<<(i>>2)); } } mbcsTable->asciiRoundtrips=asciiRoundtrips; } if(noFromU) { uint32_t stage1Length= mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ? 0x440 : 0x40; uint32_t stage2Length= (header->offsetFromUBytes-header->offsetFromUTable)/4- stage1Length/2; reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode); } } /* Set the impl pointer here so that it is set for both extension-only and base tables. */ if(mbcsTable->utf8Friendly) { if(mbcsTable->countStates==1) { sharedData->impl=&_SBCSUTF8Impl; } else { if(mbcsTable->outputType==MBCS_OUTPUT_2) { sharedData->impl=&_DBCSUTF8Impl; } } } if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) { /* * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip. * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly. */ mbcsTable->asciiRoundtrips=0; } } static void ucnv_MBCSUnload(UConverterSharedData *sharedData) { UConverterMBCSTable *mbcsTable=&sharedData->mbcs; if(mbcsTable->swapLFNLStateTable!=NULL) { uprv_free(mbcsTable->swapLFNLStateTable); } if(mbcsTable->stateTableOwned) { uprv_free((void *)mbcsTable->stateTable); } if(mbcsTable->baseSharedData!=NULL) { ucnv_unload(mbcsTable->baseSharedData); } if(mbcsTable->reconstitutedData!=NULL) { uprv_free(mbcsTable->reconstitutedData); } } static void ucnv_MBCSOpen(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *pErrorCode) { UConverterMBCSTable *mbcsTable; const int32_t *extIndexes; uint8_t outputType; int8_t maxBytesPerUChar; if(pArgs->onlyTestIsLoadable) { return; } mbcsTable=&cnv->sharedData->mbcs; outputType=mbcsTable->outputType; if(outputType==MBCS_OUTPUT_DBCS_ONLY) { /* the swaplfnl option does not apply, remove it */ cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; } if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) { /* do this because double-checked locking is broken */ UBool isCached; umtx_lock(NULL); isCached=mbcsTable->swapLFNLStateTable!=NULL; umtx_unlock(NULL); if(!isCached) { if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) { if(U_FAILURE(*pErrorCode)) { return; /* something went wrong */ } /* the option does not apply, remove it */ cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; } } } if(uprv_strstr(pArgs->name, "18030")!=NULL) { if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) { /* set a flag for GB 18030 mode, which changes the callback behavior */ cnv->options|=_MBCS_OPTION_GB18030; } } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) { /* set a flag for KEIS converter, which changes the SI/SO character sequence */ cnv->options|=_MBCS_OPTION_KEIS; } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) { /* set a flag for JEF converter, which changes the SI/SO character sequence */ cnv->options|=_MBCS_OPTION_JEF; } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) { /* set a flag for JIPS converter, which changes the SI/SO character sequence */ cnv->options|=_MBCS_OPTION_JIPS; } /* fix maxBytesPerUChar depending on outputType and options etc. */ if(outputType==MBCS_OUTPUT_2_SISO) { cnv->maxBytesPerUChar=3; /* SO+DBCS */ } extIndexes=mbcsTable->extIndexes; if(extIndexes!=NULL) { maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes); if(outputType==MBCS_OUTPUT_2_SISO) { ++maxBytesPerUChar; /* SO + multiple DBCS */ } if(maxBytesPerUChar>cnv->maxBytesPerUChar) { cnv->maxBytesPerUChar=maxBytesPerUChar; } } #if 0 /* * documentation of UConverter fields used for status * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset() */ /* toUnicode */ cnv->toUnicodeStatus=0; /* offset */ cnv->mode=0; /* state */ cnv->toULength=0; /* byteIndex */ /* fromUnicode */ cnv->fromUChar32=0; cnv->fromUnicodeStatus=1; /* prevLength */ #endif } static const char * ucnv_MBCSGetName(const UConverter *cnv) { if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) { return cnv->sharedData->mbcs.swapLFNLName; } else { return cnv->sharedData->staticData->name; } } /* MBCS-to-Unicode conversion functions ------------------------------------- */ static UChar32 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) { const _MBCSToUFallback *toUFallbacks; uint32_t i, start, limit; limit=mbcsTable->countToUFallbacks; if(limit>0) { /* do a binary search for the fallback mapping */ toUFallbacks=mbcsTable->toUFallbacks; start=0; while(start<limit-1) { i=(start+limit)/2; if(offset<toUFallbacks[i].offset) { limit=i; } else { start=i; } } /* did we really find it? */ if(offset==toUFallbacks[start].offset) { return toUFallbacks[start].codePoint; } } return 0xfffe; } /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */ static void ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const uint8_t *source, *sourceLimit; UChar *target; const UChar *targetLimit; int32_t *offsets; const int32_t (*stateTable)[256]; int32_t sourceIndex; int32_t entry; UChar c; uint8_t action; /* set up the local pointers */ cnv=pArgs->converter; source=(const uint8_t *)pArgs->source; sourceLimit=(const uint8_t *)pArgs->sourceLimit; target=pArgs->target; targetLimit=pArgs->targetLimit; offsets=pArgs->offsets; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; } else { stateTable=cnv->sharedData->mbcs.stateTable; } /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex=0; /* conversion loop */ while(source<sourceLimit) { /* * This following test is to see if available input would overflow the output. * It does not catch output of more than one code unit that * overflows as a result of a surrogate pair or callback output * from the last source byte. * Therefore, those situations also test for overflows and will * then break the loop, too. */ if(target>=targetLimit) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } entry=stateTable[0][*source++]; /* MBCS_ENTRY_IS_FINAL(entry) */ /* test the most common case first */ if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { /* output BMP code point */ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); if(offsets!=NULL) { *offsets++=sourceIndex; } /* normal end of action codes: prepare for a new character */ ++sourceIndex; continue; } /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if(action==MBCS_STATE_VALID_DIRECT_20 || (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) ) { entry=MBCS_ENTRY_FINAL_VALUE(entry); /* output surrogate pair */ *target++=(UChar)(0xd800|(UChar)(entry>>10)); if(offsets!=NULL) { *offsets++=sourceIndex; } c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); if(target<targetLimit) { *target++=c; if(offsets!=NULL) { *offsets++=sourceIndex; } } else { /* target overflow */ cnv->UCharErrorBuffer[0]=c; cnv->UCharErrorBufferLength=1; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } ++sourceIndex; continue; } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(UCNV_TO_U_USE_FALLBACK(cnv)) { /* output BMP code point */ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); if(offsets!=NULL) { *offsets++=sourceIndex; } ++sourceIndex; continue; } } else if(action==MBCS_STATE_UNASSIGNED) { /* just fall through */ } else if(action==MBCS_STATE_ILLEGAL) { /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; } else { /* reserved, must never occur */ ++sourceIndex; continue; } if(U_FAILURE(*pErrorCode)) { /* callback(illegal) */ break; } else /* unassigned sequences indicated with byteIndex>0 */ { /* try an extension mapping */ pArgs->source=(const char *)source; cnv->toUBytes[0]=*(source-1); cnv->toULength=_extToU(cnv, cnv->sharedData, 1, &source, sourceLimit, &target, targetLimit, &offsets, sourceIndex, pArgs->flush, pErrorCode); sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source); if(U_FAILURE(*pErrorCode)) { /* not mappable or buffer overflow */ break; } } } /* write back the updated pointers */ pArgs->source=(const char *)source; pArgs->target=target; pArgs->offsets=offsets; } /* * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages * that only map to and from the BMP. * In addition to single-byte optimizations, the offset calculations * become much easier. */ static void ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const uint8_t *source, *sourceLimit, *lastSource; UChar *target; int32_t targetCapacity, length; int32_t *offsets; const int32_t (*stateTable)[256]; int32_t sourceIndex; int32_t entry; uint8_t action; /* set up the local pointers */ cnv=pArgs->converter; source=(const uint8_t *)pArgs->source; sourceLimit=(const uint8_t *)pArgs->sourceLimit; target=pArgs->target; targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); offsets=pArgs->offsets; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; } else { stateTable=cnv->sharedData->mbcs.stateTable; } /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex=0; lastSource=source; /* * since the conversion here is 1:1 UChar:uint8_t, we need only one counter * for the minimum of the sourceLength and targetCapacity */ length=(int32_t)(sourceLimit-source); if(length<targetCapacity) { targetCapacity=length; } #if MBCS_UNROLL_SINGLE_TO_BMP /* unrolling makes it faster on Pentium III/Windows 2000 */ /* unroll the loop with the most common case */ unrolled: if(targetCapacity>=16) { int32_t count, loops, oredEntries; loops=count=targetCapacity>>4; do { oredEntries=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); /* were all 16 entries really valid? */ if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) { /* no, return to the first of these 16 */ source-=16; target-=16; break; } } while(--count>0); count=loops-count; targetCapacity-=16*count; if(offsets!=NULL) { lastSource+=16*count; while(count>0) { *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; --count; } } } #endif /* conversion loop */ while(targetCapacity > 0 && source < sourceLimit) { entry=stateTable[0][*source++]; /* MBCS_ENTRY_IS_FINAL(entry) */ /* test the most common case first */ if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { /* output BMP code point */ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); --targetCapacity; continue; } /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(UCNV_TO_U_USE_FALLBACK(cnv)) { /* output BMP code point */ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); --targetCapacity; continue; } } else if(action==MBCS_STATE_UNASSIGNED) { /* just fall through */ } else if(action==MBCS_STATE_ILLEGAL) { /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; } else { /* reserved, must never occur */ continue; } /* set offsets since the start or the last extension */ if(offsets!=NULL) { int32_t count=(int32_t)(source-lastSource); /* predecrement: do not set the offset for the callback-causing character */ while(--count>0) { *offsets++=sourceIndex++; } /* offset and sourceIndex are now set for the current character */ } if(U_FAILURE(*pErrorCode)) { /* callback(illegal) */ break; } else /* unassigned sequences indicated with byteIndex>0 */ { /* try an extension mapping */ lastSource=source; cnv->toUBytes[0]=*(source-1); cnv->toULength=_extToU(cnv, cnv->sharedData, 1, &source, sourceLimit, &target, pArgs->targetLimit, &offsets, sourceIndex, pArgs->flush, pErrorCode); sourceIndex+=1+(int32_t)(source-lastSource); if(U_FAILURE(*pErrorCode)) { /* not mappable or buffer overflow */ break; } /* recalculate the targetCapacity after an extension mapping */ targetCapacity=(int32_t)(pArgs->targetLimit-target); length=(int32_t)(sourceLimit-source); if(length<targetCapacity) { targetCapacity=length; } } #if MBCS_UNROLL_SINGLE_TO_BMP /* unrolling makes it faster on Pentium III/Windows 2000 */ goto unrolled; #endif } if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; } /* set offsets since the start or the last callback */ if(offsets!=NULL) { size_t count=source-lastSource; while(count>0) { *offsets++=sourceIndex++; --count; } } /* write back the updated pointers */ pArgs->source=(const char *)source; pArgs->target=target; pArgs->offsets=offsets; } static UBool hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) { const int32_t *row=stateTable[state]; int32_t b, entry; /* First test for final entries in this state for some commonly valid byte values. */ entry=row[0xa1]; if( !MBCS_ENTRY_IS_TRANSITION(entry) && MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL ) { return TRUE; } entry=row[0x41]; if( !MBCS_ENTRY_IS_TRANSITION(entry) && MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL ) { return TRUE; } /* Then test for final entries in this state. */ for(b=0; b<=0xff; ++b) { entry=row[b]; if( !MBCS_ENTRY_IS_TRANSITION(entry) && MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL ) { return TRUE; } } /* Then recurse for transition entries. */ for(b=0; b<=0xff; ++b) { entry=row[b]; if( MBCS_ENTRY_IS_TRANSITION(entry) && hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)) ) { return TRUE; } } return FALSE; } /* * Is byte b a single/lead byte in this state? * Recurse for transition states, because here we don't want to say that * b is a lead byte if all byte sequences that start with b are illegal. */ static UBool isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) { const int32_t *row=stateTable[state]; int32_t entry=row[b]; if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */ return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)); } else { uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) { return FALSE; /* SI/SO are illegal for DBCS-only conversion */ } else { return action!=MBCS_STATE_ILLEGAL; } } } U_CFUNC void ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const uint8_t *source, *sourceLimit; UChar *target; const UChar *targetLimit; int32_t *offsets; const int32_t (*stateTable)[256]; const uint16_t *unicodeCodeUnits; uint32_t offset; uint8_t state; int8_t byteIndex; uint8_t *bytes; int32_t sourceIndex, nextSourceIndex; int32_t entry; UChar c; uint8_t action; /* use optimized function if possible */ cnv=pArgs->converter; if(cnv->preToULength>0) { /* * pass sourceIndex=-1 because we continue from an earlier buffer * in the future, this may change with continuous offsets */ ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode); if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) { return; } } if(cnv->sharedData->mbcs.countStates==1) { if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode); } else { ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode); } return; } /* set up the local pointers */ source=(const uint8_t *)pArgs->source; sourceLimit=(const uint8_t *)pArgs->sourceLimit; target=pArgs->target; targetLimit=pArgs->targetLimit; offsets=pArgs->offsets; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; } else { stateTable=cnv->sharedData->mbcs.stateTable; } unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; /* get the converter state from UConverter */ offset=cnv->toUnicodeStatus; byteIndex=cnv->toULength; bytes=cnv->toUBytes; /* * if we are in the SBCS state for a DBCS-only converter, * then load the DBCS state from the MBCS data * (dbcsOnlyState==0 if it is not a DBCS-only converter) */ if((state=(uint8_t)(cnv->mode))==0) { state=cnv->sharedData->mbcs.dbcsOnlyState; } /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex=byteIndex==0 ? 0 : -1; nextSourceIndex=0; /* conversion loop */ while(source<sourceLimit) { /* * This following test is to see if available input would overflow the output. * It does not catch output of more than one code unit that * overflows as a result of a surrogate pair or callback output * from the last source byte. * Therefore, those situations also test for overflows and will * then break the loop, too. */ if(target>=targetLimit) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } if(byteIndex==0) { /* optimized loop for 1/2-byte input and BMP output */ if(offsets==NULL) { do { entry=stateTable[state][*source]; if(MBCS_ENTRY_IS_TRANSITION(entry)) { state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); ++source; if( source<sourceLimit && MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe ) { ++source; *target++=c; state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ offset=0; } else { /* set the state and leave the optimized loop */ bytes[0]=*(source-1); byteIndex=1; break; } } else { if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { /* output BMP code point */ ++source; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ } else { /* leave the optimized loop */ break; } } } while(source<sourceLimit && target<targetLimit); } else /* offsets!=NULL */ { do { entry=stateTable[state][*source]; if(MBCS_ENTRY_IS_TRANSITION(entry)) { state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); ++source; if( source<sourceLimit && MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe ) { ++source; *target++=c; if(offsets!=NULL) { *offsets++=sourceIndex; sourceIndex=(nextSourceIndex+=2); } state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ offset=0; } else { /* set the state and leave the optimized loop */ ++nextSourceIndex; bytes[0]=*(source-1); byteIndex=1; break; } } else { if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { /* output BMP code point */ ++source; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); if(offsets!=NULL) { *offsets++=sourceIndex; sourceIndex=++nextSourceIndex; } state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ } else { /* leave the optimized loop */ break; } } } while(source<sourceLimit && target<targetLimit); } /* * these tests and break statements could be put inside the loop * if C had "break outerLoop" like Java */ if(source>=sourceLimit) { break; } if(target>=targetLimit) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } ++nextSourceIndex; bytes[byteIndex++]=*source++; } else /* byteIndex>0 */ { ++nextSourceIndex; entry=stateTable[state][bytes[byteIndex++]=*source++]; } if(MBCS_ENTRY_IS_TRANSITION(entry)) { state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); continue; } /* save the previous state for proper extension mapping with SI/SO-stateful converters */ cnv->mode=state; /* set the next state early so that we can reuse the entry variable */ state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if(action==MBCS_STATE_VALID_16) { offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); c=unicodeCodeUnits[offset]; if(c<0xfffe) { /* output BMP code point */ *target++=c; if(offsets!=NULL) { *offsets++=sourceIndex; } byteIndex=0; } else if(c==0xfffe) { if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { /* output fallback BMP code point */ *target++=(UChar)entry; if(offsets!=NULL) { *offsets++=sourceIndex; } byteIndex=0; } } else { /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; } } else if(action==MBCS_STATE_VALID_DIRECT_16) { /* output BMP code point */ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); if(offsets!=NULL) { *offsets++=sourceIndex; } byteIndex=0; } else if(action==MBCS_STATE_VALID_16_PAIR) { offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); c=unicodeCodeUnits[offset++]; if(c<0xd800) { /* output BMP code point below 0xd800 */ *target++=c; if(offsets!=NULL) { *offsets++=sourceIndex; } byteIndex=0; } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { /* output roundtrip or fallback surrogate pair */ *target++=(UChar)(c&0xdbff); if(offsets!=NULL) { *offsets++=sourceIndex; } byteIndex=0; if(target<targetLimit) { *target++=unicodeCodeUnits[offset]; if(offsets!=NULL) { *offsets++=sourceIndex; } } else { /* target overflow */ cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset]; cnv->UCharErrorBufferLength=1; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; offset=0; break; } } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ *target++=unicodeCodeUnits[offset]; if(offsets!=NULL) { *offsets++=sourceIndex; } byteIndex=0; } else if(c==0xffff) { /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; } } else if(action==MBCS_STATE_VALID_DIRECT_20 || (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) ) { entry=MBCS_ENTRY_FINAL_VALUE(entry); /* output surrogate pair */ *target++=(UChar)(0xd800|(UChar)(entry>>10)); if(offsets!=NULL) { *offsets++=sourceIndex; } byteIndex=0; c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); if(target<targetLimit) { *target++=c; if(offsets!=NULL) { *offsets++=sourceIndex; } } else { /* target overflow */ cnv->UCharErrorBuffer[0]=c; cnv->UCharErrorBufferLength=1; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; offset=0; break; } } else if(action==MBCS_STATE_CHANGE_ONLY) { /* * This serves as a state change without any output. * It is useful for reading simple stateful encodings, * for example using just Shift-In/Shift-Out codes. * The 21 unused bits may later be used for more sophisticated * state transitions. */ if(cnv->sharedData->mbcs.dbcsOnlyState==0) { byteIndex=0; } else { /* SI/SO are illegal for DBCS-only conversion */ state=(uint8_t)(cnv->mode); /* restore the previous state */ /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; } } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(UCNV_TO_U_USE_FALLBACK(cnv)) { /* output BMP code point */ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); if(offsets!=NULL) { *offsets++=sourceIndex; } byteIndex=0; } } else if(action==MBCS_STATE_UNASSIGNED) { /* just fall through */ } else if(action==MBCS_STATE_ILLEGAL) { /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; } else { /* reserved, must never occur */ byteIndex=0; } /* end of action codes: prepare for a new character */ offset=0; if(byteIndex==0) { sourceIndex=nextSourceIndex; } else if(U_FAILURE(*pErrorCode)) { /* callback(illegal) */ if(byteIndex>1) { /* * Ticket 5691: consistent illegal sequences: * - We include at least the first byte in the illegal sequence. * - If any of the non-initial bytes could be the start of a character, * we stop the illegal sequence before the first one of those. */ UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); int8_t i; for(i=1; i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]); ++i) {} if(i<byteIndex) { /* Back out some bytes. */ int8_t backOutDistance=byteIndex-i; int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source); byteIndex=i; /* length of reported illegal byte sequence */ if(backOutDistance<=bytesFromThisBuffer) { source-=backOutDistance; } else { /* Back out bytes from the previous buffer: Need to replay them. */ cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance); /* preToULength is negative! */ uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength); source=(const uint8_t *)pArgs->source; } } } break; } else /* unassigned sequences indicated with byteIndex>0 */ { /* try an extension mapping */ pArgs->source=(const char *)source; byteIndex=_extToU(cnv, cnv->sharedData, byteIndex, &source, sourceLimit, &target, targetLimit, &offsets, sourceIndex, pArgs->flush, pErrorCode); sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source); if(U_FAILURE(*pErrorCode)) { /* not mappable or buffer overflow */ break; } } } /* set the converter state back into UConverter */ cnv->toUnicodeStatus=offset; cnv->mode=state; cnv->toULength=byteIndex; /* write back the updated pointers */ pArgs->source=(const char *)source; pArgs->target=target; pArgs->offsets=offsets; } /* * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages. * We still need a conversion loop in case we find reserved action codes, which are to be ignored. */ static UChar32 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const int32_t (*stateTable)[256]; const uint8_t *source, *sourceLimit; int32_t entry; uint8_t action; /* set up the local pointers */ cnv=pArgs->converter; source=(const uint8_t *)pArgs->source; sourceLimit=(const uint8_t *)pArgs->sourceLimit; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; } else { stateTable=cnv->sharedData->mbcs.stateTable; } /* conversion loop */ while(source<sourceLimit) { entry=stateTable[0][*source++]; /* MBCS_ENTRY_IS_FINAL(entry) */ /* write back the updated pointer early so that we can return directly */ pArgs->source=(const char *)source; if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { /* output BMP code point */ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); } /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if( action==MBCS_STATE_VALID_DIRECT_20 || (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) ) { /* output supplementary code point */ return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(UCNV_TO_U_USE_FALLBACK(cnv)) { /* output BMP code point */ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); } } else if(action==MBCS_STATE_UNASSIGNED) { /* just fall through */ } else if(action==MBCS_STATE_ILLEGAL) { /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; } else { /* reserved, must never occur */ continue; } if(U_FAILURE(*pErrorCode)) { /* callback(illegal) */ break; } else /* unassigned sequence */ { /* defer to the generic implementation */ pArgs->source=(const char *)source-1; return UCNV_GET_NEXT_UCHAR_USE_TO_U; } } /* no output because of empty input or only state changes */ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0xffff; } /* * Version of _MBCSToUnicodeWithOffsets() optimized for single-character * conversion without offset handling. * * When a character does not have a mapping to Unicode, then we return to the * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback * handling. * We also defer to the generic code in other complicated cases and have them * ultimately handled by _MBCSToUnicodeWithOffsets() itself. * * All normal mappings and errors are handled here. */ static UChar32 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const uint8_t *source, *sourceLimit, *lastSource; const int32_t (*stateTable)[256]; const uint16_t *unicodeCodeUnits; uint32_t offset; uint8_t state; int32_t entry; UChar32 c; uint8_t action; /* use optimized function if possible */ cnv=pArgs->converter; if(cnv->preToULength>0) { /* use the generic code in ucnv_getNextUChar() to continue with a partial match */ return UCNV_GET_NEXT_UCHAR_USE_TO_U; } if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) { /* * Using the generic ucnv_getNextUChar() code lets us deal correctly * with the rare case of a codepage that maps single surrogates * without adding the complexity to this already complicated function here. */ return UCNV_GET_NEXT_UCHAR_USE_TO_U; } else if(cnv->sharedData->mbcs.countStates==1) { return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode); } /* set up the local pointers */ source=lastSource=(const uint8_t *)pArgs->source; sourceLimit=(const uint8_t *)pArgs->sourceLimit; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; } else { stateTable=cnv->sharedData->mbcs.stateTable; } unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; /* get the converter state from UConverter */ offset=cnv->toUnicodeStatus; /* * if we are in the SBCS state for a DBCS-only converter, * then load the DBCS state from the MBCS data * (dbcsOnlyState==0 if it is not a DBCS-only converter) */ if((state=(uint8_t)(cnv->mode))==0) { state=cnv->sharedData->mbcs.dbcsOnlyState; } /* conversion loop */ c=U_SENTINEL; while(source<sourceLimit) { entry=stateTable[state][*source++]; if(MBCS_ENTRY_IS_TRANSITION(entry)) { state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); /* optimization for 1/2-byte input and BMP output */ if( source<sourceLimit && MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe ) { ++source; state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ /* output BMP code point */ break; } } else { /* save the previous state for proper extension mapping with SI/SO-stateful converters */ cnv->mode=state; /* set the next state early so that we can reuse the entry variable */ state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if(action==MBCS_STATE_VALID_DIRECT_16) { /* output BMP code point */ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); break; } else if(action==MBCS_STATE_VALID_16) { offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); c=unicodeCodeUnits[offset]; if(c<0xfffe) { /* output BMP code point */ break; } else if(c==0xfffe) { if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { break; } } else { /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; } } else if(action==MBCS_STATE_VALID_16_PAIR) { offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); c=unicodeCodeUnits[offset++]; if(c<0xd800) { /* output BMP code point below 0xd800 */ break; } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { /* output roundtrip or fallback supplementary code point */ c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00); break; } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ c=unicodeCodeUnits[offset]; break; } else if(c==0xffff) { /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; } } else if(action==MBCS_STATE_VALID_DIRECT_20 || (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) ) { /* output supplementary code point */ c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); break; } else if(action==MBCS_STATE_CHANGE_ONLY) { /* * This serves as a state change without any output. * It is useful for reading simple stateful encodings, * for example using just Shift-In/Shift-Out codes. * The 21 unused bits may later be used for more sophisticated * state transitions. */ if(cnv->sharedData->mbcs.dbcsOnlyState!=0) { /* SI/SO are illegal for DBCS-only conversion */ state=(uint8_t)(cnv->mode); /* restore the previous state */ /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; } } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(UCNV_TO_U_USE_FALLBACK(cnv)) { /* output BMP code point */ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); break; } } else if(action==MBCS_STATE_UNASSIGNED) { /* just fall through */ } else if(action==MBCS_STATE_ILLEGAL) { /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; } else { /* reserved (must never occur), or only state change */ offset=0; lastSource=source; continue; } /* end of action codes: prepare for a new character */ offset=0; if(U_FAILURE(*pErrorCode)) { /* callback(illegal) */ break; } else /* unassigned sequence */ { /* defer to the generic implementation */ cnv->toUnicodeStatus=0; cnv->mode=state; pArgs->source=(const char *)lastSource; return UCNV_GET_NEXT_UCHAR_USE_TO_U; } } } if(c<0) { if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) { /* incomplete character byte sequence */ uint8_t *bytes=cnv->toUBytes; cnv->toULength=(int8_t)(source-lastSource); do { *bytes++=*lastSource++; } while(lastSource<source); *pErrorCode=U_TRUNCATED_CHAR_FOUND; } else if(U_FAILURE(*pErrorCode)) { /* callback(illegal) */ /* * Ticket 5691: consistent illegal sequences: * - We include at least the first byte in the illegal sequence. * - If any of the non-initial bytes could be the start of a character, * we stop the illegal sequence before the first one of those. */ UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); uint8_t *bytes=cnv->toUBytes; *bytes++=*lastSource++; /* first byte */ if(lastSource==source) { cnv->toULength=1; } else /* lastSource<source: multi-byte character */ { int8_t i; for(i=1; lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource); ++i ) { *bytes++=*lastSource++; } cnv->toULength=i; source=lastSource; } } else { /* no output because of empty input or only state changes */ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; } c=0xffff; } /* set the converter state back into UConverter, ready for a new character */ cnv->toUnicodeStatus=0; cnv->mode=state; /* write back the updated pointer */ pArgs->source=(const char *)source; return c; } #if 0 /* * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus * Removal improves code coverage. */ /** * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages. * It does not handle the EBCDIC swaplfnl option (set in UConverter). * It does not handle conversion extensions (_extToU()). */ U_CFUNC UChar32 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData, uint8_t b, UBool useFallback) { int32_t entry; uint8_t action; entry=sharedData->mbcs.stateTable[0][b]; /* MBCS_ENTRY_IS_FINAL(entry) */ if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { /* output BMP code point */ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); } /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if(action==MBCS_STATE_VALID_DIRECT_20) { /* output supplementary code point */ return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(!TO_U_USE_FALLBACK(useFallback)) { return 0xfffe; } /* output BMP code point */ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { if(!TO_U_USE_FALLBACK(useFallback)) { return 0xfffe; } /* output supplementary code point */ return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); } else if(action==MBCS_STATE_UNASSIGNED) { return 0xfffe; } else if(action==MBCS_STATE_ILLEGAL) { return 0xffff; } else { /* reserved, must never occur */ return 0xffff; } } #endif /* * This is a simple version of _MBCSGetNextUChar() that is used * by other converter implementations. * It only returns an "assigned" result if it consumes the entire input. * It does not use state from the converter, nor error codes. * It does not handle the EBCDIC swaplfnl option (set in UConverter). * It handles conversion extensions but not GB 18030. * * Return value: * U+fffe unassigned * U+ffff illegal * otherwise the Unicode code point */ U_CFUNC UChar32 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData, const char *source, int32_t length, UBool useFallback) { const int32_t (*stateTable)[256]; const uint16_t *unicodeCodeUnits; uint32_t offset; uint8_t state, action; UChar32 c; int32_t i, entry; if(length<=0) { /* no input at all: "illegal" */ return 0xffff; } #if 0 /* * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus * TODO In future releases, verify that this function is never called for SBCS * conversions, i.e., that sharedData->mbcs.countStates==1 is still true. * Removal improves code coverage. */ /* use optimized function if possible */ if(sharedData->mbcs.countStates==1) { if(length==1) { return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback); } else { return 0xffff; /* illegal: more than a single byte for an SBCS converter */ } } #endif /* set up the local pointers */ stateTable=sharedData->mbcs.stateTable; unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits; /* converter state */ offset=0; state=sharedData->mbcs.dbcsOnlyState; /* conversion loop */ for(i=0;;) { entry=stateTable[state][(uint8_t)source[i++]]; if(MBCS_ENTRY_IS_TRANSITION(entry)) { state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); if(i==length) { return 0xffff; /* truncated character */ } } else { /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if(action==MBCS_STATE_VALID_16) { offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); c=unicodeCodeUnits[offset]; if(c!=0xfffe) { /* done */ } else if(UCNV_TO_U_USE_FALLBACK(cnv)) { c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset); /* else done with 0xfffe */ } break; } else if(action==MBCS_STATE_VALID_DIRECT_16) { /* output BMP code point */ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); break; } else if(action==MBCS_STATE_VALID_16_PAIR) { offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); c=unicodeCodeUnits[offset++]; if(c<0xd800) { /* output BMP code point below 0xd800 */ } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { /* output roundtrip or fallback supplementary code point */ c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00)); } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ c=unicodeCodeUnits[offset]; } else if(c==0xffff) { return 0xffff; } else { c=0xfffe; } break; } else if(action==MBCS_STATE_VALID_DIRECT_20) { /* output supplementary code point */ c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); break; } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(!TO_U_USE_FALLBACK(useFallback)) { c=0xfffe; break; } /* output BMP code point */ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); break; } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { if(!TO_U_USE_FALLBACK(useFallback)) { c=0xfffe; break; } /* output supplementary code point */ c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); break; } else if(action==MBCS_STATE_UNASSIGNED) { c=0xfffe; break; } /* * forbid MBCS_STATE_CHANGE_ONLY for this function, * and MBCS_STATE_ILLEGAL and reserved action codes */ return 0xffff; } } if(i!=length) { /* illegal for this function: not all input consumed */ return 0xffff; } if(c==0xfffe) { /* try an extension mapping */ const int32_t *cx=sharedData->mbcs.extIndexes; if(cx!=NULL) { return ucnv_extSimpleMatchToU(cx, source, length, useFallback); } } return c; } /* MBCS-from-Unicode conversion functions ----------------------------------- */ /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */ static void ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const UChar *source, *sourceLimit; uint8_t *target; int32_t targetCapacity; int32_t *offsets; const uint16_t *table; const uint16_t *mbcsIndex; const uint8_t *bytes; UChar32 c; int32_t sourceIndex, nextSourceIndex; uint32_t stage2Entry; uint32_t asciiRoundtrips; uint32_t value; uint8_t unicodeMask; /* use optimized function if possible */ cnv=pArgs->converter; unicodeMask=cnv->sharedData->mbcs.unicodeMask; /* set up the local pointers */ source=pArgs->source; sourceLimit=pArgs->sourceLimit; target=(uint8_t *)pArgs->target; targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); offsets=pArgs->offsets; table=cnv->sharedData->mbcs.fromUnicodeTable; mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; } else { bytes=cnv->sharedData->mbcs.fromUnicodeBytes; } asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; /* get the converter state from UConverter */ c=cnv->fromUChar32; /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex= c==0 ? 0 : -1; nextSourceIndex=0; /* conversion loop */ if(c!=0 && targetCapacity>0) { goto getTrail; } while(source<sourceLimit) { /* * This following test is to see if available input would overflow the output. * It does not catch output of more than one byte that * overflows as a result of a multi-byte character or callback output * from the last source character. * Therefore, those situations also test for overflows and will * then break the loop, too. */ if(targetCapacity>0) { /* * Get a correct Unicode code point: * a single UChar for a BMP code point or * a matched surrogate pair for a "supplementary code point". */ c=*source++; ++nextSourceIndex; if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { *target++=(uint8_t)c; if(offsets!=NULL) { *offsets++=sourceIndex; sourceIndex=nextSourceIndex; } --targetCapacity; c=0; continue; } /* * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX * to avoid dealing with surrogates. * MBCS_FAST_MAX must be >=0xd7ff. */ if(c<=0xd7ff) { value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c); /* There are only roundtrips (!=0) and no-mapping (==0) entries. */ if(value==0) { goto unassigned; } /* output the value */ } else { /* * This also tests if the codepage maps single surrogates. * If it does, then surrogates are not paired but mapped separately. * Note that in this case unmatched surrogates are not detected. */ if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { if(U16_IS_SURROGATE_LEAD(c)) { getTrail: if(source<sourceLimit) { /* test the following code unit */ UChar trail=*source; if(U16_IS_TRAIL(trail)) { ++source; ++nextSourceIndex; c=U16_GET_SUPPLEMENTARY(c, trail); if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ /* callback(unassigned) */ goto unassigned; } /* convert this supplementary code point */ /* exit this condition tree */ } else { /* this is an unmatched lead code unit (1st surrogate) */ /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; break; } } else { /* no more input */ break; } } else { /* this is an unmatched trail code unit (2nd surrogate) */ /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; break; } } /* convert the Unicode code point in c into codepage bytes */ stage2Entry=MBCS_STAGE_2_FROM_U(table, c); /* get the bytes and the length for the output */ /* MBCS_OUTPUT_2 */ value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); /* is this code point assigned, or do we use fallbacks? */ if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) ) { /* * We allow a 0 byte output if the "assigned" bit is set for this entry. * There is no way with this data structure for fallback output * to be a zero byte. */ unassigned: /* try an extension mapping */ pArgs->source=source; c=_extFromU(cnv, cnv->sharedData, c, &source, sourceLimit, &target, target+targetCapacity, &offsets, sourceIndex, pArgs->flush, pErrorCode); nextSourceIndex+=(int32_t)(source-pArgs->source); if(U_FAILURE(*pErrorCode)) { /* not mappable or buffer overflow */ break; } else { /* a mapping was written to the target, continue */ /* recalculate the targetCapacity after an extension mapping */ targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); /* normal end of conversion: prepare for a new character */ sourceIndex=nextSourceIndex; continue; } } } /* write the output character bytes from value and length */ /* from the first if in the loop we know that targetCapacity>0 */ if(value<=0xff) { /* this is easy because we know that there is enough space */ *target++=(uint8_t)value; if(offsets!=NULL) { *offsets++=sourceIndex; } --targetCapacity; } else /* length==2 */ { *target++=(uint8_t)(value>>8); if(2<=targetCapacity) { *target++=(uint8_t)value; if(offsets!=NULL) { *offsets++=sourceIndex; *offsets++=sourceIndex; } targetCapacity-=2; } else { if(offsets!=NULL) { *offsets++=sourceIndex; } cnv->charErrorBuffer[0]=(char)value; cnv->charErrorBufferLength=1; /* target overflow */ targetCapacity=0; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; c=0; break; } } /* normal end of conversion: prepare for a new character */ c=0; sourceIndex=nextSourceIndex; continue; } else { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } /* set the converter state back into UConverter */ cnv->fromUChar32=c; /* write back the updated pointers */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; } /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */ static void ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const UChar *source, *sourceLimit; uint8_t *target; int32_t targetCapacity; int32_t *offsets; const uint16_t *table; const uint16_t *results; UChar32 c; int32_t sourceIndex, nextSourceIndex; uint16_t value, minValue; UBool hasSupplementary; /* set up the local pointers */ cnv=pArgs->converter; source=pArgs->source; sourceLimit=pArgs->sourceLimit; target=(uint8_t *)pArgs->target; targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); offsets=pArgs->offsets; table=cnv->sharedData->mbcs.fromUnicodeTable; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; } else { results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; } if(cnv->useFallback) { /* use all roundtrip and fallback results */ minValue=0x800; } else { /* use only roundtrips and fallbacks from private-use characters */ minValue=0xc00; } hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); /* get the converter state from UConverter */ c=cnv->fromUChar32; /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex= c==0 ? 0 : -1; nextSourceIndex=0; /* conversion loop */ if(c!=0 && targetCapacity>0) { goto getTrail; } while(source<sourceLimit) { /* * This following test is to see if available input would overflow the output. * It does not catch output of more than one byte that * overflows as a result of a multi-byte character or callback output * from the last source character. * Therefore, those situations also test for overflows and will * then break the loop, too. */ if(targetCapacity>0) { /* * Get a correct Unicode code point: * a single UChar for a BMP code point or * a matched surrogate pair for a "supplementary code point". */ c=*source++; ++nextSourceIndex; if(U16_IS_SURROGATE(c)) { if(U16_IS_SURROGATE_LEAD(c)) { getTrail: if(source<sourceLimit) { /* test the following code unit */ UChar trail=*source; if(U16_IS_TRAIL(trail)) { ++source; ++nextSourceIndex; c=U16_GET_SUPPLEMENTARY(c, trail); if(!hasSupplementary) { /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ /* callback(unassigned) */ goto unassigned; } /* convert this supplementary code point */ /* exit this condition tree */ } else { /* this is an unmatched lead code unit (1st surrogate) */ /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; break; } } else { /* no more input */ break; } } else { /* this is an unmatched trail code unit (2nd surrogate) */ /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; break; } } /* convert the Unicode code point in c into codepage bytes */ value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); /* is this code point assigned, or do we use fallbacks? */ if(value>=minValue) { /* assigned, write the output character bytes from value and length */ /* length==1 */ /* this is easy because we know that there is enough space */ *target++=(uint8_t)value; if(offsets!=NULL) { *offsets++=sourceIndex; } --targetCapacity; /* normal end of conversion: prepare for a new character */ c=0; sourceIndex=nextSourceIndex; } else { /* unassigned */ unassigned: /* try an extension mapping */ pArgs->source=source; c=_extFromU(cnv, cnv->sharedData, c, &source, sourceLimit, &target, target+targetCapacity, &offsets, sourceIndex, pArgs->flush, pErrorCode); nextSourceIndex+=(int32_t)(source-pArgs->source); if(U_FAILURE(*pErrorCode)) { /* not mappable or buffer overflow */ break; } else { /* a mapping was written to the target, continue */ /* recalculate the targetCapacity after an extension mapping */ targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); /* normal end of conversion: prepare for a new character */ sourceIndex=nextSourceIndex; } } } else { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } /* set the converter state back into UConverter */ cnv->fromUChar32=c; /* write back the updated pointers */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; } /* * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages * that map only to and from the BMP. * In addition to single-byte/state optimizations, the offset calculations * become much easier. * It would be possible to use the sbcsIndex for UTF-8-friendly tables, * but measurements have shown that this diminishes performance * in more cases than it improves it. * See SVN revision 21013 (2007-feb-06) for the last version with #if switches * for various MBCS and SBCS optimizations. */ static void ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const UChar *source, *sourceLimit, *lastSource; uint8_t *target; int32_t targetCapacity, length; int32_t *offsets; const uint16_t *table; const uint16_t *results; UChar32 c; int32_t sourceIndex; uint32_t asciiRoundtrips; uint16_t value, minValue; /* set up the local pointers */ cnv=pArgs->converter; source=pArgs->source; sourceLimit=pArgs->sourceLimit; target=(uint8_t *)pArgs->target; targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); offsets=pArgs->offsets; table=cnv->sharedData->mbcs.fromUnicodeTable; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; } else { results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; } asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; if(cnv->useFallback) { /* use all roundtrip and fallback results */ minValue=0x800; } else { /* use only roundtrips and fallbacks from private-use characters */ minValue=0xc00; } /* get the converter state from UConverter */ c=cnv->fromUChar32; /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex= c==0 ? 0 : -1; lastSource=source; /* * since the conversion here is 1:1 UChar:uint8_t, we need only one counter * for the minimum of the sourceLength and targetCapacity */ length=(int32_t)(sourceLimit-source); if(length<targetCapacity) { targetCapacity=length; } /* conversion loop */ if(c!=0 && targetCapacity>0) { goto getTrail; } #if MBCS_UNROLL_SINGLE_FROM_BMP /* unrolling makes it slower on Pentium III/Windows 2000?! */ /* unroll the loop with the most common case */ unrolled: if(targetCapacity>=4) { int32_t count, loops; uint16_t andedValues; loops=count=targetCapacity>>2; do { c=*source++; andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); *target++=(uint8_t)value; c=*source++; andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); *target++=(uint8_t)value; c=*source++; andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); *target++=(uint8_t)value; c=*source++; andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); *target++=(uint8_t)value; /* were all 4 entries really valid? */ if(andedValues<minValue) { /* no, return to the first of these 4 */ source-=4; target-=4; break; } } while(--count>0); count=loops-count; targetCapacity-=4*count; if(offsets!=NULL) { lastSource+=4*count; while(count>0) { *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; --count; } } c=0; } #endif while(targetCapacity>0) { /* * Get a correct Unicode code point: * a single UChar for a BMP code point or * a matched surrogate pair for a "supplementary code point". */ c=*source++; /* * Do not immediately check for single surrogates: * Assume that they are unassigned and check for them in that case. * This speeds up the conversion of assigned characters. */ /* convert the Unicode code point in c into codepage bytes */ if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { *target++=(uint8_t)c; --targetCapacity; c=0; continue; } value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); /* is this code point assigned, or do we use fallbacks? */ if(value>=minValue) { /* assigned, write the output character bytes from value and length */ /* length==1 */ /* this is easy because we know that there is enough space */ *target++=(uint8_t)value; --targetCapacity; /* normal end of conversion: prepare for a new character */ c=0; continue; } else if(!U16_IS_SURROGATE(c)) { /* normal, unassigned BMP character */ } else if(U16_IS_SURROGATE_LEAD(c)) { getTrail: if(source<sourceLimit) { /* test the following code unit */ UChar trail=*source; if(U16_IS_TRAIL(trail)) { ++source; c=U16_GET_SUPPLEMENTARY(c, trail); /* this codepage does not map supplementary code points */ /* callback(unassigned) */ } else { /* this is an unmatched lead code unit (1st surrogate) */ /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; break; } } else { /* no more input */ if (pArgs->flush) { *pErrorCode=U_TRUNCATED_CHAR_FOUND; } break; } } else { /* this is an unmatched trail code unit (2nd surrogate) */ /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; break; } /* c does not have a mapping */ /* get the number of code units for c to correctly advance sourceIndex */ length=U16_LENGTH(c); /* set offsets since the start or the last extension */ if(offsets!=NULL) { int32_t count=(int32_t)(source-lastSource); /* do not set the offset for this character */ count-=length; while(count>0) { *offsets++=sourceIndex++; --count; } /* offsets and sourceIndex are now set for the current character */ } /* try an extension mapping */ lastSource=source; c=_extFromU(cnv, cnv->sharedData, c, &source, sourceLimit, &target, (const uint8_t *)(pArgs->targetLimit), &offsets, sourceIndex, pArgs->flush, pErrorCode); sourceIndex+=length+(int32_t)(source-lastSource); lastSource=source; if(U_FAILURE(*pErrorCode)) { /* not mappable or buffer overflow */ break; } else { /* a mapping was written to the target, continue */ /* recalculate the targetCapacity after an extension mapping */ targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); length=(int32_t)(sourceLimit-source); if(length<targetCapacity) { targetCapacity=length; } } #if MBCS_UNROLL_SINGLE_FROM_BMP /* unrolling makes it slower on Pentium III/Windows 2000?! */ goto unrolled; #endif } if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; } /* set offsets since the start or the last callback */ if(offsets!=NULL) { size_t count=source-lastSource; if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) { /* Caller gave us a partial supplementary character, which this function couldn't convert in any case. The callback will handle the offset. */ count--; } while(count>0) { *offsets++=sourceIndex++; --count; } } /* set the converter state back into UConverter */ cnv->fromUChar32=c; /* write back the updated pointers */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; } U_CFUNC void ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const UChar *source, *sourceLimit; uint8_t *target; int32_t targetCapacity; int32_t *offsets; const uint16_t *table; const uint16_t *mbcsIndex; const uint8_t *p, *bytes; uint8_t outputType; UChar32 c; int32_t prevSourceIndex, sourceIndex, nextSourceIndex; uint32_t stage2Entry; uint32_t asciiRoundtrips; uint32_t value; /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */ uint8_t siBytes[2] = {0, 0}; uint8_t soBytes[2] = {0, 0}; uint8_t siLength, soLength; int32_t length = 0, prevLength; uint8_t unicodeMask; cnv=pArgs->converter; if(cnv->preFromUFirstCP>=0) { /* * pass sourceIndex=-1 because we continue from an earlier buffer * in the future, this may change with continuous offsets */ ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode); if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) { return; } } /* use optimized function if possible */ outputType=cnv->sharedData->mbcs.outputType; unicodeMask=cnv->sharedData->mbcs.unicodeMask; if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) { if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode); } else { ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode); } return; } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) { ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode); return; } /* set up the local pointers */ source=pArgs->source; sourceLimit=pArgs->sourceLimit; target=(uint8_t *)pArgs->target; targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); offsets=pArgs->offsets; table=cnv->sharedData->mbcs.fromUnicodeTable; if(cnv->sharedData->mbcs.utf8Friendly) { mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; } else { mbcsIndex=NULL; } if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; } else { bytes=cnv->sharedData->mbcs.fromUnicodeBytes; } asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; /* get the converter state from UConverter */ c=cnv->fromUChar32; if(outputType==MBCS_OUTPUT_2_SISO) { prevLength=cnv->fromUnicodeStatus; if(prevLength==0) { /* set the real value */ prevLength=1; } } else { /* prevent fromUnicodeStatus from being set to something non-0 */ prevLength=0; } /* sourceIndex=-1 if the current character began in the previous buffer */ prevSourceIndex=-1; sourceIndex= c==0 ? 0 : -1; nextSourceIndex=0; /* Get the SI/SO character for the converter */ siLength = getSISOBytes(SI, cnv->options, siBytes); soLength = getSISOBytes(SO, cnv->options, soBytes); /* conversion loop */ /* * This is another piece of ugly code: * A goto into the loop if the converter state contains a first surrogate * from the previous function call. * It saves me to check in each loop iteration a check of if(c==0) * and duplicating the trail-surrogate-handling code in the else * branch of that check. * I could not find any other way to get around this other than * using a function call for the conversion and callback, which would * be even more inefficient. * * Markus Scherer 2000-jul-19 */ if(c!=0 && targetCapacity>0) { goto getTrail; } while(source<sourceLimit) { /* * This following test is to see if available input would overflow the output. * It does not catch output of more than one byte that * overflows as a result of a multi-byte character or callback output * from the last source character. * Therefore, those situations also test for overflows and will * then break the loop, too. */ if(targetCapacity>0) { /* * Get a correct Unicode code point: * a single UChar for a BMP code point or * a matched surrogate pair for a "supplementary code point". */ c=*source++; ++nextSourceIndex; if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { *target++=(uint8_t)c; if(offsets!=NULL) { *offsets++=sourceIndex; prevSourceIndex=sourceIndex; sourceIndex=nextSourceIndex; } --targetCapacity; c=0; continue; } /* * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX * to avoid dealing with surrogates. * MBCS_FAST_MAX must be >=0xd7ff. */ if(c<=0xd7ff && mbcsIndex!=NULL) { value=mbcsIndex[c>>6]; /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */ /* There are only roundtrips (!=0) and no-mapping (==0) entries. */ switch(outputType) { case MBCS_OUTPUT_2: value=((const uint16_t *)bytes)[value +(c&0x3f)]; if(value<=0xff) { if(value==0) { goto unassigned; } else { length=1; } } else { length=2; } break; case MBCS_OUTPUT_2_SISO: /* 1/2-byte stateful with Shift-In/Shift-Out */ /* * Save the old state in the converter object * right here, then change the local prevLength state variable if necessary. * Then, if this character turns out to be unassigned or a fallback that * is not taken, the callback code must not save the new state in the converter * because the new state is for a character that is not output. * However, the callback must still restore the state from the converter * in case the callback function changed it for its output. */ cnv->fromUnicodeStatus=prevLength; /* save the old state */ value=((const uint16_t *)bytes)[value +(c&0x3f)]; if(value<=0xff) { if(value==0) { goto unassigned; } else if(prevLength<=1) { length=1; } else { /* change from double-byte mode to single-byte */ if (siLength == 1) { value|=(uint32_t)siBytes[0]<<8; length = 2; } else if (siLength == 2) { value|=(uint32_t)siBytes[1]<<8; value|=(uint32_t)siBytes[0]<<16; length = 3; } prevLength=1; } } else { if(prevLength==2) { length=2; } else { /* change from single-byte mode to double-byte */ if (soLength == 1) { value|=(uint32_t)soBytes[0]<<16; length = 3; } else if (soLength == 2) { value|=(uint32_t)soBytes[1]<<16; value|=(uint32_t)soBytes[0]<<24; length = 4; } prevLength=2; } } break; case MBCS_OUTPUT_DBCS_ONLY: /* table with single-byte results, but only DBCS mappings used */ value=((const uint16_t *)bytes)[value +(c&0x3f)]; if(value<=0xff) { /* no mapping or SBCS result, not taken for DBCS-only */ goto unassigned; } else { length=2; } break; case MBCS_OUTPUT_3: p=bytes+(value+(c&0x3f))*3; value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; if(value<=0xff) { if(value==0) { goto unassigned; } else { length=1; } } else if(value<=0xffff) { length=2; } else { length=3; } break; case MBCS_OUTPUT_4: value=((const uint32_t *)bytes)[value +(c&0x3f)]; if(value<=0xff) { if(value==0) { goto unassigned; } else { length=1; } } else if(value<=0xffff) { length=2; } else if(value<=0xffffff) { length=3; } else { length=4; } break; case MBCS_OUTPUT_3_EUC: value=((const uint16_t *)bytes)[value +(c&0x3f)]; /* EUC 16-bit fixed-length representation */ if(value<=0xff) { if(value==0) { goto unassigned; } else { length=1; } } else if((value&0x8000)==0) { value|=0x8e8000; length=3; } else if((value&0x80)==0) { value|=0x8f0080; length=3; } else { length=2; } break; case MBCS_OUTPUT_4_EUC: p=bytes+(value+(c&0x3f))*3; value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; /* EUC 16-bit fixed-length representation applied to the first two bytes */ if(value<=0xff) { if(value==0) { goto unassigned; } else { length=1; } } else if(value<=0xffff) { length=2; } else if((value&0x800000)==0) { value|=0x8e800000; length=4; } else if((value&0x8000)==0) { value|=0x8f008000; length=4; } else { length=3; } break; default: /* must not occur */ /* * To avoid compiler warnings that value & length may be * used without having been initialized, we set them here. * In reality, this is unreachable code. * Not having a default branch also causes warnings with * some compilers. */ value=0; length=0; break; } /* output the value */ } else { /* * This also tests if the codepage maps single surrogates. * If it does, then surrogates are not paired but mapped separately. * Note that in this case unmatched surrogates are not detected. */ if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { if(U16_IS_SURROGATE_LEAD(c)) { getTrail: if(source<sourceLimit) { /* test the following code unit */ UChar trail=*source; if(U16_IS_TRAIL(trail)) { ++source; ++nextSourceIndex; c=U16_GET_SUPPLEMENTARY(c, trail); if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ cnv->fromUnicodeStatus=prevLength; /* save the old state */ /* callback(unassigned) */ goto unassigned; } /* convert this supplementary code point */ /* exit this condition tree */ } else { /* this is an unmatched lead code unit (1st surrogate) */ /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; break; } } else { /* no more input */ break; } } else { /* this is an unmatched trail code unit (2nd surrogate) */ /* callback(illegal) */ *pErrorCode=U_ILLEGAL_CHAR_FOUND; break; } } /* convert the Unicode code point in c into codepage bytes */ /* * The basic lookup is a triple-stage compact array (trie) lookup. * For details see the beginning of this file. * * Single-byte codepages are handled with a different data structure * by _MBCSSingle... functions. * * The result consists of a 32-bit value from stage 2 and * a pointer to as many bytes as are stored per character. * The pointer points to the character's bytes in stage 3. * Bits 15..0 of the stage 2 entry contain the stage 3 index * for that pointer, while bits 31..16 are flags for which of * the 16 characters in the block are roundtrip-assigned. * * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t * respectively as uint32_t, in the platform encoding. * For 3-byte codepages, the bytes are always stored in big-endian order. * * For EUC encodings that use only either 0x8e or 0x8f as the first * byte of their longest byte sequences, the first two bytes in * this third stage indicate with their 7th bits whether these bytes * are to be written directly or actually need to be preceeded by * one of the two Single-Shift codes. With this, the third stage * stores one byte fewer per character than the actual maximum length of * EUC byte sequences. * * Other than that, leading zero bytes are removed and the other * bytes output. A single zero byte may be output if the "assigned" * bit in stage 2 was on. * The data structure does not support zero byte output as a fallback, * and also does not allow output of leading zeros. */ stage2Entry=MBCS_STAGE_2_FROM_U(table, c); /* get the bytes and the length for the output */ switch(outputType) { case MBCS_OUTPUT_2: value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); if(value<=0xff) { length=1; } else { length=2; } break; case MBCS_OUTPUT_2_SISO: /* 1/2-byte stateful with Shift-In/Shift-Out */ /* * Save the old state in the converter object * right here, then change the local prevLength state variable if necessary. * Then, if this character turns out to be unassigned or a fallback that * is not taken, the callback code must not save the new state in the converter * because the new state is for a character that is not output. * However, the callback must still restore the state from the converter * in case the callback function changed it for its output. */ cnv->fromUnicodeStatus=prevLength; /* save the old state */ value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); if(value<=0xff) { if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) { /* no mapping, leave value==0 */ length=0; } else if(prevLength<=1) { length=1; } else { /* change from double-byte mode to single-byte */ if (siLength == 1) { value|=(uint32_t)siBytes[0]<<8; length = 2; } else if (siLength == 2) { value|=(uint32_t)siBytes[1]<<8; value|=(uint32_t)siBytes[0]<<16; length = 3; } prevLength=1; } } else { if(prevLength==2) { length=2; } else { /* change from single-byte mode to double-byte */ if (soLength == 1) { value|=(uint32_t)soBytes[0]<<16; length = 3; } else if (soLength == 2) { value|=(uint32_t)soBytes[1]<<16; value|=(uint32_t)soBytes[0]<<24; length = 4; } prevLength=2; } } break; case MBCS_OUTPUT_DBCS_ONLY: /* table with single-byte results, but only DBCS mappings used */ value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); if(value<=0xff) { /* no mapping or SBCS result, not taken for DBCS-only */ value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ length=0; } else { length=2; } break; case MBCS_OUTPUT_3: p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else { length=3; } break; case MBCS_OUTPUT_4: value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c); if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else if(value<=0xffffff) { length=3; } else { length=4; } break; case MBCS_OUTPUT_3_EUC: value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); /* EUC 16-bit fixed-length representation */ if(value<=0xff) { length=1; } else if((value&0x8000)==0) { value|=0x8e8000; length=3; } else if((value&0x80)==0) { value|=0x8f0080; length=3; } else { length=2; } break; case MBCS_OUTPUT_4_EUC: p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; /* EUC 16-bit fixed-length representation applied to the first two bytes */ if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else if((value&0x800000)==0) { value|=0x8e800000; length=4; } else if((value&0x8000)==0) { value|=0x8f008000; length=4; } else { length=3; } break; default: /* must not occur */ /* * To avoid compiler warnings that value & length may be * used without having been initialized, we set them here. * In reality, this is unreachable code. * Not having a default branch also causes warnings with * some compilers. */ value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ length=0; break; } /* is this code point assigned, or do we use fallbacks? */ if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 || (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) ) { /* * We allow a 0 byte output if the "assigned" bit is set for this entry. * There is no way with this data structure for fallback output * to be a zero byte. */ unassigned: /* try an extension mapping */ pArgs->source=source; c=_extFromU(cnv, cnv->sharedData, c, &source, sourceLimit, &target, target+targetCapacity, &offsets, sourceIndex, pArgs->flush, pErrorCode); nextSourceIndex+=(int32_t)(source-pArgs->source); prevLength=cnv->fromUnicodeStatus; /* restore SISO state */ if(U_FAILURE(*pErrorCode)) { /* not mappable or buffer overflow */ break; } else { /* a mapping was written to the target, continue */ /* recalculate the targetCapacity after an extension mapping */ targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); /* normal end of conversion: prepare for a new character */ if(offsets!=NULL) { prevSourceIndex=sourceIndex; sourceIndex=nextSourceIndex; } continue; } } } /* write the output character bytes from value and length */ /* from the first if in the loop we know that targetCapacity>0 */ if(length<=targetCapacity) { if(offsets==NULL) { switch(length) { /* each branch falls through to the next one */ case 4: *target++=(uint8_t)(value>>24); case 3: /*fall through*/ *target++=(uint8_t)(value>>16); case 2: /*fall through*/ *target++=(uint8_t)(value>>8); case 1: /*fall through*/ *target++=(uint8_t)value; default: /* will never occur */ break; } } else { switch(length) { /* each branch falls through to the next one */ case 4: *target++=(uint8_t)(value>>24); *offsets++=sourceIndex; case 3: /*fall through*/ *target++=(uint8_t)(value>>16); *offsets++=sourceIndex; case 2: /*fall through*/ *target++=(uint8_t)(value>>8); *offsets++=sourceIndex; case 1: /*fall through*/ *target++=(uint8_t)value; *offsets++=sourceIndex; default: /* will never occur */ break; } } targetCapacity-=length; } else { uint8_t *charErrorBuffer; /* * We actually do this backwards here: * In order to save an intermediate variable, we output * first to the overflow buffer what does not fit into the * regular target. */ /* we know that 1<=targetCapacity<length<=4 */ length-=targetCapacity; charErrorBuffer=(uint8_t *)cnv->charErrorBuffer; switch(length) { /* each branch falls through to the next one */ case 3: *charErrorBuffer++=(uint8_t)(value>>16); case 2: /*fall through*/ *charErrorBuffer++=(uint8_t)(value>>8); case 1: /*fall through*/ *charErrorBuffer=(uint8_t)value; default: /* will never occur */ break; } cnv->charErrorBufferLength=(int8_t)length; /* now output what fits into the regular target */ value>>=8*length; /* length was reduced by targetCapacity */ switch(targetCapacity) { /* each branch falls through to the next one */ case 3: *target++=(uint8_t)(value>>16); if(offsets!=NULL) { *offsets++=sourceIndex; } case 2: /*fall through*/ *target++=(uint8_t)(value>>8); if(offsets!=NULL) { *offsets++=sourceIndex; } case 1: /*fall through*/ *target++=(uint8_t)value; if(offsets!=NULL) { *offsets++=sourceIndex; } default: /* will never occur */ break; } /* target overflow */ targetCapacity=0; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; c=0; break; } /* normal end of conversion: prepare for a new character */ c=0; if(offsets!=NULL) { prevSourceIndex=sourceIndex; sourceIndex=nextSourceIndex; } continue; } else { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } /* * the end of the input stream and detection of truncated input * are handled by the framework, but for EBCDIC_STATEFUL conversion * we need to emit an SI at the very end * * conditions: * successful * EBCDIC_STATEFUL in DBCS mode * end of input and no truncated input */ if( U_SUCCESS(*pErrorCode) && outputType==MBCS_OUTPUT_2_SISO && prevLength==2 && pArgs->flush && source>=sourceLimit && c==0 ) { /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */ if(targetCapacity>0) { *target++=(uint8_t)siBytes[0]; if (siLength == 2) { if (targetCapacity<2) { cnv->charErrorBuffer[0]=(uint8_t)siBytes[1]; cnv->charErrorBufferLength=1; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; } else { *target++=(uint8_t)siBytes[1]; } } if(offsets!=NULL) { /* set the last source character's index (sourceIndex points at sourceLimit now) */ *offsets++=prevSourceIndex; } } else { /* target is full */ cnv->charErrorBuffer[0]=(uint8_t)siBytes[0]; if (siLength == 2) { cnv->charErrorBuffer[1]=(uint8_t)siBytes[1]; } cnv->charErrorBufferLength=siLength; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; } prevLength=1; /* we switched into SBCS */ } /* set the converter state back into UConverter */ cnv->fromUChar32=c; cnv->fromUnicodeStatus=prevLength; /* write back the updated pointers */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; } /* * This is another simple conversion function for internal use by other * conversion implementations. * It does not use the converter state nor call callbacks. * It does not handle the EBCDIC swaplfnl option (set in UConverter). * It handles conversion extensions but not GB 18030. * * It converts one single Unicode code point into codepage bytes, encoded * as one 32-bit value. The function returns the number of bytes in *pValue: * 1..4 the number of bytes in *pValue * 0 unassigned (*pValue undefined) * -1 illegal (currently not used, *pValue undefined) * * *pValue will contain the resulting bytes with the last byte in bits 7..0, * the second to last byte in bits 15..8, etc. * Currently, the function assumes but does not check that 0<=c<=0x10ffff. */ U_CFUNC int32_t ucnv_MBCSFromUChar32(UConverterSharedData *sharedData, UChar32 c, uint32_t *pValue, UBool useFallback) { const int32_t *cx; const uint16_t *table; #if 0 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */ const uint8_t *p; #endif uint32_t stage2Entry; uint32_t value; int32_t length; /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { table=sharedData->mbcs.fromUnicodeTable; /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) { value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); /* is this code point assigned, or do we use fallbacks? */ if(useFallback ? value>=0x800 : value>=0xc00) { *pValue=value&0xff; return 1; } } else /* outputType!=MBCS_OUTPUT_1 */ { stage2Entry=MBCS_STAGE_2_FROM_U(table, c); /* get the bytes and the length for the output */ switch(sharedData->mbcs.outputType) { case MBCS_OUTPUT_2: value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); if(value<=0xff) { length=1; } else { length=2; } break; #if 0 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */ case MBCS_OUTPUT_DBCS_ONLY: /* table with single-byte results, but only DBCS mappings used */ value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); if(value<=0xff) { /* no mapping or SBCS result, not taken for DBCS-only */ value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ length=0; } else { length=2; } break; case MBCS_OUTPUT_3: p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else { length=3; } break; case MBCS_OUTPUT_4: value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else if(value<=0xffffff) { length=3; } else { length=4; } break; case MBCS_OUTPUT_3_EUC: value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); /* EUC 16-bit fixed-length representation */ if(value<=0xff) { length=1; } else if((value&0x8000)==0) { value|=0x8e8000; length=3; } else if((value&0x80)==0) { value|=0x8f0080; length=3; } else { length=2; } break; case MBCS_OUTPUT_4_EUC: p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; /* EUC 16-bit fixed-length representation applied to the first two bytes */ if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else if((value&0x800000)==0) { value|=0x8e800000; length=4; } else if((value&0x8000)==0) { value|=0x8f008000; length=4; } else { length=3; } break; #endif default: /* must not occur */ return -1; } /* is this code point assigned, or do we use fallbacks? */ if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || (FROM_U_USE_FALLBACK(useFallback, c) && value!=0) ) { /* * We allow a 0 byte output if the "assigned" bit is set for this entry. * There is no way with this data structure for fallback output * to be a zero byte. */ /* assigned */ *pValue=value; return length; } } } cx=sharedData->mbcs.extIndexes; if(cx!=NULL) { length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback); return length>=0 ? length : -length; /* return abs(length); */ } /* unassigned */ return 0; } #if 0 /* * This function has been moved to ucnv2022.c for inlining. * This implementation is here only for documentation purposes */ /** * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages. * It does not handle the EBCDIC swaplfnl option (set in UConverter). * It does not handle conversion extensions (_extFromU()). * * It returns the codepage byte for the code point, or -1 if it is unassigned. */ U_CFUNC int32_t ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData, UChar32 c, UBool useFallback) { const uint16_t *table; int32_t value; /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { return -1; } /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ table=sharedData->mbcs.fromUnicodeTable; /* get the byte for the output */ value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); /* is this code point assigned, or do we use fallbacks? */ if(useFallback ? value>=0x800 : value>=0xc00) { return value&0xff; } else { return -1; } } #endif /* MBCS-from-UTF-8 conversion functions ------------------------------------- */ /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */ static const UChar32 utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 }; /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */ static const UChar32 utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 }; static void ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, UConverterToUnicodeArgs *pToUArgs, UErrorCode *pErrorCode) { UConverter *utf8, *cnv; const uint8_t *source, *sourceLimit; uint8_t *target; int32_t targetCapacity; const uint16_t *table, *sbcsIndex; const uint16_t *results; int8_t oldToULength, toULength, toULimit; UChar32 c; uint8_t b, t1, t2; uint32_t asciiRoundtrips; uint16_t value, minValue; UBool hasSupplementary; /* set up the local pointers */ utf8=pToUArgs->converter; cnv=pFromUArgs->converter; source=(uint8_t *)pToUArgs->source; sourceLimit=(uint8_t *)pToUArgs->sourceLimit; target=(uint8_t *)pFromUArgs->target; targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); table=cnv->sharedData->mbcs.fromUnicodeTable; sbcsIndex=cnv->sharedData->mbcs.sbcsIndex; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; } else { results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; } asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; if(cnv->useFallback) { /* use all roundtrip and fallback results */ minValue=0x800; } else { /* use only roundtrips and fallbacks from private-use characters */ minValue=0xc00; } hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); /* get the converter state from the UTF-8 UConverter */ c=(UChar32)utf8->toUnicodeStatus; if(c!=0) { toULength=oldToULength=utf8->toULength; toULimit=(int8_t)utf8->mode; } else { toULength=oldToULength=toULimit=0; } /* * Make sure that the last byte sequence before sourceLimit is complete * or runs into a lead byte. * Do not go back into the bytes that will be read for finishing a partial * sequence from the previous buffer. * In the conversion loop compare source with sourceLimit only once * per multi-byte character. */ { int32_t i, length; length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); for(i=0; i<3 && i<length;) { b=*(sourceLimit-i-1); if(U8_IS_TRAIL(b)) { ++i; } else { if(i<U8_COUNT_TRAIL_BYTES(b)) { /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */ sourceLimit-=i+1; } break; } } } if(c!=0 && targetCapacity>0) { utf8->toUnicodeStatus=0; utf8->toULength=0; goto moreBytes; /* * Note: We could avoid the goto by duplicating some of the moreBytes * code, but only up to the point of collecting a complete UTF-8 * sequence; then recurse for the toUBytes[toULength] * and then continue with normal conversion. * * If so, move this code to just after initializing the minimum * set of local variables for reading the UTF-8 input * (utf8, source, target, limits but not cnv, table, minValue, etc.). * * Potential advantages: * - avoid the goto * - oldToULength could become a local variable in just those code blocks * that deal with buffer boundaries * - possibly faster if the goto prevents some compiler optimizations * (this would need measuring to confirm) * Disadvantage: * - code duplication */ } /* conversion loop */ while(source<sourceLimit) { if(targetCapacity>0) { b=*source++; if((int8_t)b>=0) { /* convert ASCII */ if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { *target++=(uint8_t)b; --targetCapacity; continue; } else { c=b; value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c); } } else { if(b<0xe0) { if( /* handle U+0080..U+07FF inline */ b>=0xc2 && (t1=(uint8_t)(*source-0x80)) <= 0x3f ) { c=b&0x1f; ++source; value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1); if(value>=minValue) { *target++=(uint8_t)value; --targetCapacity; continue; } else { c=(c<<6)|t1; } } else { c=-1; } } else if(b==0xe0) { if( /* handle U+0800..U+0FFF inline */ (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 && (t2=(uint8_t)(source[1]-0x80)) <= 0x3f ) { c=t1; source+=2; value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2); if(value>=minValue) { *target++=(uint8_t)value; --targetCapacity; continue; } else { c=(c<<6)|t2; } } else { c=-1; } } else { c=-1; } if(c<0) { /* handle "complicated" and error cases, and continuing partial characters */ oldToULength=0; toULength=1; toULimit=U8_COUNT_TRAIL_BYTES(b)+1; c=b; moreBytes: while(toULength<toULimit) { /* * The sourceLimit may have been adjusted before the conversion loop * to stop before a truncated sequence. * Here we need to use the real limit in case we have two truncated * sequences at the end. * See ticket #7492. */ if(source<(uint8_t *)pToUArgs->sourceLimit) { b=*source; if(U8_IS_TRAIL(b)) { ++source; ++toULength; c=(c<<6)+b; } else { break; /* sequence too short, stop with toULength<toULimit */ } } else { /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */ source-=(toULength-oldToULength); while(oldToULength<toULength) { utf8->toUBytes[oldToULength++]=*source++; } utf8->toUnicodeStatus=c; utf8->toULength=toULength; utf8->mode=toULimit; pToUArgs->source=(char *)source; pFromUArgs->target=(char *)target; return; } } if( toULength==toULimit && /* consumed all trail bytes */ (toULength==3 || toULength==2) && /* BMP */ (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] && (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ ) { value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); } else if( toULength==toULimit && toULength==4 && (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) ) { /* supplementary code point */ if(!hasSupplementary) { /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ value=0; } else { value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); } } else { /* error handling: illegal UTF-8 byte sequence */ source-=(toULength-oldToULength); while(oldToULength<toULength) { utf8->toUBytes[oldToULength++]=*source++; } utf8->toULength=toULength; pToUArgs->source=(char *)source; pFromUArgs->target=(char *)target; *pErrorCode=U_ILLEGAL_CHAR_FOUND; return; } } } if(value>=minValue) { /* output the mapping for c */ *target++=(uint8_t)value; --targetCapacity; } else { /* value<minValue means c is unassigned (unmappable) */ /* * Try an extension mapping. * Pass in no source because we don't have UTF-16 input. * If we have a partial match on c, we will return and revert * to UTF-8->UTF-16->charset conversion. */ static const UChar nul=0; const UChar *noSource=&nul; c=_extFromU(cnv, cnv->sharedData, c, &noSource, noSource, &target, target+targetCapacity, NULL, -1, pFromUArgs->flush, pErrorCode); if(U_FAILURE(*pErrorCode)) { /* not mappable or buffer overflow */ cnv->fromUChar32=c; break; } else if(cnv->preFromUFirstCP>=0) { /* * Partial match, return and revert to pivoting. * In normal from-UTF-16 conversion, we would just continue * but then exit the loop because the extension match would * have consumed the source. */ *pErrorCode=U_USING_DEFAULT_WARNING; break; } else { /* a mapping was written to the target, continue */ /* recalculate the targetCapacity after an extension mapping */ targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target); } } } else { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } /* * The sourceLimit may have been adjusted before the conversion loop * to stop before a truncated sequence. * If so, then collect the truncated sequence now. */ if(U_SUCCESS(*pErrorCode) && cnv->preFromUFirstCP<0 && source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { c=utf8->toUBytes[0]=b=*source++; toULength=1; toULimit=U8_COUNT_TRAIL_BYTES(b)+1; while(source<sourceLimit) { utf8->toUBytes[toULength++]=b=*source++; c=(c<<6)+b; } utf8->toUnicodeStatus=c; utf8->toULength=toULength; utf8->mode=toULimit; } /* write back the updated pointers */ pToUArgs->source=(char *)source; pFromUArgs->target=(char *)target; } static void ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, UConverterToUnicodeArgs *pToUArgs, UErrorCode *pErrorCode) { UConverter *utf8, *cnv; const uint8_t *source, *sourceLimit; uint8_t *target; int32_t targetCapacity; const uint16_t *table, *mbcsIndex; const uint16_t *results; int8_t oldToULength, toULength, toULimit; UChar32 c; uint8_t b, t1, t2; uint32_t stage2Entry; uint32_t asciiRoundtrips; uint16_t value; UBool hasSupplementary; /* set up the local pointers */ utf8=pToUArgs->converter; cnv=pFromUArgs->converter; source=(uint8_t *)pToUArgs->source; sourceLimit=(uint8_t *)pToUArgs->sourceLimit; target=(uint8_t *)pFromUArgs->target; targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); table=cnv->sharedData->mbcs.fromUnicodeTable; mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; } else { results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; } asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); /* get the converter state from the UTF-8 UConverter */ c=(UChar32)utf8->toUnicodeStatus; if(c!=0) { toULength=oldToULength=utf8->toULength; toULimit=(int8_t)utf8->mode; } else { toULength=oldToULength=toULimit=0; } /* * Make sure that the last byte sequence before sourceLimit is complete * or runs into a lead byte. * Do not go back into the bytes that will be read for finishing a partial * sequence from the previous buffer. * In the conversion loop compare source with sourceLimit only once * per multi-byte character. */ { int32_t i, length; length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); for(i=0; i<3 && i<length;) { b=*(sourceLimit-i-1); if(U8_IS_TRAIL(b)) { ++i; } else { if(i<U8_COUNT_TRAIL_BYTES(b)) { /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */ sourceLimit-=i+1; } break; } } } if(c!=0 && targetCapacity>0) { utf8->toUnicodeStatus=0; utf8->toULength=0; goto moreBytes; /* See note in ucnv_SBCSFromUTF8() about this goto. */ } /* conversion loop */ while(source<sourceLimit) { if(targetCapacity>0) { b=*source++; if((int8_t)b>=0) { /* convert ASCII */ if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { *target++=b; --targetCapacity; continue; } else { value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b); if(value==0) { c=b; goto unassigned; } } } else { if(b>0xe0) { if( /* handle U+1000..U+D7FF inline */ (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) || (b==0xed && (t1 <= 0x1f))) && (t2=(uint8_t)(source[1]-0x80)) <= 0x3f ) { c=((b&0xf)<<6)|t1; source+=2; value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2); if(value==0) { c=(c<<6)|t2; goto unassigned; } } else { c=-1; } } else if(b<0xe0) { if( /* handle U+0080..U+07FF inline */ b>=0xc2 && (t1=(uint8_t)(*source-0x80)) <= 0x3f ) { c=b&0x1f; ++source; value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1); if(value==0) { c=(c<<6)|t1; goto unassigned; } } else { c=-1; } } else { c=-1; } if(c<0) { /* handle "complicated" and error cases, and continuing partial characters */ oldToULength=0; toULength=1; toULimit=U8_COUNT_TRAIL_BYTES(b)+1; c=b; moreBytes: while(toULength<toULimit) { /* * The sourceLimit may have been adjusted before the conversion loop * to stop before a truncated sequence. * Here we need to use the real limit in case we have two truncated * sequences at the end. * See ticket #7492. */ if(source<(uint8_t *)pToUArgs->sourceLimit) { b=*source; if(U8_IS_TRAIL(b)) { ++source; ++toULength; c=(c<<6)+b; } else { break; /* sequence too short, stop with toULength<toULimit */ } } else { /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */ source-=(toULength-oldToULength); while(oldToULength<toULength) { utf8->toUBytes[oldToULength++]=*source++; } utf8->toUnicodeStatus=c; utf8->toULength=toULength; utf8->mode=toULimit; pToUArgs->source=(char *)source; pFromUArgs->target=(char *)target; return; } } if( toULength==toULimit && /* consumed all trail bytes */ (toULength==3 || toULength==2) && /* BMP */ (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] && (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ ) { stage2Entry=MBCS_STAGE_2_FROM_U(table, c); } else if( toULength==toULimit && toULength==4 && (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) ) { /* supplementary code point */ if(!hasSupplementary) { /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ stage2Entry=0; } else { stage2Entry=MBCS_STAGE_2_FROM_U(table, c); } } else { /* error handling: illegal UTF-8 byte sequence */ source-=(toULength-oldToULength); while(oldToULength<toULength) { utf8->toUBytes[oldToULength++]=*source++; } utf8->toULength=toULength; pToUArgs->source=(char *)source; pFromUArgs->target=(char *)target; *pErrorCode=U_ILLEGAL_CHAR_FOUND; return; } /* get the bytes and the length for the output */ /* MBCS_OUTPUT_2 */ value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c); /* is this code point assigned, or do we use fallbacks? */ if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) ) { goto unassigned; } } } /* write the output character bytes from value and length */ /* from the first if in the loop we know that targetCapacity>0 */ if(value<=0xff) { /* this is easy because we know that there is enough space */ *target++=(uint8_t)value; --targetCapacity; } else /* length==2 */ { *target++=(uint8_t)(value>>8); if(2<=targetCapacity) { *target++=(uint8_t)value; targetCapacity-=2; } else { cnv->charErrorBuffer[0]=(char)value; cnv->charErrorBufferLength=1; /* target overflow */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } continue; unassigned: { /* * Try an extension mapping. * Pass in no source because we don't have UTF-16 input. * If we have a partial match on c, we will return and revert * to UTF-8->UTF-16->charset conversion. */ static const UChar nul=0; const UChar *noSource=&nul; c=_extFromU(cnv, cnv->sharedData, c, &noSource, noSource, &target, target+targetCapacity, NULL, -1, pFromUArgs->flush, pErrorCode); if(U_FAILURE(*pErrorCode)) { /* not mappable or buffer overflow */ cnv->fromUChar32=c; break; } else if(cnv->preFromUFirstCP>=0) { /* * Partial match, return and revert to pivoting. * In normal from-UTF-16 conversion, we would just continue * but then exit the loop because the extension match would * have consumed the source. */ *pErrorCode=U_USING_DEFAULT_WARNING; break; } else { /* a mapping was written to the target, continue */ /* recalculate the targetCapacity after an extension mapping */ targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target); continue; } } } else { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } /* * The sourceLimit may have been adjusted before the conversion loop * to stop before a truncated sequence. * If so, then collect the truncated sequence now. */ if(U_SUCCESS(*pErrorCode) && cnv->preFromUFirstCP<0 && source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { c=utf8->toUBytes[0]=b=*source++; toULength=1; toULimit=U8_COUNT_TRAIL_BYTES(b)+1; while(source<sourceLimit) { utf8->toUBytes[toULength++]=b=*source++; c=(c<<6)+b; } utf8->toUnicodeStatus=c; utf8->toULength=toULength; utf8->mode=toULimit; } /* write back the updated pointers */ pToUArgs->source=(char *)source; pFromUArgs->target=(char *)target; } /* miscellaneous ------------------------------------------------------------ */ static void ucnv_MBCSGetStarters(const UConverter* cnv, UBool starters[256], UErrorCode *) { const int32_t *state0; int i; state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState]; for(i=0; i<256; ++i) { /* all bytes that cause a state transition from state 0 are lead bytes */ starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]); } } /* * This is an internal function that allows other converter implementations * to check whether a byte is a lead byte. */ U_CFUNC UBool ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) { return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]); } static void ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs, int32_t offsetIndex, UErrorCode *pErrorCode) { UConverter *cnv=pArgs->converter; char *p, *subchar; char buffer[4]; int32_t length; /* first, select between subChar and subChar1 */ if( cnv->subChar1!=0 && (cnv->sharedData->mbcs.extIndexes!=NULL ? cnv->useSubChar1 : (cnv->invalidUCharBuffer[0]<=0xff)) ) { /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */ subchar=(char *)&cnv->subChar1; length=1; } else { /* select subChar in all other cases */ subchar=(char *)cnv->subChars; length=cnv->subCharLen; } /* reset the selector for the next code point */ cnv->useSubChar1=FALSE; if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) { p=buffer; /* fromUnicodeStatus contains prevLength */ switch(length) { case 1: if(cnv->fromUnicodeStatus==2) { /* DBCS mode and SBCS sub char: change to SBCS */ cnv->fromUnicodeStatus=1; *p++=UCNV_SI; } *p++=subchar[0]; break; case 2: if(cnv->fromUnicodeStatus<=1) { /* SBCS mode and DBCS sub char: change to DBCS */ cnv->fromUnicodeStatus=2; *p++=UCNV_SO; } *p++=subchar[0]; *p++=subchar[1]; break; default: *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return; } subchar=buffer; length=(int32_t)(p-buffer); } ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode); } U_CFUNC UConverterType ucnv_MBCSGetType(const UConverter* converter) { /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */ if(converter->sharedData->mbcs.countStates==1) { return (UConverterType)UCNV_SBCS; } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) { return (UConverterType)UCNV_EBCDIC_STATEFUL; } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) { return (UConverterType)UCNV_DBCS; } return (UConverterType)UCNV_MBCS; } #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */