// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file tests the built-in actions in gmock-more-actions.h. #include "gmock/gmock-more-actions.h" #include <functional> #include <sstream> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "gtest/internal/gtest-linked_ptr.h" namespace testing { namespace gmock_more_actions_test { using ::std::plus; using ::std::string; using ::std::tr1::get; using ::std::tr1::make_tuple; using ::std::tr1::tuple; using ::std::tr1::tuple_element; using testing::_; using testing::Action; using testing::ActionInterface; using testing::DeleteArg; using testing::Invoke; using testing::Return; using testing::ReturnArg; using testing::ReturnPointee; using testing::SaveArg; using testing::SaveArgPointee; using testing::SetArgReferee; using testing::StaticAssertTypeEq; using testing::Unused; using testing::WithArg; using testing::WithoutArgs; using testing::internal::linked_ptr; // For suppressing compiler warnings on conversion possibly losing precision. inline short Short(short n) { return n; } // NOLINT inline char Char(char ch) { return ch; } // Sample functions and functors for testing Invoke() and etc. int Nullary() { return 1; } class NullaryFunctor { public: int operator()() { return 2; } }; bool g_done = false; void VoidNullary() { g_done = true; } class VoidNullaryFunctor { public: void operator()() { g_done = true; } }; bool Unary(int x) { return x < 0; } const char* Plus1(const char* s) { return s + 1; } void VoidUnary(int /* n */) { g_done = true; } bool ByConstRef(const string& s) { return s == "Hi"; } const double g_double = 0; bool ReferencesGlobalDouble(const double& x) { return &x == &g_double; } string ByNonConstRef(string& s) { return s += "+"; } // NOLINT struct UnaryFunctor { int operator()(bool x) { return x ? 1 : -1; } }; const char* Binary(const char* input, short n) { return input + n; } // NOLINT void VoidBinary(int, char) { g_done = true; } int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT void VoidTernary(int, char, bool) { g_done = true; } int SumOf4(int a, int b, int c, int d) { return a + b + c + d; } int SumOfFirst2(int a, int b, Unused, Unused) { return a + b; } void VoidFunctionWithFourArguments(char, int, float, double) { g_done = true; } string Concat4(const char* s1, const char* s2, const char* s3, const char* s4) { return string(s1) + s2 + s3 + s4; } int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; } struct SumOf5Functor { int operator()(int a, int b, int c, int d, int e) { return a + b + c + d + e; } }; string Concat5(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5) { return string(s1) + s2 + s3 + s4 + s5; } int SumOf6(int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; } struct SumOf6Functor { int operator()(int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; } }; string Concat6(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6) { return string(s1) + s2 + s3 + s4 + s5 + s6; } string Concat7(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7) { return string(s1) + s2 + s3 + s4 + s5 + s6 + s7; } string Concat8(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8) { return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8; } string Concat9(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8, const char* s9) { return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9; } string Concat10(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8, const char* s9, const char* s10) { return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10; } class Foo { public: Foo() : value_(123) {} int Nullary() const { return value_; } short Unary(long x) { return static_cast<short>(value_ + x); } // NOLINT string Binary(const string& str, char c) const { return str + c; } int Ternary(int x, bool y, char z) { return value_ + x + y*z; } int SumOf4(int a, int b, int c, int d) const { return a + b + c + d + value_; } int SumOfLast2(Unused, Unused, int a, int b) const { return a + b; } int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; } int SumOf6(int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; } string Concat7(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7) { return string(s1) + s2 + s3 + s4 + s5 + s6 + s7; } string Concat8(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8) { return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8; } string Concat9(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8, const char* s9) { return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9; } string Concat10(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8, const char* s9, const char* s10) { return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10; } private: int value_; }; // Tests using Invoke() with a nullary function. TEST(InvokeTest, Nullary) { Action<int()> a = Invoke(Nullary); // NOLINT EXPECT_EQ(1, a.Perform(make_tuple())); } // Tests using Invoke() with a unary function. TEST(InvokeTest, Unary) { Action<bool(int)> a = Invoke(Unary); // NOLINT EXPECT_FALSE(a.Perform(make_tuple(1))); EXPECT_TRUE(a.Perform(make_tuple(-1))); } // Tests using Invoke() with a binary function. TEST(InvokeTest, Binary) { Action<const char*(const char*, short)> a = Invoke(Binary); // NOLINT const char* p = "Hello"; EXPECT_EQ(p + 2, a.Perform(make_tuple(p, Short(2)))); } // Tests using Invoke() with a ternary function. TEST(InvokeTest, Ternary) { Action<int(int, char, short)> a = Invoke(Ternary); // NOLINT EXPECT_EQ(6, a.Perform(make_tuple(1, '\2', Short(3)))); } // Tests using Invoke() with a 4-argument function. TEST(InvokeTest, FunctionThatTakes4Arguments) { Action<int(int, int, int, int)> a = Invoke(SumOf4); // NOLINT EXPECT_EQ(1234, a.Perform(make_tuple(1000, 200, 30, 4))); } // Tests using Invoke() with a 5-argument function. TEST(InvokeTest, FunctionThatTakes5Arguments) { Action<int(int, int, int, int, int)> a = Invoke(SumOf5); // NOLINT EXPECT_EQ(12345, a.Perform(make_tuple(10000, 2000, 300, 40, 5))); } // Tests using Invoke() with a 6-argument function. TEST(InvokeTest, FunctionThatTakes6Arguments) { Action<int(int, int, int, int, int, int)> a = Invoke(SumOf6); // NOLINT EXPECT_EQ(123456, a.Perform(make_tuple(100000, 20000, 3000, 400, 50, 6))); } // A helper that turns the type of a C-string literal from const // char[N] to const char*. inline const char* CharPtr(const char* s) { return s; } // Tests using Invoke() with a 7-argument function. TEST(InvokeTest, FunctionThatTakes7Arguments) { Action<string(const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(Concat7); EXPECT_EQ("1234567", a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7")))); } // Tests using Invoke() with a 8-argument function. TEST(InvokeTest, FunctionThatTakes8Arguments) { Action<string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(Concat8); EXPECT_EQ("12345678", a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8")))); } // Tests using Invoke() with a 9-argument function. TEST(InvokeTest, FunctionThatTakes9Arguments) { Action<string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(Concat9); EXPECT_EQ("123456789", a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8"), CharPtr("9")))); } // Tests using Invoke() with a 10-argument function. TEST(InvokeTest, FunctionThatTakes10Arguments) { Action<string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(Concat10); EXPECT_EQ("1234567890", a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8"), CharPtr("9"), CharPtr("0")))); } // Tests using Invoke() with functions with parameters declared as Unused. TEST(InvokeTest, FunctionWithUnusedParameters) { Action<int(int, int, double, const string&)> a1 = Invoke(SumOfFirst2); EXPECT_EQ(12, a1.Perform(make_tuple(10, 2, 5.6, string("hi")))); Action<int(int, int, bool, int*)> a2 = Invoke(SumOfFirst2); EXPECT_EQ(23, a2.Perform(make_tuple(20, 3, true, static_cast<int*>(NULL)))); } // Tests using Invoke() with methods with parameters declared as Unused. TEST(InvokeTest, MethodWithUnusedParameters) { Foo foo; Action<int(string, bool, int, int)> a1 = Invoke(&foo, &Foo::SumOfLast2); EXPECT_EQ(12, a1.Perform(make_tuple(CharPtr("hi"), true, 10, 2))); Action<int(char, double, int, int)> a2 = Invoke(&foo, &Foo::SumOfLast2); EXPECT_EQ(23, a2.Perform(make_tuple('a', 2.5, 20, 3))); } // Tests using Invoke() with a functor. TEST(InvokeTest, Functor) { Action<long(long, int)> a = Invoke(plus<long>()); // NOLINT EXPECT_EQ(3L, a.Perform(make_tuple(1, 2))); } // Tests using Invoke(f) as an action of a compatible type. TEST(InvokeTest, FunctionWithCompatibleType) { Action<long(int, short, char, bool)> a = Invoke(SumOf4); // NOLINT EXPECT_EQ(4321, a.Perform(make_tuple(4000, Short(300), Char(20), true))); } // Tests using Invoke() with an object pointer and a method pointer. // Tests using Invoke() with a nullary method. TEST(InvokeMethodTest, Nullary) { Foo foo; Action<int()> a = Invoke(&foo, &Foo::Nullary); // NOLINT EXPECT_EQ(123, a.Perform(make_tuple())); } // Tests using Invoke() with a unary method. TEST(InvokeMethodTest, Unary) { Foo foo; Action<short(long)> a = Invoke(&foo, &Foo::Unary); // NOLINT EXPECT_EQ(4123, a.Perform(make_tuple(4000))); } // Tests using Invoke() with a binary method. TEST(InvokeMethodTest, Binary) { Foo foo; Action<string(const string&, char)> a = Invoke(&foo, &Foo::Binary); string s("Hell"); EXPECT_EQ("Hello", a.Perform(make_tuple(s, 'o'))); } // Tests using Invoke() with a ternary method. TEST(InvokeMethodTest, Ternary) { Foo foo; Action<int(int, bool, char)> a = Invoke(&foo, &Foo::Ternary); // NOLINT EXPECT_EQ(1124, a.Perform(make_tuple(1000, true, Char(1)))); } // Tests using Invoke() with a 4-argument method. TEST(InvokeMethodTest, MethodThatTakes4Arguments) { Foo foo; Action<int(int, int, int, int)> a = Invoke(&foo, &Foo::SumOf4); // NOLINT EXPECT_EQ(1357, a.Perform(make_tuple(1000, 200, 30, 4))); } // Tests using Invoke() with a 5-argument method. TEST(InvokeMethodTest, MethodThatTakes5Arguments) { Foo foo; Action<int(int, int, int, int, int)> a = Invoke(&foo, &Foo::SumOf5); // NOLINT EXPECT_EQ(12345, a.Perform(make_tuple(10000, 2000, 300, 40, 5))); } // Tests using Invoke() with a 6-argument method. TEST(InvokeMethodTest, MethodThatTakes6Arguments) { Foo foo; Action<int(int, int, int, int, int, int)> a = // NOLINT Invoke(&foo, &Foo::SumOf6); EXPECT_EQ(123456, a.Perform(make_tuple(100000, 20000, 3000, 400, 50, 6))); } // Tests using Invoke() with a 7-argument method. TEST(InvokeMethodTest, MethodThatTakes7Arguments) { Foo foo; Action<string(const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(&foo, &Foo::Concat7); EXPECT_EQ("1234567", a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7")))); } // Tests using Invoke() with a 8-argument method. TEST(InvokeMethodTest, MethodThatTakes8Arguments) { Foo foo; Action<string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(&foo, &Foo::Concat8); EXPECT_EQ("12345678", a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8")))); } // Tests using Invoke() with a 9-argument method. TEST(InvokeMethodTest, MethodThatTakes9Arguments) { Foo foo; Action<string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(&foo, &Foo::Concat9); EXPECT_EQ("123456789", a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8"), CharPtr("9")))); } // Tests using Invoke() with a 10-argument method. TEST(InvokeMethodTest, MethodThatTakes10Arguments) { Foo foo; Action<string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(&foo, &Foo::Concat10); EXPECT_EQ("1234567890", a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8"), CharPtr("9"), CharPtr("0")))); } // Tests using Invoke(f) as an action of a compatible type. TEST(InvokeMethodTest, MethodWithCompatibleType) { Foo foo; Action<long(int, short, char, bool)> a = // NOLINT Invoke(&foo, &Foo::SumOf4); EXPECT_EQ(4444, a.Perform(make_tuple(4000, Short(300), Char(20), true))); } // Tests using WithoutArgs with an action that takes no argument. TEST(WithoutArgsTest, NoArg) { Action<int(int n)> a = WithoutArgs(Invoke(Nullary)); // NOLINT EXPECT_EQ(1, a.Perform(make_tuple(2))); } // Tests using WithArg with an action that takes 1 argument. TEST(WithArgTest, OneArg) { Action<bool(double x, int n)> b = WithArg<1>(Invoke(Unary)); // NOLINT EXPECT_TRUE(b.Perform(make_tuple(1.5, -1))); EXPECT_FALSE(b.Perform(make_tuple(1.5, 1))); } TEST(ReturnArgActionTest, WorksForOneArgIntArg0) { const Action<int(int)> a = ReturnArg<0>(); EXPECT_EQ(5, a.Perform(make_tuple(5))); } TEST(ReturnArgActionTest, WorksForMultiArgBoolArg0) { const Action<bool(bool, bool, bool)> a = ReturnArg<0>(); EXPECT_TRUE(a.Perform(make_tuple(true, false, false))); } TEST(ReturnArgActionTest, WorksForMultiArgStringArg2) { const Action<string(int, int, string, int)> a = ReturnArg<2>(); EXPECT_EQ("seven", a.Perform(make_tuple(5, 6, string("seven"), 8))); } TEST(SaveArgActionTest, WorksForSameType) { int result = 0; const Action<void(int n)> a1 = SaveArg<0>(&result); a1.Perform(make_tuple(5)); EXPECT_EQ(5, result); } TEST(SaveArgActionTest, WorksForCompatibleType) { int result = 0; const Action<void(bool, char)> a1 = SaveArg<1>(&result); a1.Perform(make_tuple(true, 'a')); EXPECT_EQ('a', result); } TEST(SaveArgPointeeActionTest, WorksForSameType) { int result = 0; const int value = 5; const Action<void(const int*)> a1 = SaveArgPointee<0>(&result); a1.Perform(make_tuple(&value)); EXPECT_EQ(5, result); } TEST(SaveArgPointeeActionTest, WorksForCompatibleType) { int result = 0; char value = 'a'; const Action<void(bool, char*)> a1 = SaveArgPointee<1>(&result); a1.Perform(make_tuple(true, &value)); EXPECT_EQ('a', result); } TEST(SaveArgPointeeActionTest, WorksForLinkedPtr) { int result = 0; linked_ptr<int> value(new int(5)); const Action<void(linked_ptr<int>)> a1 = SaveArgPointee<0>(&result); a1.Perform(make_tuple(value)); EXPECT_EQ(5, result); } TEST(SetArgRefereeActionTest, WorksForSameType) { int value = 0; const Action<void(int&)> a1 = SetArgReferee<0>(1); a1.Perform(tuple<int&>(value)); EXPECT_EQ(1, value); } TEST(SetArgRefereeActionTest, WorksForCompatibleType) { int value = 0; const Action<void(int, int&)> a1 = SetArgReferee<1>('a'); a1.Perform(tuple<int, int&>(0, value)); EXPECT_EQ('a', value); } TEST(SetArgRefereeActionTest, WorksWithExtraArguments) { int value = 0; const Action<void(bool, int, int&, const char*)> a1 = SetArgReferee<2>('a'); a1.Perform(tuple<bool, int, int&, const char*>(true, 0, value, "hi")); EXPECT_EQ('a', value); } // A class that can be used to verify that its destructor is called: it will set // the bool provided to the constructor to true when destroyed. class DeletionTester { public: explicit DeletionTester(bool* is_deleted) : is_deleted_(is_deleted) { // Make sure the bit is set to false. *is_deleted_ = false; } ~DeletionTester() { *is_deleted_ = true; } private: bool* is_deleted_; }; TEST(DeleteArgActionTest, OneArg) { bool is_deleted = false; DeletionTester* t = new DeletionTester(&is_deleted); const Action<void(DeletionTester*)> a1 = DeleteArg<0>(); // NOLINT EXPECT_FALSE(is_deleted); a1.Perform(make_tuple(t)); EXPECT_TRUE(is_deleted); } TEST(DeleteArgActionTest, TenArgs) { bool is_deleted = false; DeletionTester* t = new DeletionTester(&is_deleted); const Action<void(bool, int, int, const char*, bool, int, int, int, int, DeletionTester*)> a1 = DeleteArg<9>(); EXPECT_FALSE(is_deleted); a1.Perform(make_tuple(true, 5, 6, CharPtr("hi"), false, 7, 8, 9, 10, t)); EXPECT_TRUE(is_deleted); } #if GTEST_HAS_EXCEPTIONS TEST(ThrowActionTest, ThrowsGivenExceptionInVoidFunction) { const Action<void(int n)> a = Throw('a'); EXPECT_THROW(a.Perform(make_tuple(0)), char); } class MyException {}; TEST(ThrowActionTest, ThrowsGivenExceptionInNonVoidFunction) { const Action<double(char ch)> a = Throw(MyException()); EXPECT_THROW(a.Perform(make_tuple('0')), MyException); } TEST(ThrowActionTest, ThrowsGivenExceptionInNullaryFunction) { const Action<double()> a = Throw(MyException()); EXPECT_THROW(a.Perform(make_tuple()), MyException); } #endif // GTEST_HAS_EXCEPTIONS // Tests that SetArrayArgument<N>(first, last) sets the elements of the array // pointed to by the N-th (0-based) argument to values in range [first, last). TEST(SetArrayArgumentTest, SetsTheNthArray) { typedef void MyFunction(bool, int*, char*); int numbers[] = { 1, 2, 3 }; Action<MyFunction> a = SetArrayArgument<1>(numbers, numbers + 3); int n[4] = {}; int* pn = n; char ch[4] = {}; char* pch = ch; a.Perform(make_tuple(true, pn, pch)); EXPECT_EQ(1, n[0]); EXPECT_EQ(2, n[1]); EXPECT_EQ(3, n[2]); EXPECT_EQ(0, n[3]); EXPECT_EQ('\0', ch[0]); EXPECT_EQ('\0', ch[1]); EXPECT_EQ('\0', ch[2]); EXPECT_EQ('\0', ch[3]); // Tests first and last are iterators. std::string letters = "abc"; a = SetArrayArgument<2>(letters.begin(), letters.end()); std::fill_n(n, 4, 0); std::fill_n(ch, 4, '\0'); a.Perform(make_tuple(true, pn, pch)); EXPECT_EQ(0, n[0]); EXPECT_EQ(0, n[1]); EXPECT_EQ(0, n[2]); EXPECT_EQ(0, n[3]); EXPECT_EQ('a', ch[0]); EXPECT_EQ('b', ch[1]); EXPECT_EQ('c', ch[2]); EXPECT_EQ('\0', ch[3]); } // Tests SetArrayArgument<N>(first, last) where first == last. TEST(SetArrayArgumentTest, SetsTheNthArrayWithEmptyRange) { typedef void MyFunction(bool, int*); int numbers[] = { 1, 2, 3 }; Action<MyFunction> a = SetArrayArgument<1>(numbers, numbers); int n[4] = {}; int* pn = n; a.Perform(make_tuple(true, pn)); EXPECT_EQ(0, n[0]); EXPECT_EQ(0, n[1]); EXPECT_EQ(0, n[2]); EXPECT_EQ(0, n[3]); } // Tests SetArrayArgument<N>(first, last) where *first is convertible // (but not equal) to the argument type. TEST(SetArrayArgumentTest, SetsTheNthArrayWithConvertibleType) { typedef void MyFunction(bool, char*); int codes[] = { 97, 98, 99 }; Action<MyFunction> a = SetArrayArgument<1>(codes, codes + 3); char ch[4] = {}; char* pch = ch; a.Perform(make_tuple(true, pch)); EXPECT_EQ('a', ch[0]); EXPECT_EQ('b', ch[1]); EXPECT_EQ('c', ch[2]); EXPECT_EQ('\0', ch[3]); } // Test SetArrayArgument<N>(first, last) with iterator as argument. TEST(SetArrayArgumentTest, SetsTheNthArrayWithIteratorArgument) { typedef void MyFunction(bool, std::back_insert_iterator<std::string>); std::string letters = "abc"; Action<MyFunction> a = SetArrayArgument<1>(letters.begin(), letters.end()); std::string s; a.Perform(make_tuple(true, back_inserter(s))); EXPECT_EQ(letters, s); } TEST(ReturnPointeeTest, Works) { int n = 42; const Action<int()> a = ReturnPointee(&n); EXPECT_EQ(42, a.Perform(make_tuple())); n = 43; EXPECT_EQ(43, a.Perform(make_tuple())); } } // namespace gmock_generated_actions_test } // namespace testing