// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_AUTODIFF_JACOBIAN_H #define EIGEN_AUTODIFF_JACOBIAN_H namespace Eigen { template<typename Functor> class AutoDiffJacobian : public Functor { public: AutoDiffJacobian() : Functor() {} AutoDiffJacobian(const Functor& f) : Functor(f) {} // forward constructors template<typename T0> AutoDiffJacobian(const T0& a0) : Functor(a0) {} template<typename T0, typename T1> AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {} template<typename T0, typename T1, typename T2> AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {} enum { InputsAtCompileTime = Functor::InputsAtCompileTime, ValuesAtCompileTime = Functor::ValuesAtCompileTime }; typedef typename Functor::InputType InputType; typedef typename Functor::ValueType ValueType; typedef typename Functor::JacobianType JacobianType; typedef typename JacobianType::Scalar Scalar; typedef typename JacobianType::Index Index; typedef Matrix<Scalar,InputsAtCompileTime,1> DerivativeType; typedef AutoDiffScalar<DerivativeType> ActiveScalar; typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput; typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue; void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const { eigen_assert(v!=0); if (!_jac) { Functor::operator()(x, v); return; } JacobianType& jac = *_jac; ActiveInput ax = x.template cast<ActiveScalar>(); ActiveValue av(jac.rows()); if(InputsAtCompileTime==Dynamic) for (Index j=0; j<jac.rows(); j++) av[j].derivatives().resize(this->inputs()); for (Index i=0; i<jac.cols(); i++) ax[i].derivatives() = DerivativeType::Unit(this->inputs(),i); Functor::operator()(ax, &av); for (Index i=0; i<jac.rows(); i++) { (*v)[i] = av[i].value(); jac.row(i) = av[i].derivatives(); } } protected: }; } #endif // EIGEN_AUTODIFF_JACOBIAN_H