// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/LU> template<typename MatrixType> void inverse(const MatrixType& m) { /* this test covers the following files: Inverse.h */ int rows = m.rows(); int cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), identity = MatrixType::Identity(rows, rows); while(ei_abs(m1.determinant()) < RealScalar(0.1) && rows <= 8) { m1 = MatrixType::Random(rows, cols); } m2 = m1.inverse(); VERIFY_IS_APPROX(m1, m2.inverse() ); m1.computeInverse(&m2); VERIFY_IS_APPROX(m1, m2.inverse() ); VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5)); VERIFY_IS_APPROX(identity, m1.inverse() * m1 ); VERIFY_IS_APPROX(identity, m1 * m1.inverse() ); VERIFY_IS_APPROX(m1, m1.inverse().inverse() ); // since for the general case we implement separately row-major and col-major, test that VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose()); } void test_eigen2_inverse() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) ); CALL_SUBTEST_2( inverse(Matrix2d()) ); CALL_SUBTEST_3( inverse(Matrix3f()) ); CALL_SUBTEST_4( inverse(Matrix4f()) ); CALL_SUBTEST_5( inverse(MatrixXf(8,8)) ); CALL_SUBTEST_6( inverse(MatrixXcd(7,7)) ); } }