/*- * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * The algorithm is very close to that in "Implementing the complex arcsine * and arccosine functions using exception handling" by T. E. Hull, Thomas F. * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335, * http://dl.acm.org/citation.cfm?id=275324. * * See catrig.c for complete comments. * * XXX comments were removed automatically, and even short ones on the right * of statements were removed (all of them), contrary to normal style. Only * a few comments on the right of declarations remain. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: head/lib/msun/src/catrigf.c 275819 2014-12-16 09:21:56Z ed $"); #include <complex.h> #include <float.h> #include "math.h" #include "math_private.h" #undef isinf #define isinf(x) (fabsf(x) == INFINITY) #undef isnan #define isnan(x) ((x) != (x)) #define raise_inexact() do { volatile float junk = 1 + tiny; } while(0) #undef signbit #define signbit(x) (__builtin_signbitf(x)) static const float A_crossover = 10, B_crossover = 0.6417, FOUR_SQRT_MIN = 0x1p-61, QUARTER_SQRT_MAX = 0x1p61, m_e = 2.7182818285e0, /* 0xadf854.0p-22 */ m_ln2 = 6.9314718056e-1, /* 0xb17218.0p-24 */ pio2_hi = 1.5707962513e0, /* 0xc90fda.0p-23 */ RECIP_EPSILON = 1 / FLT_EPSILON, SQRT_3_EPSILON = 5.9801995673e-4, /* 0x9cc471.0p-34 */ SQRT_6_EPSILON = 8.4572793338e-4, /* 0xddb3d7.0p-34 */ SQRT_MIN = 0x1p-63; static const volatile float pio2_lo = 7.5497899549e-8, /* 0xa22169.0p-47 */ tiny = 0x1p-100; static float complex clog_for_large_values(float complex z); static inline float f(float a, float b, float hypot_a_b) { if (b < 0) return ((hypot_a_b - b) / 2); if (b == 0) return (a / 2); return (a * a / (hypot_a_b + b) / 2); } static inline void do_hard_work(float x, float y, float *rx, int *B_is_usable, float *B, float *sqrt_A2my2, float *new_y) { float R, S, A; float Am1, Amy; R = hypotf(x, y + 1); S = hypotf(x, y - 1); A = (R + S) / 2; if (A < 1) A = 1; if (A < A_crossover) { if (y == 1 && x < FLT_EPSILON * FLT_EPSILON / 128) { *rx = sqrtf(x); } else if (x >= FLT_EPSILON * fabsf(y - 1)) { Am1 = f(x, 1 + y, R) + f(x, 1 - y, S); *rx = log1pf(Am1 + sqrtf(Am1 * (A + 1))); } else if (y < 1) { *rx = x / sqrtf((1 - y) * (1 + y)); } else { *rx = log1pf((y - 1) + sqrtf((y - 1) * (y + 1))); } } else { *rx = logf(A + sqrtf(A * A - 1)); } *new_y = y; if (y < FOUR_SQRT_MIN) { *B_is_usable = 0; *sqrt_A2my2 = A * (2 / FLT_EPSILON); *new_y = y * (2 / FLT_EPSILON); return; } *B = y / A; *B_is_usable = 1; if (*B > B_crossover) { *B_is_usable = 0; if (y == 1 && x < FLT_EPSILON / 128) { *sqrt_A2my2 = sqrtf(x) * sqrtf((A + y) / 2); } else if (x >= FLT_EPSILON * fabsf(y - 1)) { Amy = f(x, y + 1, R) + f(x, y - 1, S); *sqrt_A2my2 = sqrtf(Amy * (A + y)); } else if (y > 1) { *sqrt_A2my2 = x * (4 / FLT_EPSILON / FLT_EPSILON) * y / sqrtf((y + 1) * (y - 1)); *new_y = y * (4 / FLT_EPSILON / FLT_EPSILON); } else { *sqrt_A2my2 = sqrtf((1 - y) * (1 + y)); } } } float complex casinhf(float complex z) { float x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y; int B_is_usable; float complex w; x = crealf(z); y = cimagf(z); ax = fabsf(x); ay = fabsf(y); if (isnan(x) || isnan(y)) { if (isinf(x)) return (CMPLXF(x, y + y)); if (isinf(y)) return (CMPLXF(y, x + x)); if (y == 0) return (CMPLXF(x + x, y)); return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0))); } if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { if (signbit(x) == 0) w = clog_for_large_values(z) + m_ln2; else w = clog_for_large_values(-z) + m_ln2; return (CMPLXF(copysignf(crealf(w), x), copysignf(cimagf(w), y))); } if (x == 0 && y == 0) return (z); raise_inexact(); if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) return (z); do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y); if (B_is_usable) ry = asinf(B); else ry = atan2f(new_y, sqrt_A2my2); return (CMPLXF(copysignf(rx, x), copysignf(ry, y))); } float complex casinf(float complex z) { float complex w = casinhf(CMPLXF(cimagf(z), crealf(z))); return (CMPLXF(cimagf(w), crealf(w))); } float complex cacosf(float complex z) { float x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x; int sx, sy; int B_is_usable; float complex w; x = crealf(z); y = cimagf(z); sx = signbit(x); sy = signbit(y); ax = fabsf(x); ay = fabsf(y); if (isnan(x) || isnan(y)) { if (isinf(x)) return (CMPLXF(y + y, -INFINITY)); if (isinf(y)) return (CMPLXF(x + x, -y)); if (x == 0) return (CMPLXF(pio2_hi + pio2_lo, y + y)); return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0))); } if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { w = clog_for_large_values(z); rx = fabsf(cimagf(w)); ry = crealf(w) + m_ln2; if (sy == 0) ry = -ry; return (CMPLXF(rx, ry)); } if (x == 1 && y == 0) return (CMPLXF(0, -y)); raise_inexact(); if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) return (CMPLXF(pio2_hi - (x - pio2_lo), -y)); do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x); if (B_is_usable) { if (sx == 0) rx = acosf(B); else rx = acosf(-B); } else { if (sx == 0) rx = atan2f(sqrt_A2mx2, new_x); else rx = atan2f(sqrt_A2mx2, -new_x); } if (sy == 0) ry = -ry; return (CMPLXF(rx, ry)); } float complex cacoshf(float complex z) { float complex w; float rx, ry; w = cacosf(z); rx = crealf(w); ry = cimagf(w); if (isnan(rx) && isnan(ry)) return (CMPLXF(ry, rx)); if (isnan(rx)) return (CMPLXF(fabsf(ry), rx)); if (isnan(ry)) return (CMPLXF(ry, ry)); return (CMPLXF(fabsf(ry), copysignf(rx, cimagf(z)))); } static float complex clog_for_large_values(float complex z) { float x, y; float ax, ay, t; x = crealf(z); y = cimagf(z); ax = fabsf(x); ay = fabsf(y); if (ax < ay) { t = ax; ax = ay; ay = t; } if (ax > FLT_MAX / 2) return (CMPLXF(logf(hypotf(x / m_e, y / m_e)) + 1, atan2f(y, x))); if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN) return (CMPLXF(logf(hypotf(x, y)), atan2f(y, x))); return (CMPLXF(logf(ax * ax + ay * ay) / 2, atan2f(y, x))); } static inline float sum_squares(float x, float y) { if (y < SQRT_MIN) return (x * x); return (x * x + y * y); } static inline float real_part_reciprocal(float x, float y) { float scale; uint32_t hx, hy; int32_t ix, iy; GET_FLOAT_WORD(hx, x); ix = hx & 0x7f800000; GET_FLOAT_WORD(hy, y); iy = hy & 0x7f800000; #define BIAS (FLT_MAX_EXP - 1) #define CUTOFF (FLT_MANT_DIG / 2 + 1) if (ix - iy >= CUTOFF << 23 || isinf(x)) return (1 / x); if (iy - ix >= CUTOFF << 23) return (x / y / y); if (ix <= (BIAS + FLT_MAX_EXP / 2 - CUTOFF) << 23) return (x / (x * x + y * y)); SET_FLOAT_WORD(scale, 0x7f800000 - ix); x *= scale; y *= scale; return (x / (x * x + y * y) * scale); } float complex catanhf(float complex z) { float x, y, ax, ay, rx, ry; x = crealf(z); y = cimagf(z); ax = fabsf(x); ay = fabsf(y); if (y == 0 && ax <= 1) return (CMPLXF(atanhf(x), y)); if (x == 0) return (CMPLXF(x, atanf(y))); if (isnan(x) || isnan(y)) { if (isinf(x)) return (CMPLXF(copysignf(0, x), y + y)); if (isinf(y)) return (CMPLXF(copysignf(0, x), copysignf(pio2_hi + pio2_lo, y))); return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0))); } if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) return (CMPLXF(real_part_reciprocal(x, y), copysignf(pio2_hi + pio2_lo, y))); if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) { raise_inexact(); return (z); } if (ax == 1 && ay < FLT_EPSILON) rx = (m_ln2 - logf(ay)) / 2; else rx = log1pf(4 * ax / sum_squares(ax - 1, ay)) / 4; if (ax == 1) ry = atan2f(2, -ay) / 2; else if (ay < FLT_EPSILON) ry = atan2f(2 * ay, (1 - ax) * (1 + ax)) / 2; else ry = atan2f(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2; return (CMPLXF(copysignf(rx, x), copysignf(ry, y))); } float complex catanf(float complex z) { float complex w = catanhf(CMPLXF(cimagf(z), crealf(z))); return (CMPLXF(cimagf(w), crealf(w))); }