/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_ACCOUNTING_READ_BARRIER_TABLE_H_ #define ART_RUNTIME_GC_ACCOUNTING_READ_BARRIER_TABLE_H_ #include "base/bit_utils.h" #include "base/mutex.h" #include "gc/space/space.h" #include "globals.h" #include "mem_map.h" namespace art { namespace gc { namespace accounting { // Used to decide whether to take the read barrier fast/slow paths for // kUseTableLookupReadBarrier. If an entry is set, take the read // barrier slow path. There's an entry per region. class ReadBarrierTable { public: ReadBarrierTable() { size_t capacity = static_cast<size_t>(kHeapCapacity / kRegionSize); DCHECK_EQ(kHeapCapacity / kRegionSize, static_cast<uint64_t>(static_cast<size_t>(kHeapCapacity / kRegionSize))); std::string error_msg; MemMap* mem_map = MemMap::MapAnonymous("read barrier table", nullptr, capacity, PROT_READ | PROT_WRITE, false, false, &error_msg); CHECK(mem_map != nullptr && mem_map->Begin() != nullptr) << "couldn't allocate read barrier table: " << error_msg; mem_map_.reset(mem_map); } void ClearForSpace(space::ContinuousSpace* space) { uint8_t* entry_start = EntryFromAddr(space->Begin()); uint8_t* entry_end = EntryFromAddr(space->Limit()); memset(reinterpret_cast<void*>(entry_start), 0, entry_end - entry_start); } void Clear(uint8_t* start_addr, uint8_t* end_addr) { DCHECK(IsValidHeapAddr(start_addr)) << start_addr; DCHECK(IsValidHeapAddr(end_addr)) << end_addr; DCHECK_ALIGNED(start_addr, kRegionSize); DCHECK_ALIGNED(end_addr, kRegionSize); uint8_t* entry_start = EntryFromAddr(start_addr); uint8_t* entry_end = EntryFromAddr(end_addr); memset(reinterpret_cast<void*>(entry_start), 0, entry_end - entry_start); } bool IsSet(const void* heap_addr) const { DCHECK(IsValidHeapAddr(heap_addr)) << heap_addr; uint8_t entry_value = *EntryFromAddr(heap_addr); DCHECK(entry_value == 0 || entry_value == kSetEntryValue); return entry_value == kSetEntryValue; } void ClearAll() { mem_map_->MadviseDontNeedAndZero(); } void SetAll() { memset(mem_map_->Begin(), kSetEntryValue, mem_map_->Size()); } bool IsAllCleared() const { for (uint32_t* p = reinterpret_cast<uint32_t*>(mem_map_->Begin()); p < reinterpret_cast<uint32_t*>(mem_map_->End()); ++p) { if (*p != 0) { return false; } } return true; } // This should match RegionSpace::kRegionSize. static_assert'ed in concurrent_copying.h. static constexpr size_t kRegionSize = 1 * MB; private: static constexpr uint64_t kHeapCapacity = 4ULL * GB; // low 4gb. static constexpr uint8_t kSetEntryValue = 0x01; uint8_t* EntryFromAddr(const void* heap_addr) const { DCHECK(IsValidHeapAddr(heap_addr)) << heap_addr; uint8_t* entry_addr = mem_map_->Begin() + reinterpret_cast<uintptr_t>(heap_addr) / kRegionSize; DCHECK(IsValidEntry(entry_addr)) << "heap_addr: " << heap_addr << " entry_addr: " << reinterpret_cast<void*>(entry_addr); return entry_addr; } bool IsValidHeapAddr(const void* heap_addr) const { #ifdef __LP64__ return reinterpret_cast<uint64_t>(heap_addr) < kHeapCapacity; #else UNUSED(heap_addr); return true; #endif } bool IsValidEntry(const uint8_t* entry_addr) const { uint8_t* begin = mem_map_->Begin(); uint8_t* end = mem_map_->End(); return entry_addr >= begin && entry_addr < end; } std::unique_ptr<MemMap> mem_map_; }; } // namespace accounting } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_ACCOUNTING_READ_BARRIER_TABLE_H_